
Consensus & fault tolerance: 
distributed and strategic aspects 

of the Blockchain technology



Aspects of the
Blockchain technology

cryptography 

distributed
computing

game 
theory



Aspects of the 

Blockchain technology

cryptography 

distributed
computing

game 
theory



Aspects of the 

Blockchain technology

cryptography 

distributed
computing

game 
theory

fault 

tolerance



the distributed ledger 
problem



- all agents agree on the content of the ledger

problem:
maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands



- all agents agree on the content of the ledger

problem:
maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands



- all agents agree on the content of the ledger

problem:
maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands



- all agents agree on the content of the ledger

problem:
maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands



- all agents agree on the content of the ledger

problem:
maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands



- all agents agree on the content of the ledger

problem:
maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands



- all agents agree on the content of the ledger

problem:
maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands



- all agents agree on the content of the ledger

problem:
maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands



- all agents agree on the content of the ledger

problem:
maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands

...



- all agents agree on the content of the ledger

problem:
maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands

...

In Bitcoin System:

node of the network=

blockchain=

block (of transactions) =



- all agents agree on the content of the ledger

problem:
maintain a distributed ledger containing a seq. of commands such that:

- every agent can fairly write its commands

network can be
 used to exchange 

messages



- all agents agree on the content of the ledger

problem:
maintain a distributed ledger containing a seq. of commands such that:

- every agent can fairly write its commands

network can be
 used to exchange 

messages



a simple solution

serializer 
(trusted party)



a simple solution

serializer 
(trusted party)



a simple solution

serializer 
(trusted party)



a simple solution

serializer 
(trusted party)



a simple solution

serializer 
(trusted party)

...



a simple solution

- what if the serializer fails?

- what if the serializer is not honest?
fault

tolerance

is it really
distributed?

serializer 
(trusted party)

...



a better solution



a better solution



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



a better solution

Consistency:
all nodes always agree on the 
current state of the ledger 

Eventual consistency:
all nodes eventually agree on the 
current state of the ledger (if no 
new updates are issued) 



How to solve the 
distributed ledger problem



distributed ledger via repeated consensus

repeat:



distributed ledger via repeated consensus

repeat:
- each node supports its command 



distributed ledger via repeated consensus

repeat:
- each node supports its command 

- exchange messages to get an 
  agreement on the winning 
  command 



distributed ledger via repeated consensus

repeat:
- each node supports its command 

- exchange messages to get an 
  agreement on the winning 
  command 



distributed ledger via repeated consensus

repeat:
- each node supports its command 

- exchange messages to get an 
  agreement on the winning 
  command 
- every node updates its (local) 
  ledger with the winning  
   command 



distributed ledger via repeated consensus

repeat:
- each node supports its command 

- exchange messages to get an 
  agreement on the winning 
  command 
- every node updates its (local) 
  ledger with the winning  
   command 



distributed ledger via repeated consensus

repeat:
- each node supports its command 

- exchange messages to get an 
  agreement on the winning 
  command 
- every node updates its (local) 
  ledger with the winning  
   command 



distributed ledger via repeated consensus

repeat:
- each node supports its command 

- exchange messages to get an 
  agreement on the winning 
  command 
- every node updates its (local) 
  ledger with the winning  
   command 



distributed ledger via repeated consensus

repeat:
- each node supports its command 

- exchange messages to get an 
  agreement on the winning 
  command 
- every node updates its (local) 
  ledger with the winning  
   command 



the consensus 
problem



Consensus Problem
a set of n nodes



Consensus Problem

each node has:
unique ID

a set of n nodes

2

10

21

7

4

8

1

15



Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2

10

21

7

4

8

1

15



Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2

10

21

7

4

8

1

15
an underlying communication graph G



Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2

10

21

7

4

8

1

15
an underlying communication graph G

Goal: a distributed protocol guaranteeing

Termination (protocol eventually ends)
2

7

4

8

1

1510

21



Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2

10

21

7

4

8

1

15
an underlying communication graph G

Goal: a distributed protocol guaranteeing

Termination (protocol eventually ends)
Agreement (monochromatic final configuration) 2

7

4

8

1

1510

21



Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2

10

21

7

4

8

1

15
an underlying communication graph G

Goal: a distributed protocol guaranteeing

Termination (protocol eventually ends)
Agreement (monochromatic final configuration)

Validity
the winning color is initially supported by 
some node 

2

7

4

8

1

1510

21



Models of computation

- shared clock 
-computation proceeds in rounds
- messages sent in a round arrive in 
the next round
- in a round, a node receives mgs & 
computes & sends msgs

- no shared clock
- no rounds
- messages arrive in the 
finite but unbounded time

synchronous asynchronous



Models of computation

- shared clock 
-computation proceeds in rounds
- messages sent in a round arrive in 
the next round
- in a round, a node receives mgs & 
computes & sends msgs

- no shared clock
- no rounds
- messages arrive in the 
finite but unbounded time

Quality measures:

- # of messages
- size of the messages
- # of rounds (sync. model)



Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2

10

21

7

4

8

1

15
an underlying communication graph G

Goal: a distributed protocol guaranteeing ...

Simple solution:

Leader Election convergence to 
leader’s color

&



Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2

10

21

7

4

8

1

15
an underlying communication graph G

Goal: a distributed protocol guaranteeing ...

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol



Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2

10

21

7

4

8

1

15
an underlying communication graph G

Goal: a distributed protocol guaranteeing

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol

In the Bitcoin System:

the leader is the node that solves the next block



Fault Tolerance



Type of failures

Crash failures



  2

  7  9

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol



  2

  7  9

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol

9

9



  2

  7  9

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol

9

97

7



  2

  7  9

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol

9

97

7

2



  2

  7  9

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol

9

97

7

2



  2

  7  9

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol

9

97

7

2



  2

  7  9

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol

9

97

7

2
no 

agreement!



There is no deterministic algorithm which always achieve 
consensus in the asynchronous model, with f >0 crash failures.

Theorem (1985)



There is no deterministic algorithm which always achieve 
consensus in the asynchronous model, with f >0 crash failures.

Theorem (1985)

There is a randomized algorithm achieving consensus in the 
asynchronous model if up to f<n/2 nodes crash. No consensus 
algorithm can tolerate f ≥n/2 many crash failures.

Theorem (1983)



There is no deterministic algorithm which always achieve 
consensus in the asynchronous model, with f >0 crash failures.

Theorem (1985)

There is a randomized algorithm achieving consensus in the 
asynchronous model if up to f<n/2 nodes crash. No consensus 
algorithm can tolerate f ≥n/2 many crash failures.

Theorem (1983)

There is a consensus algorithm for the synchronous model that 
tolerates any f < n crash failures. 

Theorem (1983)



Type of failures

Crash failures Byzantine failures



  2

  7  9

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol



  2

  7  9

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol



  7  9

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol

  2



  7  9

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol

  2

22



  7  9

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol

  2

22



  7  9

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol

  2

22
no 

agreement!



There exists a randomized algorithm achieving consensus in 
the asynchronous model if up to f<n/3 nodes are byzantine.

Theorem (1985)



There exists a randomized algorithm achieving consensus in 
the asynchronous model if up to f<n/3 nodes are byzantine.

Theorem (1985)

There is a deterministic algorithm achieving consensus in the 
synchronous model if up to f<n/3 nodes are byzantine. 

Theorem (1989)



There exists a randomized algorithm achieving consensus in 
the asynchronous model if up to f<n/3 nodes are byzantine.

Theorem (1985)

There is a deterministic algorithm achieving consensus in the 
synchronous model if up to f<n/3 nodes are byzantine. 

Theorem (1989)

No consensus algorithm can work for f ≥n/3 byzantine nodes, 
even in the synchronous model.

Theorem (1980)



 implicit assumption:

= 1



 implicit assumption:

= 1

Sybil attack:



 implicit assumption:

= 1

Sybil attack:

Proof of Work idea:

= 1



Fair Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2

10

21

7

4

8

1

15
an underlying communication graph G

Goal: a distributed protocol guaranteeing

Termination (protocol eventually ends)
Agreement (monochromatic final configuration) 2

7

4

8

1

1510

21



Fair Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2

10

21

7

4

8

1

15
an underlying communication graph G

Goal: a distributed protocol guaranteeing

Termination (protocol eventually ends)
Agreement (monochromatic final configuration)

Validity
the probability that a color becomes the winning 
color is equal to the fraction of nodes initially 
supporting it

2

7

4

8

1

1510

21

Fairness 



Fair Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2

10

21

7

4

8

1

15
an underlying communication graph G

Goal: a distributed protocol guaranteeing

Simple solution:

Choose a leader 
uniformly at random 

convergence to 
leader’s color

&



Randomized Leader Election
Initial configuration:

2

10

21

7

4

8

1

15



Randomized Leader Election

nodes do not use their unique IDs



Randomized Leader Election

each node u chooses a value ku in [0,n3] u.a.r.

28

15

32

12

40

7

124

14



Randomized Leader Election

each node u chooses a value ku in [0,n3] u.a.r.

28

15

32

12

40

7

124

14

the minimum k value 
is unique w.h.p. 



Randomized Leader Election

Find-min Protocol

 7

 7

 7

7

7

7

  7

 7



Randomized Leader Election

Convergence to leader’s color

 7

 7

 7

7

7

7

  7

 7



Fair Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2

10

21

7

4

8

1

15
an underlying communication graph G

Goal: a distributed protocol guaranteeing

Simple solution:

Choose a leader 
u.a.r. 

convergence to 
leader’s color

&

In the Bitcoin System:

the probability that a node becomes the leader 
is proportional to its computational power 



Type of failures

Crash failures Byzantine failures rational selfish 
failures



A game-theoretic perspective 

Each node is a selfish rational player

for each player/node u:

u’s strategy: local algorithm used by u 



A game-theoretic perspective 

Each node is a selfish rational player

for each player/node u:

u’s strategy: local algorithm used by u 

u’s payoff:

if  the winning color = u’s color



A game-theoretic perspective 

Each node is a selfish rational player

for each player/node u:

u’s strategy: local algorithm used by u 

u’s payoff:

if  the winning color = u’s color

if  the winning color ≠ u’s color



A game-theoretic perspective 

Each node is a selfish rational player

for each player/node u:

u’s strategy: local algorithm used by u 

u’s payoff:

if  the winning color = u’s color

if  the winning color ≠ u’s color

if  the protocol fails



A game-theoretic perspective 

Each node is a selfish rational player

for each player/node u:

u’s strategy: local algorithm used by u 

u’s payoff:

if  the winning color = u’s color

if  the winning color ≠ u’s color

if  the protocol fails

u’s goal: to maximize its expected payoff



Rational Fair Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2

10

21

7

4

8

1

15
an underlying communication graph G

a protocol solves the Rational Fair Consensus if

it is resilient to agent deviations

it solves the Fair Consensus problem 
&



Resiliency to agent deviations

Def. 1. A protocol P is a Nash Equilibrium if, for any 
possible deviation of any agent u, u’s expected payoff in 
the new protocol P’ does not increase.



Resiliency to agent deviations

Def. 1. A protocol P is a Nash Equilibrium if, for any 
possible deviation of any agent u, u’s expected payoff in 
the new protocol P’ does not increase.

Def. 2. A protocol P is a t-strong Equilibrium if, for any 
possible deviation of any coalition C of players of size at 
most t, there is a player in C whose expected payoff in the 
new protocol P’ does not increase.



Rational Fair Consensus Problem
(the simple solution fails)

node u chooses a “random” value ku =0

u
0



Rational Fair Consensus Problem
(the simple solution fails)

node u chooses a “random” value ku =0

u
00

0

0

0

0

0 0



Rational Fair Consensus Problem
(the simple solution fails)

node u chooses a “random” value ku =0

u
00

0

0

0

0

0 0

this protocol solves the Fair Consensus problem 
but 

it is not even a Nash Equilibrium



Bitcoin Mining Protocol:

- work on the next block to be added to the longest chain  
- announce the solved block as soon as you get it



Bitcoin Mining Protocol:

- work on the next block to be added to the longest chain  
- announce the solved block as soon as you get it

is it an 
equilibrium?



selfish mining

I. Eyal and E. Gun Sirer,  Majority is not enough: Bitcoin mining is vulnerable, 
 Financial Cryptography 2014



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 

wasted work!



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 
wasted work!



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 



idea: selfishly decide when to announce solved blocks 

A

B



idea: selfishly decide when to announce solved blocks 

A

B

A

B

A

A

B

B

B

B

x

1-x



idea: selfishly decide when to announce solved blocks 

A

B

A

B

A

A

B

B

B

B

x

1-x

x

1-x



idea: selfishly decide when to announce solved blocks 

A

B

A

B

A

A

B

B

B

B

x

1-x



idea: selfishly decide when to announce solved blocks 

A

B

A

B

A

A

B

B

B

B

x

1-x



idea: selfishly decide when to announce solved blocks 

A

B

A

B

A

A

B

B

B

B

x

1-x

wasted work!



idea: selfishly decide when to announce solved blocks 

A

B

A

B

A

A

B

B

B

B

x

1-x

wasted work!

Convenient if:

- > 1/3 of the total computational 
  power of the network

OR

-   > 1/4 of the total 
  computational power of the 
  network & x ≥ 1/2



Bitcoin system 
(in a nutshell)

Tim Roughgarden, Incentives in Computer Science
Lecture #9: Incentives in Bitcoin Mining, 
 http://timroughgarden.org/f16/l/l9.pdf

http://timroughgarden.org/f16/l/l9.pdf


A Bitcoin transaction:

1. One or more senders.  
2. One or more recipients.
3. The amount of BTC (Bitcoins) transferred from each 
    sender to each recipient.
4. A proof of ownership of the coins being transferred, 
    in the form of a pointer back to most recent transactions 
    involving the transferred coins.
5. A transaction fee, paid by the sender to the authorizer of 
    the transaction.

Transactions



Transactions

A transaction is valid if:
1. It has been cryptographically signed by all of the senders.
2. The senders really do own the coins being transferred.  



Transactions

A transaction is valid if:
1. It has been cryptographically signed by all of the senders.
2. The senders really do own the coins being transferred.  

This can be verified using the 
senders’ public keys.



Transactions

A transaction is valid if:
1. It has been cryptographically signed by all of the senders.
2. The senders really do own the coins being transferred.  

This can be verified using the 
senders’ public keys.

This can be verified as follows:
-transactions are broadcast to all other users (through a peer-to-peer network); 
-all users keep track of all transactions that have ever been authorized; 
-thus, everyone knows everyone’s current balance 



Transactions

A transaction is valid if:
1. It has been cryptographically signed by all of the senders.
2. The senders really do own the coins being transferred.  

This can be verified using the 
senders’ public keys.

This can be verified as follows:
-transactions are broadcast to all other users (through a peer-to-peer network); 
-all users keep track of all transactions that have ever been authorized; 
-thus, everyone knows everyone’s current balance 

the ledger: the record of all the authorized transactions.



Transactions

Two important questions:

1. How do transactions get authorized and added to the ledger?
(Traditionally, this would done by a centralized entity like a bank.)

2. How do Bitcoins get created in the first place?
(Traditionally, money is printed by the government.) 



Blocks

Transactions are added to the ledger in groups, known as blocks.



Blocks

A block contains:
1. One or more transactions.
2. A hash of the previous block.
3. A nonce. (I.e., a bunch of bits that can be set arbitrarily.)

Transactions are added to the ledger in groups, known as blocks.



Blocks

A block contains:
1. One or more transactions.
2. A hash of the previous block.
3. A nonce. (I.e., a bunch of bits that can be set arbitrarily.)

This imposes a natural linked list-type structure on the ledger:
-the predecessor of a block b2 is the block b1 whose hash matches the hash stored in b2.

Transactions are added to the ledger in groups, known as blocks.



Blocks

A block contains:
1. One or more transactions.
2. A hash of the previous block.
3. A nonce. (I.e., a bunch of bits that can be set arbitrarily.)

This imposes a natural linked list-type structure on the ledger:
-the predecessor of a block b2 is the block b1 whose hash matches the hash stored in b2.

Transactions are added to the ledger in groups, known as blocks.

 b1  b2  b3  b4 …

Blockchain



Blockchain

Some issues:
-How do new blocks get added to the blockchain? 
-Who can do it?
-Why should they bother?
-How can we make sure that everybody agrees on the contents of the 
blockchain?



Blockchain

Some issues:
-How do new blocks get added to the blockchain? 
-Who can do it?
-Why should they bother?
-How can we make sure that everybody agrees on the contents of the 
blockchain?

Two key ingredients:
1. Any user can authorize a block. Bitcoin incentivizes users to do 

authorizations through explicit monetary rewards (in BTC, naturally).
2. Authorizing a new block of transactions involves a proof of work, 

meaning that the authorizer has to solve a computationally difficult 
puzzle.



Computational difficult puzzle

A block b is valid if h(b) is sufficiently close to 0.

h: pre-agreed upon hash function 
    (currently, SHA-256)



Computational difficult puzzle

A block b is valid if h(b) is sufficiently close to 0.

h: pre-agreed upon hash function 
    (currently, SHA-256)

the leading l bits of h(b) should all be 
0, where l is a parameter



Computational difficult puzzle

A block b is valid if h(b) is sufficiently close to 0.

h: pre-agreed upon hash function 
    (currently, SHA-256)

the leading l bits of h(b) should all be 
0, where l is a parameter

a block contains: 
    transactions, the hash of the previous block, the nonce



Computational difficult puzzle

A block b is valid if h(b) is sufficiently close to 0.

h: pre-agreed upon hash function 
    (currently, SHA-256)

the leading l bits of h(b) should all be 
0, where l is a parameter

a block contains: 
    transactions, the hash of the previous block, the nonce

has to be set properly set in order to 
make the block valid 



Computational difficult puzzle

A block b is valid if h(b) is sufficiently close to 0.

h: pre-agreed upon hash function 
    (currently, SHA-256)

the leading l bits of h(b) should all be 
0, where l is a parameter

a block contains: 
    transactions, the hash of the previous block, the nonce

has to be set properly set in order to 
make the block valid 

parameter l chosen to keep the rate of valid block creation roughly every 
ten minutes



Block Rewards and Bitcoin Mining

Bitcoin mining: the process of finding new valid blocks.



Block Rewards and Bitcoin Mining

Bitcoin mining: the process of finding new valid blocks.

A miner: 
-chooses a subset of the transactions;
-inserts the hash of the current last block;
-arbitrarily set the bits in the nonce (and hope that the resulting block is 
valid).



Block Rewards and Bitcoin Mining

Bitcoin mining: the process of finding new valid blocks.

A miner: 
-chooses a subset of the transactions;
-inserts the hash of the current last block;
-arbitrarily set the bits in the nonce (and hope that the resulting block is 
valid).

the accepted belief is that there is no 
algorithm for finding a valid block that is 
smarter or faster than random guessing or 
exhaustive search

h is a cryptographic hash function



Block Rewards and Bitcoin Mining

The reward that a miner gets for adding a new (valid) block to the 
blockchain has two ingredients:

1. A flat reward that does not depend on the contents of the block
(When Bitcoin debuted this reward was 50 BTC, but the protocol dictates that this 
amount gets cut in half every four years. Currently, it is 6.25.)

2. The sum of the transaction fees of the transactions in the block
(Currently, transaction fees are non-zero but typically constitute only a few percent 

of the overall reward.) 



Block Rewards and Bitcoin Mining

The reward that a miner gets for adding a new (valid) block to the 
blockchain has two ingredients:

1. A flat reward that does not depend on the contents of the block
(When Bitcoin debuted this reward was 50 BTC, but the protocol dictates that this 
amount gets cut in half every four years. Currently, it is 12.5.)

2. The sum of the transaction fees of the transactions in the block
(Currently, transaction fees are non-zero but typically constitute only a few percent 

of the overall reward.) 

remark: creating a new block is the only way that new money gets printed



Block Rewards and Bitcoin Mining

The reward that a miner gets for adding a new (valid) block to the 
blockchain has two ingredients:

1. A flat reward that does not depend on the contents of the block
(When Bitcoin debuted this reward was 50 BTC, but the protocol dictates that this 
amount gets cut in half every four years. Currently, it is 12.5.)

2. The sum of the transaction fees of the transactions in the block
(Currently, transaction fees are non-zero but typically constitute only a few percent 

of the overall reward.) 

remark: creating a new block is the only way that new money gets printed

the miner gets the new mined BTCs as special transaction inserted into the 
mined block



Forks

When a new valid block has been found: 
-the miner is supposed to immediately broadcast it across the entire network, 
so that it gets appended to the blockchain;

-If someone else announces a new valid block first, then the miner restarts this 
procedure, now using only transactions not already authorized by the new 
block, and using the hash of the new block.



Forks

When a new valid block has been found: 
-the miner is supposed to immediately broadcast it across the entire network, 
so that it gets appended to the blockchain;

-If someone else announces a new valid block first, then the miner restarts this 
procedure, now using only transactions not already authorized by the new 
block, and using the hash of the new block.

when two miners solve a block at roughly the same time:

 b1  b2  b3

 b4 

fork
 b4 
 ’ 



Forks

Intended behavior when there is a fork: 
-a user should regard the longest branch as the valid one;
-break ties according to the block that it heard about first.

 b1  b2  b3

 b4 
fork

 b4 
 ’ 



Forks

Intended behavior when there is a fork: 
-a user should regard the longest branch as the valid one;
-break ties according to the block that it heard about first.

 b1  b2  b3

 b4 
fork

 b4 
 ’ 

 b5 



Forks

Intended behavior when there is a fork: 
-a user should regard the longest branch as the valid one;
-break ties according to the block that it heard about first.

 b1  b2  b3

 b4 
fork

 b4 
 ’ 

 b5 

“orphaned” block



Bitcoin Mining Protocol:

- work on the next block to be added to the longest chain  
- announce the solved block as soon as you get it



Bitcoin Mining Protocol:

- work on the next block to be added to the longest chain  
- announce the solved block as soon as you get it

Does a miner have convenience 
to follow the protocol?



The Double-Spend Attack

Idea: miners deliberately create forks.



The Double-Spend Attack

Idea: miners deliberately create forks.

 b1  b2 

Assumption: Bob only ships the purchased goods to Alice once another block b2 has been 
appended to b1.

 b0 



The Double-Spend Attack

Idea: miners deliberately create forks.

 b1  b2 

Assumption: Bob only ships the purchased goods to Alice once another block b2 has been 
appended to b1.

 b0 



The Double-Spend Attack

Idea: miners deliberately create forks.

 b1  b2 

 b3

Assumption: Bob only ships the purchased goods to Alice once another block b2 has been 
appended to b1.

 b0 



The Double-Spend Attack

Idea: miners deliberately create forks.

 b1  b2 

 b3  b4 

Assumption: Bob only ships the purchased goods to Alice once another block b2 has been 
appended to b1.

 b0 



The Double-Spend Attack

Idea: miners deliberately create forks.

 b1  b2 

 b3  b4  b5 

Assumption: Bob only ships the purchased goods to Alice once another block b2 has been 
appended to b1.

 b0 



The Double-Spend Attack

Idea: miners deliberately create forks.

 b1  b2 

 b3  b4  b5 

Assumption: Bob only ships the purchased goods to Alice once another block b2 has been 
appended to b1.

 b0 

a: fraction of the computational   
     power controlled by Alice

1 0 -1 -2 -3

a a a

1-a 1-a 1-a

a1
a

1-a

...



The Double-Spend Attack

Idea: miners deliberately create forks.

 b1  b2 

 b3  b4  b5 

Assumption: Bob only ships the purchased goods to Alice once another block b2 has been 
appended to b1.

 b0 

a: fraction of the computational   
     power controlled by Alice

probability of success: 
( a/(1-a) )3 



The Double-Spend Attack

Idea: miners deliberately create forks.

 b1  b2 

 b3  b4  b5 

Assumption: Bob only ships the purchased goods to Alice once k other blocks have been 
appended to b1.

 b0 

a: fraction of the computational   
     power controlled by Alice

probability of success:
( a/(1-a) )k+2 



The 51% Attack

 b1  b2 

if Alice controls  ≥ 50% of the computational power

 b0 

remark: 
Bitcoin is not intended to function when a single 

entity controls more than 50% of the computational 
power

 b3 



The 51% Attack

 b1  b2 

 b4

if Alice controls  ≥ 50% of the computational power

 b0 

remark: 
Bitcoin is not intended to function when a single 

entity controls more than 50% of the computational 
power

 b3 



The 51% Attack

 b1  b2 

 b4  b5 

if Alice controls  ≥ 50% of the computational power

 b0 

remark: 
Bitcoin is not intended to function when a single 

entity controls more than 50% of the computational 
power

 b3 



The 51% Attack

 b1  b2 

 b4  b5 

if Alice controls  ≥ 50% of the computational power

 b0 

remark: 
Bitcoin is not intended to function when a single 

entity controls more than 50% of the computational 
power

 b3  b6 



The 51% Attack

 b1  b2 

 b4  b5  b7 

if Alice controls  ≥ 50% of the computational power

 b0 

remark: 
Bitcoin is not intended to function when a single 

entity controls more than 50% of the computational 
power

 b3  b6 



The 51% Attack

 b1  b2 

 b4  b5  b7 

if Alice controls  ≥ 50% of the computational power

 b0 

remark: 
Bitcoin is not intended to function when a single 

entity controls more than 50% of the computational 
power

 b3  b6 

 b8 



The 51% Attack

 b1  b2 

 b4  b5  b7 

if Alice controls  ≥ 50% of the computational power

 b0 

remark: 
Bitcoin is not intended to function when a single 

entity controls more than 50% of the computational 
power

 b3  b6  b9 

 b8 



The 51% Attack

 b1  b2 

 b4  b5  b7 

if Alice controls  ≥ 50% of the computational power

 b0 

remark: 
Bitcoin is not intended to function when a single 

entity controls more than 50% of the computational 
power

 b3  b6  b9 

 b8  b10 



The 51% Attack

 b1  b2 

 b4  b5  b7 

if Alice controls  ≥ 50% of the computational power

 b0 

remark: 
Bitcoin is not intended to function when a single 

entity controls more than 50% of the computational 
power

 b3  b6  b9 

 b8  b10  b11 



The 51% Attack

 b1  b2 

 b4  b5  b7 

if Alice controls  ≥ 50% of the computational power

 b0 

remark: 
Bitcoin is not intended to function when a single 

entity controls more than 50% of the computational 
power

 b3  b6  b9 

 b8  b10  b11 

Alice will eventually build the longest chain (with probability 1)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

