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I ⊆ V such that ∀(u, v) ∈ E, u 6∈ I or v 6∈ I (or both).

Definition: A independent set I of a graph G = (V,E) is
maximal if there is no independent set I ′ of G with I ′ ⊃ I.

A Maximal Independent Set is not necessarily
a Maximum Independent Set.



Luby’s Algoritm

• A distributed algorithm to compute a Maximal Independent
Set (MIS)

• Runs in time O(log d · log n) with high probability (w.h.p.),
where d is the maximum degree of G.

• Asymptotically better than the algorithm of the previous
lecture (which required O(d log n) time, w.h.p.).
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Luby’s Algoritm

Let d(v) be the degree of vertex v in G.
v
d(v) = 3The algorithm works in phases

At the generic phase k...

• Elected nodes are candidates to join an independent set Ik
of Gk.

• Each node v in Gk elects itself with probability p(v)= 1
2d(v) .

• Intially G0 = G

• Gk+1 is obtained by deleting the vertices in Ik and their
neighbors N(Ik) from Gk

Stop when Gk+1 = ∅

• Find Ik.

If v is a singleton, v
always elects itself.



Luby’s Algoritm: Finding Ik

If two neighbors are elected simultaneously, the node
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⇐

If two neighbors are elected simultaneously, the node
with higher degree wins (remains in Ik).
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If both nodes have the same degree, break ties
arbitrarily (e.g., by vertex ID).

d(v) = d(u)
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⇐

If both nodes have the same degree, break ties
arbitrarily (e.g., by vertex ID).

d(v) = d(u)

or
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Previous rules are used to remove “problematic”
nodes from the candidate nodes.

Gk Ik = {u, v}

u
v

Luby’s Algoritm

The remaning nodes form the independent set Ik
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A good event Hv for node v is the following:

At least one neighbor of v enters Ik (i.e., Ik ∩N(v) 6= ∅)

If Hv happens, then v ∈ N(Ik) and v will not belong to Gk+1.
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Pick a non-singleton vertex v. We want to find a lower bound
to the probabilty that a neighbor of v ends up in Ik

Lemma 1: At least one neighbor v elects itself with

probability at least 1− e
− d(v)

2d̃(v) ,

v
. . .

z1

z3

z2

where d̃(v) = maxzi∈N(v) d(zi) is the maximum degree of
a neighbor of v.

d̃(v) = 5

d(v) = 3
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v
z

v
z

Ik

=⇒
prob. ≥ 1
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If no vertex ui elects itself, then z must enter Ik.

The probability that at least one ui elects itself is at most:∑̀
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Therefore, with probability at least 1− 1
2 = 1

2 , no ui elects itself.
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Recall that Hv = {At least one neighbor of v enters Ik}.
Proof:

Define Yi = {zi ∈ Ik and no vertex z1, . . . , zi−1 elects itself }.

(since events Y1, . . . , Yd(v) are mutually exclusive)

P (Hv) ≥ P

d(v)⋃
i=1

Yi

 =

d(v)∑
i=1

P (Yi)

Let z1, . . . , zd(v) be the neighbors of v.
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This is just some
constant c ≈ 0.39
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In a generic phase k, a node with degree at least dk
2 disappears

with probability at least c.

Analysis

Intuitively: nodes with “high” degree disappear fast!

• Suppose that there is a vertex v with degree d(v) ≥ dk
2

Question: What is the probability that v does not disappear
within the next φ phases?

A: At most: (1− c)φ Fix φ = 3 log1−c
1
n

(1− c)φ = (1− c)3 log1−c
1
n = (1− c)log1−c

1
n3 =

1

n3

• Suppose that the degree of v remains at least dk
2
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Thus, after 3 log1−c
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n phases, the probability that:

• v did not disappear; and

• the degree of v is still above dk
2 ;

is at most 1
n3 .
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Thus, after 3 log1−c
1
n phases, the probability that:

• v did not disappear; and

• the degree of v is still above dk
2 ;

is at most 1
n3 .

The probabiltiy that after 3 log1−c
1
n phases there is at least

one node with degree larger than dk
2 is at most:

n· 1
n3

=
1

n2
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Q: How many phases in total?(
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n
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· log d = O(log d · log n)
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Analysis
Every 3 log1−c

1
n phases the maximum degree of the graph

halves with probability at least 1− 1
n2 .

Question: What is the probability that all of the log d
“groups” of phases actually halve the maximum degree?

• The probabilty that one fixed group does not halve the
maximum degree is at most 1

n2 .

• The probabilty at least one group does not halve the
maximum degree is at most log d · 1

n2 < n · 1
n2 = 1

n .

MIS forms in O(log d · log n) phases with probability
at least 1− 1

n
.
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Recap:

• Total number of phases: O(log d · log n)

• Time for each phase: O(1)

• Total time: O(log d · log n)

• Probability of success: ≥ 1− 1
n

Luby’s Algorithm finds a Maximal
Independent Set of G.


