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- all agents agree on the content of the ledger

problem:
maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands

...

In Bitcoin System:

node of the network=

blockchain=

block (of transactions) =
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a simple solution

- what if the serializer fails?

- what if the serializer is not honest?
fault

tolerance

is it really
distributed?

serializer 
(trusted party)

...
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How to solve the 
distributed ledger problem
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an underlying communication graph G

Goal: a distributed protocol guaranteeing

Termination (protocol eventually ends)
Agreement (monochromatic final configuration)

Validity
the winning color is initially supported by 
some node 
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Models of computation

- shared clock 
-computation proceeds in rounds
- messages sent in a round arrive in 
the next round
- in a round, a node receives mgs & 
computes & sends msgs

- no shared clock
- no rounds
- messages arrive in the 
finite but unbounded time

Quality measures:

- # of messages
- size of the messages
- # of rounds (sync. model)
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Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2
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21

7

4

8

1

15
an underlying communication graph G

Goal: a distributed protocol guaranteeing

Simple solution:

Leader Election convergence to 
leader’s color

&

Find-min protocol

In the Bitcoin System:

the leader is the node that solves the next block



Fault Tolerance
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Simple solution:

Leader Election convergence to 
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&

Find-min protocol

9
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7

2
no 

agreement!
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There is no deterministic algorithm which always achieve 
consensus in the asynchronous model, with f >0 crash failures.

Theorem (1985)

There is a randomized algorithm achieving consensus in the 
asynchronous model if up to f<n/2 nodes crash. No consensus 
algorithm can tolerate f ≥n/2 many crash failures.

Theorem (1983)

There is a consensus algorithm for the synchronous model that 
tolerates any f < n crash failures. 

Theorem (1983)
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There exists a randomized algorithm achieving consensus in 
the asynchronous model if up to f<n/3 nodes are byzantine.

Theorem (1985)

There is a deterministic algorithm achieving consensus in the 
synchronous model if up to f<n/3 nodes are byzantine. 

Theorem (1989)

No consensus algorithm can work for f ≥n/3 byzantine nodes, 
even in the synchronous model.

Theorem (1980)
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= 1

Sybil attack:

Proof of Work idea:

= 1
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Goal: a distributed protocol guaranteeing

Termination (protocol eventually ends)
Agreement (monochromatic final configuration)

Validity
the probability that a color becomes the winning 
color is equal to the fraction of nodes initially 
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Fair Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2
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7
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8
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15
an underlying communication graph G

Goal: a distributed protocol guaranteeing

Simple solution:

Choose a leader 
uniformly at random 

convergence to 
leader’s color

&



Randomized Leader Election
Initial configuration:
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Randomized Leader Election

nodes do not use their unique IDs



Randomized Leader Election

each node u chooses a value ku in [0,n3] u.a.r.

28

15

32

12

40

7

124

14



Randomized Leader Election

each node u chooses a value ku in [0,n3] u.a.r.

28

15

32

12

40

7

124

14

the minimum k value 
is unique w.h.p. 



Randomized Leader Election

Find-min Protocol
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Randomized Leader Election

Convergence to leader’s color
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Fair Consensus Problem

each node has:

a color in {         …   }
unique ID

a set of n nodes

2

10

21

7
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8
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15
an underlying communication graph G

Goal: a distributed protocol guaranteeing

Simple solution:

Choose a leader 
u.a.r. 

convergence to 
leader’s color

&

In the Bitcoin System:

the probability that a node becomes the leader 
is proportional to its computational power 



Type of failures

Crash failures Byzantine failures rational selfish 
failures
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A game-theoretic perspective 

Each node is a selfish rational player

for each player/node u:

u’s strategy: local algorithm used by u 

u’s payoff:

if  the winning color = u’s color

if  the winning color ≠ u’s color

if  the protocol fails

u’s goal: to maximize its expected payoff



Rational Fair Consensus Problem

each node has:
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unique ID
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a protocol solves the Rational Fair Consensus if

it is resilient to agent deviations

it solves the Fair Consensus problem 
&
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Resiliency to agent deviations

Def. 1. A protocol P is a Nash Equilibrium if, for any 
possible deviation of any agent u, u’s expected payoff in 
the new protocol P’ does not increase.

Def. 2. A protocol P is a t-strong Equilibrium if, for any 
possible deviation of any coalition C of players of size at 
most t, there is a player in C whose expected payoff in the 
new protocol P’ does not increase.
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Rational Fair Consensus Problem
(the simple solution fails)

node u chooses a “random” value ku =0

u
00

0

0

0

0

0 0

this protocol solves the Fair Consensus problem 
but 

it is not even a Nash Equilibrium
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Bitcoin Mining Protocol:

- work on the next block to be added to the longest chain  
- announce the solved block as soon as you get it

is it an 
equilibrium?



selfish mining

I. Eyal and E. Gun Sirer,  Majority is not enough: Bitcoin mining is vulnerable, 
 Financial Cryptography 2014
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idea: selfishly decide when to announce solved blocks 

A

B

A

B

A

A

B

B

B

B

x

1-x

wasted work!

Convenient if:

- > 1/3 of the total computational 
  power of the network

OR

-   > 1/4 of the total 
  computational power of the 
  network & x ≥ 1/2



Bitcoin system 
(in a nutshell)

Tim Roughgarden, Incentives in Computer Science
Lecture #9: Incentives in Bitcoin Mining, 
 http://timroughgarden.org/f16/l/l9.pdf

http://timroughgarden.org/f16/l/l9.pdf


A Bitcoin transaction:

1. One or more senders.  
2. One or more recipients.
3. The amount of BTC (Bitcoins) transferred from each 
    sender to each recipient.
4. A proof of ownership of the coins being transferred, 
    in the form of a pointer back to most recent transactions 
    involving the transferred coins.
5. A transaction fee, paid by the sender to the authorizer of 
    the transaction.

Transactions
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Transactions

A transaction is valid if:
1. It has been cryptographically signed by all of the senders.
2. The senders really do own the coins being transferred.  

This can be verified using the 
senders’ public keys.

This can be verified as follows:
-transactions are broadcast to all other users (through a peer-to-peer network); 
-all users keep track of all transactions that have ever been authorized; 
-thus, everyone knows everyone’s current balance 

the ledger: the record of all the authorized transactions.



Transactions

Two important questions:

1. How do transactions get authorized and added to the ledger?
(Traditionally, this would done by a centralized entity like a bank.)

2. How do Bitcoins get created in the first place?
(Traditionally, money is printed by the government.) 
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Transactions are added to the ledger in groups, known as blocks.
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3. A nonce. (I.e., a bunch of bits that can be set arbitrarily.)
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A block contains:
1. One or more transactions.
2. A hash of the previous block.
3. A nonce. (I.e., a bunch of bits that can be set arbitrarily.)

This imposes a natural linked list-type structure on the ledger:
-the predecessor of a block b2 is the block b1 whose hash matches the hash stored in b2.

Transactions are added to the ledger in groups, known as blocks.

 b1  b2  b3  b4 …

Blockchain
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-How do new blocks get added to the blockchain? 
-Who can do it?
-Why should they bother?
-How can we make sure that everybody agrees on the contents of the 
blockchain?



Blockchain

Some issues:
-How do new blocks get added to the blockchain? 
-Who can do it?
-Why should they bother?
-How can we make sure that everybody agrees on the contents of the 
blockchain?

Two key ingredients:
1. Any user can authorize a block. Bitcoin incentivizes users to do 

authorizations through explicit monetary rewards (in BTC, naturally).
2. Authorizing a new block of transactions involves a proof of work, 

meaning that the authorizer has to solve a computationally difficult 
puzzle.



Computational difficult puzzle

A block b is valid if h(b) is sufficiently close to 0.

h: pre-agreed upon hash function 
    (currently, SHA-256)



Computational difficult puzzle

A block b is valid if h(b) is sufficiently close to 0.

h: pre-agreed upon hash function 
    (currently, SHA-256)

the leading l bits of h(b) should all be 
0, where l is a parameter



Computational difficult puzzle

A block b is valid if h(b) is sufficiently close to 0.

h: pre-agreed upon hash function 
    (currently, SHA-256)

the leading l bits of h(b) should all be 
0, where l is a parameter

a block contains: 
    transactions, the hash of the previous block, the nonce



Computational difficult puzzle

A block b is valid if h(b) is sufficiently close to 0.

h: pre-agreed upon hash function 
    (currently, SHA-256)

the leading l bits of h(b) should all be 
0, where l is a parameter

a block contains: 
    transactions, the hash of the previous block, the nonce

has to be set properly set in order to 
make the block valid 



Computational difficult puzzle

A block b is valid if h(b) is sufficiently close to 0.

h: pre-agreed upon hash function 
    (currently, SHA-256)

the leading l bits of h(b) should all be 
0, where l is a parameter

a block contains: 
    transactions, the hash of the previous block, the nonce

has to be set properly set in order to 
make the block valid 

parameter l chosen to keep the rate of valid block creation roughly every 
ten minutes
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Bitcoin mining: the process of finding new valid blocks.

A miner: 
-chooses a subset of the transactions;
-inserts the hash of the current last block;
-arbitrarily set the bits in the nonce (and hope that the resulting block is 
valid).



Block Rewards and Bitcoin Mining

Bitcoin mining: the process of finding new valid blocks.

A miner: 
-chooses a subset of the transactions;
-inserts the hash of the current last block;
-arbitrarily set the bits in the nonce (and hope that the resulting block is 
valid).

the accepted belief is that there is no 
algorithm for finding a valid block that is 
smarter or faster than random guessing or 
exhaustive search

h is a cryptographic hash function



Block Rewards and Bitcoin Mining

The reward that a miner gets for adding a new (valid) block to the 
blockchain has two ingredients:

1. A flat reward that does not depend on the contents of the block
(When Bitcoin debuted this reward was 50 BTC, but the protocol dictates that this 
amount gets cut in half every four years. Currently, it is 6.25.)

2. The sum of the transaction fees of the transactions in the block
(Currently, transaction fees are non-zero but typically constitute only a few percent 

of the overall reward.) 



Block Rewards and Bitcoin Mining

The reward that a miner gets for adding a new (valid) block to the 
blockchain has two ingredients:

1. A flat reward that does not depend on the contents of the block
(When Bitcoin debuted this reward was 50 BTC, but the protocol dictates that this 
amount gets cut in half every four years. Currently, it is 12.5.)

2. The sum of the transaction fees of the transactions in the block
(Currently, transaction fees are non-zero but typically constitute only a few percent 

of the overall reward.) 

remark: creating a new block is the only way that new money gets printed



Block Rewards and Bitcoin Mining

The reward that a miner gets for adding a new (valid) block to the 
blockchain has two ingredients:

1. A flat reward that does not depend on the contents of the block
(When Bitcoin debuted this reward was 50 BTC, but the protocol dictates that this 
amount gets cut in half every four years. Currently, it is 12.5.)

2. The sum of the transaction fees of the transactions in the block
(Currently, transaction fees are non-zero but typically constitute only a few percent 

of the overall reward.) 

remark: creating a new block is the only way that new money gets printed

the miner gets the new mined BTCs as special transaction inserted into the 
mined block



Forks

When a new valid block has been found: 
-the miner is supposed to immediately broadcast it across the entire network, 
so that it gets appended to the blockchain;

-If someone else announces a new valid block first, then the miner restarts this 
procedure, now using only transactions not already authorized by the new 
block, and using the hash of the new block.



Forks

When a new valid block has been found: 
-the miner is supposed to immediately broadcast it across the entire network, 
so that it gets appended to the blockchain;

-If someone else announces a new valid block first, then the miner restarts this 
procedure, now using only transactions not already authorized by the new 
block, and using the hash of the new block.

when two miners solve a block at roughly the same time:

 b1  b2  b3

 b4 

fork
 b4 
 ’ 



Forks

Intended behavior when there is a fork: 
-a user should regard the longest branch as the valid one;
-break ties according to the block that it heard about first.
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Forks

Intended behavior when there is a fork: 
-a user should regard the longest branch as the valid one;
-break ties according to the block that it heard about first.

 b1  b2  b3

 b4 
fork

 b4 
 ’ 

 b5 

“orphaned” block



Bitcoin Mining Protocol:

- work on the next block to be added to the longest chain  
- announce the solved block as soon as you get it



Bitcoin Mining Protocol:

- work on the next block to be added to the longest chain  
- announce the solved block as soon as you get it

Does a miner have convenience 
to follow the protocol?
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Idea: miners deliberately create forks.
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Idea: miners deliberately create forks.
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Assumption: Bob only ships the purchased goods to Alice once another block b2 has been 
appended to b1.
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The Double-Spend Attack

Idea: miners deliberately create forks.

 b1  b2 
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Assumption: Bob only ships the purchased goods to Alice once another block b2 has been 
appended to b1.
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The Double-Spend Attack

Idea: miners deliberately create forks.

 b1  b2 

 b3  b4  b5 

Assumption: Bob only ships the purchased goods to Alice once k other blocks have been 
appended to b1.

 b0 

a: fraction of the computational   
     power controlled by Alice

probability of success:
( a/(1-a) )k+2 



The 51% Attack
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The 51% Attack

 b1  b2 

 b4  b5  b7 

if Alice controls  ≥ 50% of the computational power

 b0 

remark: 
Bitcoin is not intended to function when a single 

entity controls more than 50% of the computational 
power

 b3  b6  b9 

 b8  b10  b11 

Alice will eventually build the longest chain (with probability 1)
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