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Definition: An independent set of a graph G = (V,E) is a set
I ⊆ V such that ∀(u, v) ∈ E, u 6∈ I or v 6∈ I (or both).

Definition: A independent set I of a graph G = (V,E) is
maximal if there is no independent set I ′ of G with I ′ ⊃ I.

A Maximal Independent Set is not necessarily
a Maximum Independent Set.



Luby’s Algoritm

• A distributed algorithm to compute a Maximal Independent
Set (MIS)

• Runs in time O(log d · log n) with high probability (w.h.p.),
where d is the maximum degree of G.

• Asymptotically better than the algorithm of the previous
lecture (which required O(d log n) time, w.h.p.).
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Luby’s Algoritm

Let d(v) be the degree of vertex v in G.
v
d(v) = 3The algorithm works in phases

At the generic phase k...

• Elected nodes are candidates to join an independent set Ik
of Gk.

• Each node v in Gk elects itself with probability p(v)= 1
2d(v) .

• Intially G0 = G

• Gk+1 is obtained by deleting the vertices in Ik and their
neighbors N(Ik) from Gk

Stop when Gk+1 = ∅

• Find Ik.

If v is a singleton, v
always elects itself.
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⇐

If two neighbors are elected simultaneously, the node
with higher degree wins (remains in Ik).
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If both nodes have the same degree, break ties
arbitrarily (e.g., by vertex ID).

d(v) = d(u)
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⇐

If both nodes have the same degree, break ties
arbitrarily (e.g., by vertex ID).

d(v) = d(u)

or

u

v

v

u

v

u

2

2

Luby’s Algoritm: Finding Ik



Previous rules are used to remove “problematic”
nodes from the candidate nodes.

Gk

Luby’s Algoritm



Previous rules are used to remove “problematic”
nodes from the candidate nodes.

Gk

Luby’s Algoritm



Previous rules are used to remove “problematic”
nodes from the candidate nodes.

Gk Ik = {u, v}

u
v

Luby’s Algoritm

The remaning nodes form the independent set Ik
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Consider the generic phase k

A good event Hv for node v is the following:

At least one neighbor of v enters Ik (i.e., Ik ∩N(v) 6= ∅)

If Hv happens, then v ∈ N(Ik) and v will not belong to Gk+1.

v
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Pick a non-singleton vertex v. We want to find a lower bound
to the probabilty that a neighbor of v ends up in Ik

Lemma 1: At least one neighbor v elects itself with

probability at least 1− e
− d(v)

2d̃(v) ,

v
. . .

z1

z3

z2

where d̃(v) = maxzi∈N(v) d(zi) is the maximum degree of
a neighbor of v.

d̃(v) = 5

d(v) = 3
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probability at least 1
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v
z

v
z
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=⇒
prob. ≥ 1
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If no vertex ui elects itself, then z must enter Ik.
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Therefore, with probability at least 1− 1
2 = 1

2 , no ui elects itself.
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Recall that Hv = {At least one neighbor of v enters Ik}.
Proof:

Define Yi = {zi ∈ Ik and no vertex z1, . . . , zi−1 elects itself }.

(since events Y1, . . . , Yd(v) are mutually exclusive)

P (Hv) ≥ P

d(v)⋃
i=1

Yi

 =

d(v)∑
i=1

P (Yi)

Let z1, . . . , zd(v) be the neighbors of v.
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This is just some
constant c ≈ 0.39
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2 disappears

with probability at least c.

Analysis

Intuitively: nodes with “high” degree disappear fast!

• Suppose that there is a vertex v with degree d(v) ≥ dk
2

Question: What is the probability that v does not disappear
within the next φ phases?

A: At most: (1− c)φ Fix φ = 3 log1−c
1
n

(1− c)φ = (1− c)3 log1−c
1
n = (1− c)log1−c

1
n3 =

1

n3

• Suppose that the degree of v remains at least dk
2
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Thus, after 3 log1−c
1
n phases, the probability that:

• v did not disappear; and

• the degree of v is still above dk
2 ;

is at most 1
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Thus, after 3 log1−c
1
n phases, the probability that:

• v did not disappear; and

• the degree of v is still above dk
2 ;

is at most 1
n3 .

The probabiltiy that after 3 log1−c
1
n phases there is at least

one node with degree larger than dk
2 is at most:

n· 1
n3

=
1

n2
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In other words:
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Every 3 log1−c

1
n phases the maximum degree of the graph

halves with probability at least 1− 1
n2 .

Question: What is the probability that all of the log d
“groups” of phases actually halve the maximum degree?

• The probabilty that one fixed group does not halve the
maximum degree is at most 1

n2 .

• The probabilty at least one group does not halve the
maximum degree is at most log d · 1

n2 < n · 1
n2 = 1

n .

MIS forms in O(log d · log n) phases with probability
at least 1− 1

n
.
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Recap:

• Total number of phases: O(log d · log n)

• Time for each phase: O(1)

• Total time: O(log d · log n)

• Probability of success: ≥ 1− 1
n

Luby’s Algorithm finds a Maximal
Independent Set of G.


