
Massive inputs vs massive decentralization
Some algorithmic challenges in modern computing systems

Mattia D’Emidio1

1Assistant Professor (RTD-B) @ UNIVERSITY OF L’AQUILA
email: mattia.demidio@gmail.com

web: www.mattiademidio.com

December 2, 2021

Mattia D’Emidio Massive inputs vs massive decentralization 1 / 62

1 Research Themes

2 Scalable Graph Algorithms
On The Importance of Algorithms for Mining Graphs
On the Importance of Scalability
Scalable Mining of Distances

3 Algorithms for Multi-Entity Computing Systems
Multi-Entity Computing Systems and Applications
Computability and Algorithms for MCSs
Programmable Matter

Mattia D’Emidio Massive inputs vs massive decentralization 2 / 62

Outline

1 Research Themes

2 Scalable Graph Algorithms
On The Importance of Algorithms for Mining Graphs
On the Importance of Scalability
Scalable Mining of Distances

3 Algorithms for Multi-Entity Computing Systems
Multi-Entity Computing Systems and Applications
Computability and Algorithms for MCSs
Programmable Matter

Mattia D’Emidio Massive inputs vs massive decentralization 3 / 62

AREAS OF EXPERTISE
ALGORITHM ENGINEERING: theory and experimentation in algorithmics

On the importance of combining the tools of the theoretician with careful implementations, experimentation and
data analysis

GRAPH ALGORITHMS: design, analysis, efficient implementation of algorithms for real-world applications
that manage graphs

Focus on dynamic graph algorithms: processing graphs that evolve over time
MASSIVE DATASETS: challenges posed by processing of massive datasets

effective algorithmic frameworks, massively parallel computing systems
DISTRIBUTED COMPUTING: algorithms for decentralized systems

networks, swarms of robots, multi-agent systems, programmable matter

TEACHING both doctoral and master’s level courses on:
DESIGN AND IMPLEMENTATION OF ALGORITHMS
ALGORITHM ENGINEERING
BIG DATA: MODELS AND ALGORITHMS
DISTRIBUTED SYSTEMS

Mattia D’Emidio Massive inputs vs massive decentralization 4 / 62

Research Activities
CURRENTLY TWO ACTIVE LINES:
1. ALGORITHM ENGINEERING APPLIED TO (SCALABLE) GRAPH ALGORITHMS

DESIGN, ANALYSIS, IMPLEMENTATION, EXPERIMENTATION OF ALGORITHMS for graph problems that scale well with
size
FOCUS ON REAL-WORLD APPLICATIONS that need to extract topological properties from massive (possibly time-
evolving) graph datasets graph with very low execution times (e.g. social networks, web datasets, biological
datasets, transport systems)

2. DISTRIBUTED ALGORITHMS FOR MULTI-ENTITY COMPUTING SYSTEMS
Investigation on COMPUTATIONAL PROPERTIES and on DESIGN AND ANALYSIS ALGORITHMS for distributed systems
of ”mobile” autonomous entities
FOCUS ON EMERGING TECHNOLOGIES such as, e.g. swarm robotics, networks of software agents, systems of pro-
grammable particles

MAIN OBJECTIVE OF THIS PRESENTATION: high-level survey on research activities in these areas
Few technical details, see references for more details
We have SEVERAL ACTIVE PROJECTS related to research themes:

Possibility of thesis a

awww.mattiademidio.com

Mattia D’Emidio Massive inputs vs massive decentralization 5 / 62

Some refs TO KNOW MORE
Gianlorenzo D’Angelo, Mattia D’Emidio, Shantanu Das, Alfredo Navarra, Giuseppe Prencipe: Asynchronous Silent
Programmable Matter Achieves Leader Election and Compaction. IEEE Access 8: 207619-207634 (2020)
Mattia D’Emidio: Faster Algorithms for Mining Shortest-Path Distances from Massive Time-Evolving Graphs. Al-
gorithms 13(8): 191 (2020)
Gianlorenzo D’Angelo, Mattia D’Emidio, Daniele Frigioni: Fully Dynamic 2-Hop Cover Labeling. ACM J. Exp. Algorith-
mics 24(1): 1.6:1-1.6:36 (2019)

Mattia D’Emidio Massive inputs vs massive decentralization 6 / 62

RELATED SECONDARY/PAST TOPICS I have been investigating:
COMPUTATIONAL GEOMETRY algorithms for CAD tools (schematization, decomposition, simplification prob-
lems)
MASSIVELY PARALLEL COMPUTING SYSTEMS (MapReduce paradigm, Apache Spark)
DISTRIBUTED ROUTING ALGORITHMS (algorithms for dynamic routing tables)

Some refs TO KNOW MORE
S. Cicerone, M. D’Emidio, D. Frigioni, F.T. Pascucci: Combining Polygon Schematization and Decomposition Ap-
proaches for Solving the Cavity Decomposition Problem. ACM Trans. Spatial Algorithms Syst. 7(4): 22:1-22:37
(2021)
S. Cicerone, M. D’Emidio, G. Di Stefano, A. Navarra: On the effectiveness of the genetic paradigm for polygoniza-
tion. Inf. Process. Lett. 171: 106134 (2021)
G. D’Angelo, M. D’Emidio, D. Frigioni: A loop-free shortest-path routing algorithm for dynamic networks. Theor.
Comput. Sci. 516: 1-19 (2014)

Mattia D’Emidio Massive inputs vs massive decentralization 7 / 62

Outline

1 Research Themes

2 Scalable Graph Algorithms
On The Importance of Algorithms for Mining Graphs
On the Importance of Scalability
Scalable Mining of Distances

3 Algorithms for Multi-Entity Computing Systems
Multi-Entity Computing Systems and Applications
Computability and Algorithms for MCSs
Programmable Matter

Mattia D’Emidio Massive inputs vs massive decentralization 8 / 62

On The Importance of Algorithms for Mining Graphs

GRAPH DATASETS are everywhere in (modern) computing/information systems
model binary relationships between individual entities
thus is an extremely common data structure
essentially all modern applications exploit graph modeling of data
essentially all modern applications exploit need graph algorithms for effective processing

for OPTIMIZATION PURPOSES (e.g. routing, network design, scheduling, transportation, logistics)
for ANALYTICAL/INFORMATION DISCOVERY PURPOSES (e.g. social network analysis, web indexing, bioinformatics)

Reason why HUGE AMOUNT OF RESEARCH is/has been devoted to such structures, their properties and to de-
signing suited algorithms

Mattia D’Emidio Massive inputs vs massive decentralization 9 / 62

On The Importance of Algorithms for Mining Graphs: Examples

ROUTING IN COMMUNICATION NETWORKS selection of small latency paths achieved via (various types of) shortest-
path algorithms (vertices are network nodes, arcs are network links, weights are latencies)

Mattia D’Emidio Massive inputs vs massive decentralization 10 / 62

On The Importance of Algorithms for Mining Graphs: Examples

SOCIAL NETWORK ANALYSIS: identification of communities, link prediction, detection of malicious behaviors by
pattern detection algorithms or via extraction of various topological properties (vertices are entities of the
social network, arcs are connections - e.g. friendship or ”follows” - between entities)

Mattia D’Emidio Massive inputs vs massive decentralization 10 / 62

On The Importance of Algorithms for Mining Graphs: Examples

Similarly for SEMANTIC NETWORKS AS GRAPHS (network properties, or useful patterns, via graph algorithms)

Mattia D’Emidio Massive inputs vs massive decentralization 10 / 62

On The Importance of Algorithms for Mining Graphs: Examples

OPTIMIZATION OF TRANSPORT NETWORKS selection of best paths (low travel time, low monetary cost, passing
through some city or train station) via (various types of) shortest-path algorithms (vertices are crossings or
locations, arcs are road segments or connections, weights are costs/times)

Mattia D’Emidio Massive inputs vs massive decentralization 10 / 62

On The Importance of Algorithms for Mining Graphs: Examples
WEB INDEXING, RANKING, CLASSIFICATION rank/cluster/index/query/similarity through various kinds of graph
algorithms (vertices are pages, arcs are links, weight is probability of traversal)

Mattia D’Emidio Massive inputs vs massive decentralization 10 / 62

On The Importance of Algorithms for Mining Graphs: Examples
METABOLIC PROCESSES find/analyze interactions between compounds or expressions of genes via graph prop-
erties/subgraphs/frequent patterns/enumeration

Mattia D’Emidio Massive inputs vs massive decentralization 10 / 62

On The Importance of Algorithms for Mining Graphs: Examples

MANY OTHERS: graph databases, network design, machine learning, scheduling, distributed systems . . .

Mattia D’Emidio Massive inputs vs massive decentralization 10 / 62

On the Importance of Scalability

FOR MANY GRAPH-RELATED PROBLEMS
HUGE AMOUNT OF LITERATURE AND RESULTS, many algorithms, studies on computational properties, lower/upper
bounds, hardness or approximation, classification in classes of problems

Asymptotically optimal/near optimal solutions for most problems in class P
Several good approximation algorithms for problems admitting bounded approximation

THE CURSE OF BIG DATA
Several methods suffer of SCALABILITY ISSUES against ”modern inputs” (BILLIONS VERTICES/ARCS, e.g.
twitter, google maps, www)

MASSIVE GRAPHS

Big datasets CHALLENGE the classical notion of efficient algorithms
Algorithms that used to be considered EFFICIENT, according to polynomial-time characterization, may
NO LONGER BE ADEQUATE FOR SOLVING TODAY’S PROBLEMS
Do not SCALE WELL with respect to sizes or volumes

Mattia D’Emidio Massive inputs vs massive decentralization 11 / 62

Motivation for Scalability
TREND IN TERMS GRAPH SIZES

TREND IN TERMS OF VOLUMES OF EXECUTIONS:

GOOGLE (web indexing and retrieval): estimated approximately avg 63 000 search queries every second,
translating to 5.6 billion searches per day and roughly 2 trillion per year
GOOGLE MAPS (route planning): 50 requests per second per user
Mattia D’Emidio Massive inputs vs massive decentralization 12 / 62

The Quest for Scalable Graph Algorithms

IN SEVERAL BIG-DATA APPLICATIONS not just desirable but essential to design SCALABLE ALGORITHMS
Their complexity should be NEARLY LINEAR/LINEAR OR SUB-LINEAR wrt input size
SCALABILITY, in these cases, is elevated as the central complexity notion to characterize efficiency
(not just polynomial-time computability)

BASIC DEFINITION OF SCALABILITY: algorithm A is SCALABLE if there exists a constant c > 0 such that
SCALABILITYA(n) = O(logc n) where SCALABILITYA(n) = TA(n)

n and TA(n) is (worst-case) complexity
of A on inputs of size n

When c = 0, we say A is LINEARLY-SCALABLE
Various other definitions for other values of c to better capture the differences in terms of efficiency
(e.g. PARALLEL SCALABILITY OR SUPER SCALABILITY)

Shang-Hua Teng: Scalable Algorithms for Data and Network Analysis. Found. Trends Theor. Comput. Sci. 12(1-2):
1-274 (2016)

Mattia D’Emidio Massive inputs vs massive decentralization 13 / 62

On Achieving Scalability

SEVERAL PROBLEMS/ALGORITHMS revisited in a scalability-oriented perspective
VERY ACTIVE RESEARCH LINE on designing scalable algorithms
VARIOUS TECHNIQUES besides restricting the focus on special input classes

APPROXIMATION: relaxing on optimality constraints for faster (though less accurate) results
SAMPLING: sample the input to compute solutions that have small (or no) error with some probability
PARALLELISM: faster executions via PARALLEL ARCHITECTURES (mention Apache Spark)
PREPROCESSING: preprocess the input in an offline, una tantum step, exploit precomputed data to accelerate
”online” executions

[D. Delling, A. V. Goldberg, T. Pajor, R. F. Werneck: Robust Distance Queries on Massive Networks. ESA 2014: 321-
333]
[C. Schulz: Scalable Graph Algorithms. CoRR abs/1912.00245 (2019)]
[A. Conte, D. De Sensi, R. Grossi, A. Marino, L Versari: Truly Scalable K-Truss and Max-Truss Algorithms for Com-
munity Detection in Graphs. IEEE Access 8: 139096-139109 (2020)]

Mattia D’Emidio Massive inputs vs massive decentralization 14 / 62

AN EXAMPLE where preprocessing shown very effective:

MINING OF DISTANCES/SHORTEST PATHS
GIVEN (di)graph G = (V, A), answer to (DISTANCE) QUERIES q(s, t) for pairs of vertices s, t ∈ V

REPORT DISTANCE d(s, t) (weight of a shortest path (or entire path) from s to t in G) as fast as possible

WIDELY STUDIED PROBLEM tons of applications (routing, journey planning, recommendation systems, network
analysis), HUGE AMOUNT OF RESEARCH/LITERATURE

TEXTBOOK/STANDARD SOLUTIONS
1. Solve SINGLE SOURCE SHORTEST PATHS PROBLEM upon query (e.g. by Dijkstra’s)

for an n-vertex,m-arc graph,O(m+ n logn) TIME PER QUERY
no preprocessing, no extra space

2. PREPROCESS THE GRAPH to solve ALL PAIRS SHORTEST PATHS PROBLEM only once (e.g. via Floyd-Warshall),
store results in DISTANCE MATRIX

O(1) TIME PER QUERY
O(nm+ n2 logn) ∈ O(n3) PREPROCESSING TIME, n× n = Θ(n2) EXTRA SPACE

Mattia D’Emidio Massive inputs vs massive decentralization 15 / 62

BIG GRAPHS, BIG PROBLEMS: both not suited fromMASSIVE GRAPHS, do not scale well in terms of time (or space)

QUERY TIME not suited for interactive applications (up to tens of seconds per query)
Extra SPACE OVERHEAD impractical (thousands of GBs when n� 106)

Difficult/impossible to store on single machine

PREPROCESSING TIME unacceptable (days when n� 106)

EFFORT to find scalable trade-offs

VERY ACTIVE RESEARCH LINE: some recent literature (non–exhaustive list):
[Cohen+, SODA 2002, SIAM J. Comp. 2003] (seminal work, inspired many others)
[Thorup+ JACM 2005][Sarma+ WSDM 2010][Abraham+ ESA 2012]
[Delling+ ESA 2014][Potamias+ CIKM 2009][Akiba+ SIGMOD 2013]
[Elkin+ SODA 2015][Thorup+ JACM 2015][Alstrup+, SODA 2016]

Mattia D’Emidio Massive inputs vs massive decentralization 16 / 62

Scalable Mining of Distances
[E. Cohen, E. Halperin, H. Kaplan, U. Zwick: Reachability and Distance Queries via 2-Hop Labels. SIAM J. Comput.
32(5): 1338-1355 (2003)]

QUERY TIME

PREPR. TIME

?

(O(1),O(m + n log n))

Dijkstra’s

Thorup+ 2005

Cohen+ 2003

Sarma+ 2010

(O(1),O(1))

(O(n3), O(1))

Distance Matrix

(O(n3),O(n))

QUERY TIME

EXTRA SPACE

(O(1),O(m + n log n))

Dijkstra’s

? Thorup+ 2005

Cohen+ 2003

(O(n2),O(n))

Sarma+ 2010

(O(1),O(1))

(O(n2), O(1))

Distance Matrix

AN UNEXPECTED BREAKTHROUGH: [Cohen+, 2003] not really considered initially for usage in practice since
WORST CASE (TIME,SPACE) is WORSE than other approaches with respect to all criteria but then . . .

Mattia D’Emidio Massive inputs vs massive decentralization 17 / 62

[T. Akiba, Y. Iwata, Y. Yoshida: Fast exact shortest-path distance queries on large networks by pruned landmark
labeling. SIGMOD 2013: 349-360]

Method has been improved to be practical by incorporating SUITED HEURISTICS
Tuning and experimental validation to show it is MOST EFFECTIVE SOLUTION IN PRACTICE
THE KEY ROLE OF ALGORITHM ENGINEERING

MOST RECENT RESULTS on scalable graph algorithms are of experimental nature
Effective implementation and testing to identify best solutions combined with theoretical efforts

[Angriman+: Guidelines for Experimental Algorithmics: A Case Study in Network Analysis. Algorithms 12(7): 127
(2019)] in Special Issue ”Algorithm Engineering: Towards Practically Efficient Solutions to Combinatorial Problems”.

Mattia D’Emidio Massive inputs vs massive decentralization 18 / 62

2-HOP-COVER
GIVEN DIRECTED WEIGHTED GRAPHS G = (V, A, w) 1

n = |V | vertices, m = |E| arcs, weight func. w : A→ R+

Let Puv be COLLECTION OF SHORTEST PATHS FOR PAIR u, v ∈ V in G

Let P =
⋃

u,v∈V

Puv be COLLECTION OF ALL SHORTEST PATHS of G

HOP: a triple (h, u, v) where h is a (simple) path and u, v are endpoints of such path

A SET OF HOPS H is a 2-HOP-COVER OF G if and only if:
For any s, t ∈ V such that Pst 6= ∅ (pair of connected vertices)
There exists a (SHORTEST) PATH p ∈ Pst and TWO HOPS (h1, s, h), (h2, h, t) ∈ H such that

p = h1 ⊕h h2

i.e. p can be reconstructed as CONCATENATION AT HUB VERTEX h

1Special cases easy to derive
Mattia D’Emidio Massive inputs vs massive decentralization 19 / 62

2-HOP-COVER
IN OTHER WORDS

A 2-HOP-COVER hop set H allows to RECONSTRUCT (the weight of) one shortest path by CONCATENATING TWO
(SHORTEST) PATHS emanating from s and t at a suited HUB VERTEX
H is said to COVER G (or to satisfy COVER PROPERTY)
|H| is the SIZE of the 2-HOP-COVER

NAIVE BUILDING of a 2-HOP-COVER
1. Start with H = ∅
2. Solve APSP once (e.g. FW or repeated Dijkstra’s)
3. For any found shortest path p from s to t

H = H ∪ {(∅, s, s), (p, s, t)}
Or H = H ∪ {(h1, s, h), (h2, h, t)} Where h1 and h2 are any two disjoint subpaths of p emanating from a
common vertex h

RESULT: H has sizeO(n2) (# triples)
Moreover RETRIEVAL of shortest paths from H requires SEARCHING (O(|H|))

Mattia D’Emidio Massive inputs vs massive decentralization 20 / 62

2-HOP-COVER

MORE EFFICIENT RETRIEVAL
CONVERT into 2-HOP-COVER distance labeling data structure
Well known from distributed computing
STORES data at each vertex in label form
ALLOWS retrieval of distances/paths by accessing only labels of involved vertices

Populating 2-HOP-COVER DISTANCE LABELING from 2-HOP-COVER hop set H :
For any (h1, s, h), (h2, h, t) ∈ H

ADD entry (h,w(h1)) to Lo(s) (outgoing label of s) with w(h1) = d(s, h)
ADD entry (h,w(h2)) to Li(t) (incoming label of t) with w(h2) = d(h, t)

DISTANCE (2-HOP-COVER) LABELING is

L = {{Lo(v)}v∈V , {Li(v)}v∈V }

Mattia D’Emidio Massive inputs vs massive decentralization 21 / 62

QUERY ALGORITHM for 2-HOP-COVER distance labeling

Q(s, t, L) =

{
min
v∈V

{δsv + δvt | (v, δsv) ∈ Lo(s) ∧ (v, δvt) ∈ Li(t)} if Lo(s) ∩ Li(t) 6= ∅

∞ otherwise

Lo(s) ∩ Li(t) 6= ∅ denotes the two label sets share a common hub vertex
If labels sorted by vertex, query algo takes

O(max
s,t∈V , s 6=t

{max{|Li(s)|, |Lo(t)|}})

Θ(n) with NAIVE 2-HOP-COVER computation, on top ofO(n2) extra space
MORE COMPACT HOP SETS/LABELS necessary for practical usage

THREATS TO SCALABILITY

large label sets: worst caseO(n) per vertex

unsustainable space requirements: worst caseO(n2)
impractical query times: worst caseO(n)
infeasible preprocessing: worst caseO(n3)

Mattia D’Emidio Massive inputs vs massive decentralization 22 / 62

2-HOP-COVER Labeling of a Graph

COMPACT REPRESENTATION OF SHORTEST PATHS: precompute small set of hub vertices, assign distance
labels to vertices (from/to hubs), use labels to retrieve distances/paths by concatenations at hubs

VERTEX LABELS
Lo(·) Li(·)

0 {(4,1), (0, 0)} {(4, 1), (0, 0)}
1 {(4, 2), (0, 1), (3, 2), (1, 0)} {(4, 2), (0, 1), (3, 2), (1, 0)}
2 {(4, 2), (0, 2), (3, 1), (1, 1), (2, 0)} {(4, 2), (0, 2), (3, 1), (1, 1), (2, 0)}
3 {(4,1), (3, 0)} {(4, 1), (3, 0)}
4 {(4, 0)} {(4, 0)}
5 {(4, 1), (5, 0)} {(4, 1), (5, 0)}
6 {(4, 2), (5, 1), (6, 0)} {(4, 2), (5, 1), (6, 0)}

Mattia D’Emidio Massive inputs vs massive decentralization 23 / 62

2-HOP-COVER Labeling of a Graph

VERTEX LABELS
Lo(·) Li(·)

0 {(4,1), (0, 0)} {(4, 1), (0, 0)}
1 {(4, 2), (0, 1), (3, 2), (1, 0)} {(4, 2), (0, 1), (3, 2), (1, 0)}
2 {(4, 2), (0, 2), (3, 1), (1, 1), (2, 0)} {(4, 2), (0, 2), (3, 1), (1, 1), (2, 0)}
3 {(4,1), (3, 0)} {(4, 1), (3, 0)}
4 {(4, 0)} {(4, 0)}
5 {(4, 1), (5, 0)} {(4, 1), (5, 0)}
6 {(4, 2), (5, 1), (6, 0)} {(4, 2), (5, 1), (6, 0)}

NEGATIVE FACTS:
[] Naive computation yields O(n2) space, O(n3) prepr. time, O(n) query (NOT SCALABLE)

[] NP-HARD to build minimum-sized 2-HOP-COVER labeling

[] LOWER BOUND Ω(n4/3) on size

[]O(log n) APPROXIMATION ALGORITHM runs inO(mn2 log(n2

m)) time (NOT SCALABLE)

Mattia D’Emidio Massive inputs vs massive decentralization 23 / 62

2-HOP-COVER Labeling of a Graph

VERTEX LABELS
Lo(·) Li(·)

0 {(4,1), (0, 0)} {(4, 1), (0, 0)}
1 {(4, 2), (0, 1), (3, 2), (1, 0)} {(4, 2), (0, 1), (3, 2), (1, 0)}
2 {(4, 2), (0, 2), (3, 1), (1, 1), (2, 0)} {(4, 2), (0, 2), (3, 1), (1, 1), (2, 0)}
3 {(4,1), (3, 0)} {(4, 1), (3, 0)}
4 {(4, 0)} {(4, 0)}
5 {(4, 1), (5, 0)} {(4, 1), (5, 0)}
6 {(4, 2), (5, 1), (6, 0)} {(4, 2), (5, 1), (6, 0)}

POSITIVE FACTS:
[] POLY-TIME HEURISTIC FOR PREPROCESSING (PLL), no bound on approximation but shown experi-
mentally TO OUTPERFORM all other approaches (relies on finding a ”good” vertex ordering and a min-
imal labeling)

[] Suited for DISTRIBUTION (query accesses queried vertices only)

Mattia D’Emidio Massive inputs vs massive decentralization 23 / 62

2-HOP-COVER Labeling of a Graph

VERTEX LABELS
Lo(·) Li(·)

0 {(4,1), (0, 0)} {(4, 1), (0, 0)}
1 {(4, 2), (0, 1), (3, 2), (1, 0)} {(4, 2), (0, 1), (3, 2), (1, 0)}
2 {(4, 2), (0, 2), (3, 1), (1, 1), (2, 0)} {(4, 2), (0, 2), (3, 1), (1, 1), (2, 0)}
3 {(4,1), (3, 0)} {(4, 1), (3, 0)}
4 {(4, 0)} {(4, 0)}
5 {(4, 1), (5, 0)} {(4, 1), (5, 0)}
6 {(4, 2), (5, 1), (6, 0)} {(4, 2), (5, 1), (6, 0)}

POSITIVE FACTS: [] further improved (RXL) in
[D. Delling, A. V. Goldberg, T. Pajor, R. F. Werneck: Robust Distance Queries on Massive Networks. ESA
2014: 321-333]

Mattia D’Emidio Massive inputs vs massive decentralization 23 / 62

INGREDIENTS of PLL/RXL
VERTEX ORDERING (according to some ”importance criterion”)
SHORTEST PATH (Dijkstra’s like) visits
PRUNING mechanism

1. FIX a vertex ordering {v1, v2, . . . , vn}
2. PERFORM 2n (n forward, n backward) Dijkstra’s-like visits, each rooted at a vertex vi ∈ V

3. INCREMENTALLY ENRICH LABELING L as follows:
Lk−1 status of labeling after execution of SP visits rooted at vk−1
Initially Li(v)0 = Lo(v)0 = ∅

3.1 DURING visit rooted at vk onG (orGT) if vertex u settled with distance δ
3.2 CHECK whether Q(vk, u, L

k−1) ≤ δ (or Q(u, vk, L
k−1) ≤ δ)

3.3 IF YES =⇒ visit is PRUNED at u
3.4 IF NO =⇒ ADD (vk, δ) to Li(u) (or Lo(u)) and CONTINUE

PRUNING STEP: means Lk−1 already covers pair (vk, u) (or (u, vk))
Holds for all pairs (vk, x) (or (x, vk)) such that a shortest path from vk to x (for rom x to vk) passes
through u

Mattia D’Emidio Massive inputs vs massive decentralization 24 / 62

Basics of preprocessing
Greedy approach, progressively shrink search space by exploiting partially precomputed labeling

Vertex ordering {1, 2, 3, . . . , 12}

Mattia D’Emidio Massive inputs vs massive decentralization 25 / 62

Basics of preprocessing

Maintaining cover property across visits

Vertex ordering {1, 2, 3, . . . , 12}

Mattia D’Emidio Massive inputs vs massive decentralization 26 / 62

Performance
Easy to see LABELING SIZE, PREPROCESSING TIME and QUERY TIME depend on CHOSEN ORDERING (cor-
rectness does not)
WORST CASES (again):

preprocessing time n×O(Dijkstra’s) i.e. O(n3)
extra spaceO(n2)
query timeO(n)

Clearly NP-HARD to find an ordering yielding optimum

VERY GOOD EXPERIMENTAL BEHAVIOR when ordering found via fast-to-compute centrality measures
degree, approx betweenness, number of covered pairs (greedy)

GOOD BEHAVIOR means, even on billion-vertex networks:
PREPROCESSING≈ hours
SPACE OCCUPANCY≈ tens of GBs
QUERY TIME≈ milliseconds
DISTRIBUTABLE

Mattia D’Emidio Massive inputs vs massive decentralization 27 / 62

TODO wrt experimentation:
Evaluate RXL on weighted (sparse) digraphs
Evaluate CRXL: compressed version compromising on query time to save space
Evaluate APPROXIMATION ALGO

Mattia D’Emidio Massive inputs vs massive decentralization 28 / 62

Limits of Preprocessing in Modern Networks

”Problem”: REAL-WORLD NETWORKS ARE TIME-EVOLVING (aka dynamic)
Topology and arc weights likely to change over time

EXAMPLES:
SOCIAL NETWORKS: new friends, removed friends/pages
WEB GRAPHS: new pages/links, broken links, removed pages
BLOGGING: new replies/posts, removed users/posts/replies
COLLABORATION NETWORKS: new/withdrawn papers
INFRASTRUCTURES: disruptions, new roads, cancelled flights
GRAPH DATABASES: updated/outdated entries

Mattia D’Emidio Massive inputs vs massive decentralization 29 / 62

Limits of Preprocessing

ALL PREPROCESSING-BASED TECHNIQUES suffer of the following issues:
PRECOMPUTED DATA can become OUTDATED/INCORRECT due to updates to the graph
PRECOMPUTED DATA require time-consuming preprocessing
RE-PROCESSING after any update: impractical in terms of time overhead
ENRICHING data structure to tolerate updates to graph: infeasible due to huge space overheads

FOR 2-HOP-COVER LABELINGS:
Label entries can become outdated (i.e. hop contain obsolete distances)
Large number even in presence of A SINGLE ARC UPDATE
Even a single update can lead to LARGE NUMBER OF INCORRECT ANSWERS TO QUERIES

q1(s1, t1), q2(s2, t2), . . . queries depends on status of graphGi

Mattia D’Emidio Massive inputs vs massive decentralization 30 / 62

Limits of Preprocessing
EFFECTIVE DYNAMIC ALGORITHMS are necessary

Algorithms able to update only the part of the data structure that is compromised by the change
EFFECTIVE typically means faster (enough) wrt scratch recomputation

2
2.5
3

3.5
4

4.5
5

1 2 3 4 5 6 7 8 9 10

M
AX

IM
UM

ST
RE

TC
H

FA
CT

OR

NUMBER OF EDGE REMOVALS

0
2000
4000
6000
8000

10000
12000
14000

1 2 3 4 5 6 7 8 9 10

DI
SC

ON
NE

CT
IO

NS

NUMBER OF EDGE REMOVALS

Mattia D’Emidio Massive inputs vs massive decentralization 31 / 62

FURTHER NON TRIVIAL POSITIVE FACT:
[] 2-HOP-COVER can be adapted to work well in case TIME-EVOLVING GRAPHS, as shown in

[T. Akiba, Y. Iwata, Y. Yoshida: Dynamic and historical shortest-path distance queries on large evolv-
ing networks by pruned landmark labeling. WWW 2014: 237-248]
[G. D’Angelo, M. D’Emidio, D. Frigioni: Fully Dynamic 2-Hop Cover Labeling. ACM J. Exp. Algorith-
mics 24(1): 1.6:1-1.6:36 (2019)]
[M. D’Emidio: Faster Algorithms for Mining Shortest-Path Distances from Massive Time-Evolving
Graphs. Algorithms (Special Issue Algorithmic Aspects of Networks) 13(8): 191 (2020)]

TIME-EVOLVING GRAPHS: change over time, most common case in practice (e.g. social networks, or road
networks)

PREPROCESSING is affordable but still time-consuming, CANNOT BE REPEATED EVERYTIME SOMETHING
CHANGES
DYNAMIC GRAPH ALGORITHMS: update preprocessed data selectively, only the PART OF THE DATA
STRUCTURE that is compromised by the change

Mattia D’Emidio Massive inputs vs massive decentralization 32 / 62

DYNAMIC ALGORITHMS FOR 2HC LABELING: to save time, identify parts of the labeling that are not com-
promised by the changes, avoid unnecessary exploration of (large) part of graph (avoid recomputations
that are not necessary)

G0 → G1 → . . . → Gk−1 → Gk

↓ ↓ . . . ↓ ↓
L0 → L1 → . . . → Lk−1 → Lk

Mattia D’Emidio Massive inputs vs massive decentralization 33 / 62

Incremental Algorithm (RESUME–2HC)
[Akiba+ WWW 2014]

Input: Arc (x, y) undergoes incremental update
1 foreach vi ∈ L(u) ∪ L(v) do
2 RESUME BFS/Dijkstra’s rooted at vi from vertices x and y;
3 ADD new pairs if pruning test passed;

MAIN FEATURES:
LAZY ALGORITHM: outdated entries NOT REMOVED
RESUME–2HC only ADDS SHORTER DISTANCES induced by incremental updates

REMOVING non-shortest-path distances is computationally expensive

CORRECTNESS holds since query algo searches for minimum
LABELING SIZE inevitably grows with number of updates
=⇒ MINIMALITY NOT PRESERVED

Mattia D’Emidio Massive inputs vs massive decentralization 34 / 62

Incremental Algorithm (RESUME–2HC)
[Akiba+ WWW 2014]

WORST CASE RUNNING TIME: O(n× Dijkstra’s)

IN PRACTICE
VERY EFFECTIVE, on all tested inputs
MILLISECONDS for updating extremely large labelings
Whereas PLL takes HOURS OF REPREPROCESSING

OPEN PROBLEM: design algorithm that does not break minimality
PERIODICAL REPROCESSING necessary if labeling size ”grows too much” (performance degrades over time)

Mattia D’Emidio Massive inputs vs massive decentralization 35 / 62

Example of RESUME–2HC execution

Mattia D’Emidio Massive inputs vs massive decentralization 36 / 62

Decremental Algorithm(s)
[D’Angelo, D’Emidio, Frigioni, ACM JEA 2019][D’Emidio, MDPI Algorithm 2020]

DECREMENTAL OPERATIONS more difficult to handle: OUTDATED ENTRIES MUST BE REMOVED
otherwise correctness not guaranteed

DECREMENTAL ALGO #1 (BIDIR–2HC) – [D’Angelo, D’Emidio, Frigioni, ACM JEA 2019]

THREE PHASES
1. IDENTIFICATION OF AFFECTED VERTICES (potentially containing outdated entries)

use induced paths

2. REMOVAL of outdated (w/ binary search)
3. RESTORE OF COVER PROPERTY by suited SP visits (in order) rooted at each affected vertex

Mattia D’Emidio Massive inputs vs massive decentralization 37 / 62

IDENTIFICATION: red/green vs gray vertices connected by paths containing/not containing modified arc
(check via content of label sets)

x1x4

x5

x2x6

x7 x3

x y

y1

y2

y3

j

Mattia D’Emidio Massive inputs vs massive decentralization 38 / 62

REMOVAL of green entries from red outgoing labels and red entries from green incoming labels (linear
scan)

x1x4

x5

x2x6

x7 x3

x y

y1

y2

y3

j

Mattia D’Emidio Massive inputs vs massive decentralization 38 / 62

RESTORE one forward visit (of G) per red vertex and one backward visit (of GT) per green vertex (to
re–cover pairs)

x1x4

x5

x2x6

x7 x3

x y

y1

y2

y3

j

Mattia D’Emidio Massive inputs vs massive decentralization 38 / 62

WORST CASE RUNNING TIME: O(nm log n + n3)
Looks bad but in practice RATHER EFFECTIVE IN ALL INSTANCES
At most, on average, TENS OF SECONDS for updating extremely large labelings
Where PLL takes HOURS FOR REPREPROCESSING

PROBLEM: slow on some SPARSE, WEIGHTED DIGRAPHS
Not so rare cases slower than from scratch (even if better on average)

Mattia D’Emidio Massive inputs vs massive decentralization 39 / 62

REASON: less effective pruning mechanism
Leads to unnecessary exploration of parts of the graph
Large fractions execution time spent on this step (PROFILING)

LESS EFFECTIVE PRUNING
Visits traverse non–affected vertices
Pruning can stop visit only for pairs of affected vertices
VISIT from x to y CANNOT STOP j (although x and j are covered)

order {x3, y, x, j, . . . }

x1x4

x5

x2
x6

x7

x3

x y

y1

y2

y3

j

Mattia D’Emidio Massive inputs vs massive decentralization 40 / 62

DECREMENTAL ALGO #2 (QUEUE–2HC) – [D’Emidio, Algorithms 2019]

MAIN DIFFERENCES:
IDENTIFICATION and REMOVAL combined in single step (use induced trees)
RESTORING DOES NOT TRAVERSE unchanged vertices
Exploits label entries of unchanged vertices to AVOID UNNECESSARY EXPLORATIONS (such entries encode
shortest paths in new graph)
Can be used to re–cover pairs
EVALUATES them via PRIORITY QUEUE, in order

ryx

x1

x2

x3

x4

x5

Mattia D’Emidio Massive inputs vs massive decentralization 41 / 62

How Much Time Do We Save via Scalable Algorithms

Mattia D’Emidio Massive inputs vs massive decentralization 42 / 62

How Much Time Do We Save via Dynamic Algorithms
Dataset Network Type |V| |E| avg deg S D W
CAIDA (CAI) ETHERNET 3.20e+04 4.01e+04 2.51
LUXEMBOURG (LUX) ROAD 3.06e+04 7.55e+04 4.11
WGTGNUTELLA (GNU) PEER2PEER 6.26e+04 1.48e+05 4.73
BRIGHTKITE (BKT) LOCATION-BASED 5.82e+04 2.14e+05 7.35
EFZ (EFZ) RAILWAY 1.25e+05 4.02e+05 6.43
EU-ALL (EUA) EMAIL 2.65e+05 4.19e+05 2.77
EPINIONS (EPN) SOCIAL 1.32e+05 8.41e+05 12.76
BARABÁSI-A. (BAA) SYNTHETIC (Power-Law) 6.32e+05 1.00e+06 3.17
WEB-NOTREDAME (NTR) HYPERLINKS 3.26e+05 1.09e+06 6.69
NETHERLANDS (NLD) ROAD 8.92e+05 2.28e+06 5.11
YOUTUBE (YTB) SOCIAL 1.13e+06 2.99e+06 5.26
WIKITALK (WTK) COMMUNICATION 2.39e+06 5.02e+06 4.19
HUMAN-GENOME (BIO) BIOLOGICAL 1.43e+04 9.03e+06 1262.94
AS-SKITTER (SKI) COMPUTER 1.70e+06 1.11e+07 13.08
DBPEDIA (DBP) KNOWLEDGE 3.97e+06 1.29e+07 6.97
ERDŐS-RÉNYI (ERD) SYNTHETIC (Uniform) 1.00e+04 2.50e+07 2499.11

Mattia D’Emidio Massive inputs vs massive decentralization 43 / 62

How Much Time Do We Save via Dynamic Algorithms

SOME RESULTS: various networks

bri epn eua

10−3

10−1

101

t
im

e
(s

)

queue–2hc fs-2hc bidir–2hc

wtk nld ytb

10−3

10−1

101

103

t
im

e
(s

)

queue–2hc fs-2hc bidir–2hc

Mattia D’Emidio Massive inputs vs massive decentralization 44 / 62

How Much Time Do We Save via Dynamic Algorithms

SOME RESULTS: various networks

gnu efz ntr

10−3

10−1

101

103

t
im

e
(s

)

queue–2hc fs-2hc bidir–2hc

bar erd dbp

10−3

10−1

101

103

t
im

e
(s

)

queue–2hc fs-2hc bidir–2hc

Mattia D’Emidio Massive inputs vs massive decentralization 45 / 62

Future Work

FUTURE/ONGOING WORK:
improve known dynamic frameworks
design of scalable graph algorithm for other prominent graph mining problems

TOP-K LOOPLESS SHORTEST PATHS PROBLEM
VERTEX SIMILARITY
ENUMERATION PROBLEMS

build/validate frameworks for VERTEX/GRAPH SIMILARITY/CLASSIFICATION/RANKING based on centralitymea-
sures and/or distances

[Abraham+: Hub Labeling for Shortest Path Counting. Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data, 1813-1828]
[Akiba+: Efficient top-k shortest-path distance queries on large networks by pruned landmark labeling.
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 29. No. 1. 2015.]
[Al Zoobi+: Finding the k Shortest Simple Paths: Time and Space trade-offs. SEA 2020]

Mattia D’Emidio Massive inputs vs massive decentralization 46 / 62

Outline

1 Research Themes

2 Scalable Graph Algorithms
On The Importance of Algorithms for Mining Graphs
On the Importance of Scalability
Scalable Mining of Distances

3 Algorithms for Multi-Entity Computing Systems
Multi-Entity Computing Systems and Applications
Computability and Algorithms for MCSs
Programmable Matter

Mattia D’Emidio Massive inputs vs massive decentralization 47 / 62

MULTI-ENTITY COMPUTING SYSTEM (MCS) distributed system of AUTONOMOUS AND POSSIBLY MOBILE ENTITIES
equipped with (few) computational resources, some perception
motion capabilities (physical or virtual), operating independently
shared environment (e.g., Euclidean space or graphs)
to accomplish some global (computational) task(s) (actuators)

SEVERAL REAL-WORLD TECHNOLOGIES are modeled as MCSS
robotic swarms, flocks of UAVs, metamorphic robotic systems
networks of software agents, web crawlers, viruses
fleets of drones, programmable matter

Mattia D’Emidio Massive inputs vs massive decentralization 48 / 62

ACTIVE RESEARCH FIELD:
In the last few years considerably large amount of research in the area of distributed computing devoted
to study of COMPUTATIONAL PROPERTIES and ALGORITHMS for this kind of systems
REASON: high practical impact, interest driven by REAL-WORLD APPLICATIONS

Exploration of Unknown/Dangerous Areas, Emergency Management, Search&Rescue
Process Automation, Monitoring/Surveillance

COMBINING computation and motion introduces SEVERAL CHALLENGES from computational perspective

MAIN OBJECTIVE OF INVESTIGATION:
DETERMINE: what computational tasks can be performed by the entities, under what conditions, and at what
cost
DESIGN ALGORITHMS for the weakest possible entities to build reliable, fault-tolerant, resistant tomalicious
behaviors systems
IDENTIFY RELATIONSHIPS that, computationally speaking, exist among different types of systems of mobile
entities

Mattia D’Emidio Massive inputs vs massive decentralization 49 / 62

Why Massive Decentralized Systems of Weak Entities
MASSIVE DECENTRALIZATION MAIN ADVANTAGE cooperative behavior

Tasks that require many multiple entities made possible
Removing single point of failure, no central control necessary
Cheap entities can be replaced easily without breaking system
Moreover employing CHEAP, WEAK ENTITIES can increase tolerant to disruptions/malicious behaviors
E.g. using entities not requiring communication to achieve some goal implies SYSTEM ROBUST TO ANY
MALICIOUS ATTACK ON COMMUNICATION CHANNELS
E.g. using entities not requiring synchronization means implies SYSTEM ROBUST TO ANY MALFUNCTIONING
IN SYNCHRONIZATION PROCESS

MASSIVE DECENTRALIZATION MAIN DISADVANTAGE: complex algorithm design/analysis
Coordination difficult to achieve, under very weak entities it is DIFFICULT TO DESIGN DISTRIBUTED ALGO-
RITHMS even for solving elementary tasks
Convergence/Computation on global properties/knowledge might be very slow or even infeasible

Mattia D’Emidio Massive inputs vs massive decentralization 50 / 62

Example of Task and Results: Pattern Formation
ARBITRARY PATTERN FORMATION (APF)

Input: A set of entities endowed with multiplicity detection,
each one initially placed on a different vertex/point of
an input graph/environment

Solution: Find a distributed algorithm that ensures entities form
any arbitrary pattern they are given in input, starting
from any arbitrary initial configuration where entities
occupy distinct location

Theorem. There exists a deterministic transition-safe algorithm that solves if and only the Leader Election
problem can be solved in the initial configuration R, that is, R is a leader configuration2.

S. Cicerone, G. Di Stefano, A. Navarra: Asynchronous Arbitrary Pattern Formation: the effects of a
rigorous approach. Distributed Computing 32, 91–132 (2019)

2Defined wrt geometric properties
Mattia D’Emidio Massive inputs vs massive decentralization 51 / 62

Example of Task and Results: Gathering

GATHERING
Input: A set of entities endowed with multiplicity detection, each one initially placed on a different ver-

tex/point of an input graph/environment
Solution: Find a distributed algorithm that ensures all entities to REACH THE SAME VERTEX/POINT from where

they do not move anymore

Theorem. In absence of multiplicity detection and of any agreement on the coordinate systems, Gathering is
deterministically unsolvable under semi-synchronization for anonymous uniform entities.

Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci.
384(2–3), 222–231 (2007)

Mattia D’Emidio Massive inputs vs massive decentralization 52 / 62

In General: Characterization Results are Desirable

All such results led to WIDER INVESTIGATION to provide GENERAL CHARACTERIZATIONS OF COMPUTATIONAL POWER
for multi-entity computing systems sharing some set of features/capabilities, under different assumptions:

E.g. VARIETY OF COMBINATIONS OF CAPABILITIES (visibility, synchronicity, uniformity, being anonymous, com-
munication, etc)
E.g. moving on graphs rather than Euclidean plane or 3D environments
What a system can and cannot do, if it is made of entities that have certain characteristics

[M. D’Emidio, G. Di Stefano, D. Frigioni, A. Navarra. Characterizing the computational power of mo-
bile robots on graphs and implications for the Euclidean plane. Information & Computation 263: 57-74
(2018)]

[K. Buchin, P. Flocchini, I. Kostitsyna, T. Peters, N. Santoro, K. Wada: Autonomous Mobile Robots: Refin-
ing the Computational Landscape. IPDPS Workshops 2021: 576-585]

Mattia D’Emidio Massive inputs vs massive decentralization 53 / 62

Example of Characterization of Computational Power
EXAMPLES OF RELATIONS BETWEEN COMPUTATIONAL MODELS: sets are computable tasks, entities are dis-
placed on EUCLIDEAN PLANE: systems of entities that enjoys full synchronicity are MORE POWERFUL (can
solve successfully more tasks) than those who do not (easy to show, other relations less trivial).

fsync
ssync

async

asyncO(1)
O(1)

ssyncO(1)

≡

asyncO(1)

[M. D’Emidio, G. Di Stefano, D. Frigioni, A. Navarra. Characterizing the computational power of mobile robots on
graphs and implications for the Euclidean plane. Inform. & Computation 263: 57-74 (2018)]

Mattia D’Emidio Massive inputs vs massive decentralization 54 / 62

EXAMPLES OF RELATIONS BETWEEN COMPUTATIONAL MODELS: sets are computable tasks, entities are dis-
placed on GRAPHS (DISCRETE) ENVIRONMENTS: systems where entities have few bits of visible communi-
cation and act asynchronously are INCOMPARABLE wrt fully synchronous systems (some tasks cannot be
solved in one case, some others in the other)

fsync
ssync

async

fsyncO(1)

ssyncO(1)

≡

asyncO(1)

async∞

[M. D’Emidio, G. Di Stefano, D. Frigioni, A. Navarra. Characterizing the computational power of mobile robots on
graphs and implications for the Euclidean plane. Inform. & Computation 263: 57-74 (2018)]

Mattia D’Emidio Massive inputs vs massive decentralization 55 / 62

Programmable Matter
PROGRAMMABLE MATTER (PM)

MATTER with the ability to change its physical properties in a programmable fashion
PROPERTIES such as shape, orientation, optical/electrical characteristics
An example ofMCS (a systemmade ofWEAK NANO-SCALE SELF-ORGANIZING COMPUTATIONAL ENTITIES called
PARTICLES

Particles can be PROGRAMMED and some form of actuators to interact with environment/other particles to COL-
LECTIVELY achieve global tasks

COMMON TASKS:
coating, shape formation, compaction
reconfigurable, smart materials, self-repairing structures, minimally invasive surgery

ORIGINALLY INTRODUCED IN
T. Toffoli and N. Margolus. 1991. Programmable matter: Concepts and realization. Physica D: Nonlinear Phenomena
47, 1, 263-272. 1991.

Mattia D’Emidio Massive inputs vs massive decentralization 56 / 62

NOW SEVERAL RESEARCH&DEVELOPMENT PROJECTS
e.g. https://www.programmable-matter.com/ (several prominent partners)

SEVERAL RESEARCH ACTIVITIES toward EFFECTIVE MODELING AND ALGORITHMS, necessary for DEPLOYMENT
OF PM SYSTEMS in real-world scenarios

Mattia D’Emidio Massive inputs vs massive decentralization 57 / 62

https://www.programmable-matter.com/

SOME RECENT RESULTS
various DISTRIBUTED ALGORITHMS for shape formation, coating, leader election with explicit communication
algorithm for PARTICLE LEADER ELECTION (PLE) problems without use of inter-particle communication
IMPOSSIBILITY of achieving PLE cannot be solved without disconnecting the set of particles. Result holds
even if the particles are endowed with unlimited memory and chirality
DISTRIBUTED ALGORITHMS for COMPACTIONwhen particles can detect interiors of initial displacement (through
sensors)

[G. D’Angelo, M. D’Emidio, S. Das, A. Navarra, G. Prencipe. Leader Election and Compaction for Asyn-
chronous Silent Programmable Matter. Proceedings of 19th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS ’20), 276-284 (2020)]
[G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, Y. Yamauchi: Shape formation by programmable par-
ticles. Distributed Comput. 33(1): 69-101 (2020)]

Mattia D’Emidio Massive inputs vs massive decentralization 58 / 62

HOW TO REMOVE EXPLICIT COMMUNICATION: algorithms can use PARTICLES’ STATES (expanded or contracted)
to encode information for PROBLEM-SOLVING PURPOSES (e.g. synchronization)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Mattia D’Emidio Massive inputs vs massive decentralization 59 / 62

Future Work

PM SYSTEMS
MORE REALISTIC MODELS, according to technological advancements (COMMUNICATION vs PERCEPTION)
algorithms for MORE COMPLEX TASKS (e.g. SILENT SHAPE FORMATION)
investigatingwhich tasks, besides leader election, can be successfully performed under no-communication
and which cannot
in case of impossibility results, determine capabilities one must add to PM systems to achieve feasibility
on field experimentation/dedicated discrete events simulations environments

MCSS
Dealing with UNCERTAINTY/DYNAMIC ENVIRONMENTS
Solutions for METAMORPHIC ROBOTIC SYSTEMS

Mattia D’Emidio Massive inputs vs massive decentralization 60 / 62

Thanks for your attention

Q&A

mattia.demidio@{univaq,gssi}.it
www.mattiademidio.com

Mattia D’Emidio Massive inputs vs massive decentralization 61 / 62

Future Work for Other Projects

Design, Implementation, Testing of Technologies andAlgorithms for ProcessingMassive Scientific Datasets
via Cloud Computing Services
Engineering, Implementation and Experimental Evaluation of Solvers for Computational Geometry prob-
lems
Implementation and Experimental Evaluation of Algorithms for various vehicle-routing problems via Google
OR-tools (OR-Tools is fast and portable software for combinatorial optimization)

Mattia D’Emidio Massive inputs vs massive decentralization 62 / 62

	Research Themes
	Scalable Graph Algorithms
	On The Importance of Algorithms for Mining Graphs
	On the Importance of Scalability
	Scalable Mining of Distances

	Algorithms for Multi-Entity Computing Systems
	Multi-Entity Computing Systems and Applications
	Computability and Algorithms for MCSs
	Programmable Matter

