Distance Queries in Modern Large-Scale Complex Networks

Mattia D'Emidio

Gran Sasso Science Institute (GSSI), L'Aquila (Italy) mattia.demidio@gssi.it - www.mattiademidio.com

Distributed Systems @ Univaq

October 31, 2017

Mattia D'Emidio

Distance Queries in Modern Large-Scale Complex Networks

Outline

1 Reporting Shortest Paths/Distances on Graphs

- Pruned Landmark Labeling
- 3 Dynamic Algorithms
- 2 Experiments
- 5 Conclusion #1 and Future Work
- 6 Fault-Tolerance
- Conclusion #2 and Future Work

・ロン ・回 と ・ヨン ・ ヨン

Problem

- Reporting shortest paths/distances between pairs of vertices of a graph is one of the most fundamental problems in graph theory and algorithmics
- Pletora of applications

= 990

Classic Applications

- Communication Networks
 - Fundamental to most of routing protocols, efficient use of communication resources to forward data

Sensor Networks

establish connections

Route/Journey Planning

 computing best connections in road networks and/or schedule-based transport systems, fundamental to planning software like e.g. Google Maps

Data Mining

Find stronger relationships among data by their "closeness"

Graph Databases

management and/or efficient querying of data

Emerging Applications

Context-Aware Search

- give higher ranks to web pages more related to the currently visiting web page
- Fundamental to search engines

Socially-Sensitive Search

- help users to find related users/contents
- Fundamental to social networks hosts

Social Network Analysis / Social Engineering

 distance between users is a proxy for closeness, analyze influential people and communities

Biological Systems Analysis

 discovery of optimal pathways between compounds in metabolic networks

Distributed File Systems

reflect changes onto replicae efficiently

Mattia D'Emidio

5 / 104

∃ \$\0<</p>\$\0

Problem

- Given a graph G = (V, E) having n = |V| vertices and m = |E| edges, and a pair of vertices $s, t \in V$
- Report, upon query, distance d(s,t), i.e. the weight of a shortest path between s and t in G
 - in the smallest possible amount of time (efficiently)
 - in a reliable way (we'll say what this means later)

(Highly) related problems:

- **Reachability:** report **yes** if there exist a path between *s* and *t*, **no** otherwise
- Path-reporting: report the whole shortest path (set of vertices and edges)

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Naive Approach 1: BFS (Dijkstra's) Algorithm

- Execute upon query, no preprocessing
- Space-efficient, no additional storage
- Best algorithm w.r.t. worst-case query time if no preprocessing is allowed
 - O(m+n) in unweighted graphs
 - $O(m + n \log n)$ in weighted graphs

Naive Approach 2: Distance Table

- Time-consuming preprocessing
- Compute and store **all pairs** distances via |V| BFS (or Dijkstra's) executions
- $\Theta(|V|^2)$ space
- Optimal O(1) query time, retrieve the value upon query

∃ 𝒫𝔄𝔄

Naive approaches fail at being practical in **modern networks** which tend to be

- Large-Scale: billion vertices networks (e.g. Twitter, Facebook, Road Networks, Internet)
- **Complex:** various topological features (non-regular, non-bounded-treewidth, non-uniform degree distributions, etc)

Naive approaches worst-case performance

- Approach 1:
 - unsustainable query time (even linear per query can be too much)
- Approach 2:
 - impractical preprocessing effort and space occupancy
 - Trade-offs are needed to achieve scalability

E na∩

Trending Strategy

- Do **"something in the middle"** between the two extreme naive solutions
 - ▶ in terms of space, preprocessing, and query time
- "Suitably" preprocess the graph
 - Computational pre-processing effort in between O(1) and O(n(m+n))
- Store "acceptable" amount of data
 - Space complexity in between O(1) and $O(n^2)$
- Use data to **answer** queries "quickly"
 - Computational complexity of query algorithm in between O(1) and O(m + n)
- There are a lot of trade-offs, let us discuss an example

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Given a graph

Mattia D'Emidio

Distance Queries in Modern Large-Scale Complex Networks

▶ ≣ 12 / 104

ヘロン ヘロン ヘヨン ヘヨン

Naive 1: Dijkstra's (or BFS)

- No preprocessing, do not store anything
- Query: possibly access the whole graph (search space through all data)

1attia D'Emidio Distance Queries in Modern Large-Scale Complex Networks

Naive 2: Distance Table

- Full preprocessing, store explicitly all solutions
- Query: access single data entry of interest

Mattia D'Emidio

Distance Queries in Modern Large-Scale Complex Networks

14 / 104

Trade-Off: questions

- How can we **suitably preprocess** the graph (subquadratic time), store a **practical** amount of space (subquadratic) and be able to answer to queries in **reasonable time** (as close to constant time as possible)?
- Preprocessing: do less that all BFSs or Dijkstra's
- **Space:** store less than all pairs
- Query: access few data entries and do few operations

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Reporting Shortest Paths/Distances on Graphs Temptative answer: yes

- Exploit optimal sub-structure of shortest paths
- e.g. look at h, it is a sort of "center" of many shortest paths, it could be used for encoding many of them

Mattia D'Emidio Distance Queries in Modern Large-Scale Corr

16 / 104

→ ∃ →

More detailed question

- 1. Can we **compress** the n^2 **solutions** into a more **compact** data structure that can answer distance queries **quickly** (in time not so far from O(1))?
- 2. Can we **compute** such data structure by a preprocessing algorithm that is **practical** in terms of time?
- 3. Moreover, can we **distribute** the data in order to build a **more reliable system**?

・ロン ・四 ・ ・ ヨ ・ ・

Several works on the matter

- Tree-decomposition based (Akiba+ EDBT 2012)
- Multi-level / Hierarchical Based (Abraham+ ESA 2012)
- Variety of **speed-up techniques** for Dijkstra's algorithm, tailored for special classes of graphs (e.g. graphs with low *highway dimension* like road networks)
- Pruned Landmark Labeling (PLL) (Akiba+ SIGMOD 2013)
- Landmark-based (Potamias+ CIKM 2009)
- Distance Sketch (Sarma+ WSDM 2010)
- Path Sketch (Gubichev+ CIKM 2010)
- Graph Spanners (Peleg+ JGT 1989, Baswana+ SODA 2008)
- "SP based" (Elkin+ SODA 2015, Thorup+ JACM 2015)

= nar

Outline

Reporting Shortest Paths/Distances on Graphs

- 2 Pruned Landmark Labeling
- 3 Dynamic Algorithms
- 2 Experiments
- 5 Conclusion #1 and Future Work
- 6 Fault-Tolerance
- Conclusion #2 and Future Work

・ロン ・回 と ・ヨン ・ ヨン

State-of-the-art w.r.t.: Pruned Landmark Labeling (PLL)

 Best known trade-off for complex general networks (undirected/directed unweighted/weighted)¹

Worst-case

- Naive 2 time and space
- O(n) query time
- Awful

• However, in practice, it outperforms all other methods

- acceptable preprocessing effort (~hours)
- practical space occupancy (~gibibytes)
- small enough query time (~milliseconds)
- for billion vertices graphs
- suitable to exploit parallel architectures
- it allows distribution of information

¹Experimentally speaking

Mattia D'Emidio

Distance Queries in Modern Large-Scale Complex Networks

Two Main ingredients: 2-Hop Cover + Distance Labeling

- Based on the intuition we've seen before
- Rough idea is
 - to compute a compact representation of the shortest paths, namely the 2-Hop Cover
 - to convert it to a distance labeling, a compact label-based data structure that can be used to answer query quickly (and in a distributed fashion)

イロン イボン イヨン イヨン

Some Notation

- Focus on undirected unweighted graphs and distances
- Given undirected unweighted graph G = (V, E) with n = |V| vertices and m = |E| edges
- $N(v) = \{u \in V \mid \{u, v\} \in E\}$ denotes set of neighbors of v in G
- d(u, v) denotes (hop) **distance** between u and v (number of edges in shortest path between u and v)
- If u and v not connected, then $d(u, v) = \infty$

2-Hop Cover (Cohen+ J. Comput. 2012)

Given a graph G

- For every $u, v \in \mathsf{let}$
 - ► P_{uv} be a **collection** of paths between u and v in G (e.g. P_{uv} can be the **shortest paths** between u and v)

• A hop is a pair (h, u)

where h is a path in G and u is one of the endpoints of h (for instance, h is a shortest path)

2-Hop Cover (Cohen+ J. Comput. 2012)

2–Hop Cover of G

- A set of hops H(G) is a 2-Hop Cover of the collection of paths $P = \bigcup_{G \in V} P_{uv}$ if and only if
 - $u,v{\in}V$
 - for every pair $u, v \in V$ such that $P_{uv} \neq \emptyset$
 - ▶ there exists at least one $p \in P_{uv}$ and two hops $(h_1, u) \in H$ and $(h_2, v) \in H$ such that $p = h_1 \oplus h_2$
- Each pair is said to be covered (or to satisfy the Cover Property)

Distance Labeling of a Graph G

- A **label** L(v) is assigned to each vertex v of G
- The **labeling** L(G) of G is given by $\{L(v)\}_{v \in V}$
- A query on the distance between two vertices s and t is answered by simply looking at the labels L(s) and L(t) of the two vertices i.e. $d_G(s,t) = f(L(s), L(t))$
- Main benefit: distribution of information
- Several methods to build distance labelings
 - Graph Embedding
 - Distance Sketches/Landmark based

2-Hop Covers yield Distance Labelings

- A label is intended as a **set of pairs** (entries) (u, δ_{uv}) , where u is a vertex in V and $\delta_{uv} = d_G(u, v)$
- Compute a **2–Hop Cover** *H*(*G*) of the collection *P* of the shortest paths of *G*
- For each hop $(h, u) \in H$ add entry v, w(h) to L(u)
- Where v is the other **endpoint** of h and w(h) is its weight

2-Hop Covers yield Distance Labelings

• Labels can the be used to answer to a **query** on the distance between two vertices *s* and *t* as follows:

$$QUERY(s,t,L) = \begin{cases} \min\{\delta_{vs} + \delta_{vt} \mid v \in L(s) \land v \in L(t)\} & \text{if } L(s) \cap L(t) \neq \emptyset \\ \infty & \text{Otherwise} \end{cases}$$

- $\arg\min\{\delta_{vs} + \delta_{vt} | v \in L(s) \land v \in L(t)\}$ is called hub vertex that covers the pair
- Clearly $|L| \approx |H|$

= nar

istance Queries in Modern Large-Scale Complex Networks

28 / 104

Trivial Computation of 2-Hop Cover Labelings

- **1.** $L(u) = \emptyset$ for all $u \in V$
- 2. BFS rooted at v, for all $v \in V$
- 3. When u is settled, add pair (v, δ_{vu}) to L(u)

Trivial Preprocessing: resulting performance

- **Preprocessing** in O(n(m+n)) worst case time **impractical** as Naive Approach 2
- + $\Theta(n^2)$ resulting labeling **space occupancy impractical** as Naive Approach 2
- For pair (s,t), \mathbf{query} takes O(|L(s)|+|L(t)|) depends on labels' size
- Avg label size per vertex O(n), hence query time $\in O(n)$ also impractical

Improved Preprocessing: Ordering and Pruning

- 1. Order vertices according to some "importance" criterion $v_1, v_2, ... v_n$
- 2. Perform BFS rooted at v_i , for all $v_i \in V$, according to the computed **ordering**
- 3. Let L_{k-1} be the **status of the labeling** before the BFS rooted at a certain v_k
- 4. Initially $L_0(u) = \emptyset$ for all $u \in V$
- 5. During visit rooted at v_k , when vertex u is settled at distance d
 - 5.1 If $QUERY(v_k, u, L_{k-1}) \le d \Rightarrow$ Break! i.e. Prune
 - 5.2 Else add pair (v_k, d) to $L_k(u)$ and continue

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Pruned Landmark Labeling Improved Preprocessing

Distance Queries in Modern Large-Scale Complex Networks

イロン イボン イヨン イヨン

Improved Preprocessing

Mattia D'Emidio

Distance Queries in Modern Large-Scale Complex Networks

33 / 104

・ロト ・ ア・ ・ ヨト ・ ヨト

Improved Preprocessing

Performance and Theoretical Foundations

- Same worst-case bounds in terms of time and space of the trivial
- Correctness is ordering-independent
- Quality instead depends on ordering
- **Different orderings** yield **different labelings** (of different size, preprocessing and query time)
- Intuitively, the more shortest paths we find (sooner), the better
- Vertices should be **ordered** by some function of their **importance w.r.t. shortest paths**

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Improved Preprocessing

Performance and Theoretical Foundations

- Computing an ordering that induce a labeling of minimum size (i.e. finding a 2–Hop Cover of minimum cardinality) is known to be NP-Hard (cast to greedy set cover)
- There exists a **polytime** $O(\log n)$ approx algo
- Requires several computations of **densest subgraph**, takes $O(mn\log(\frac{n^2}{m}))$, **impractical**

Improved Preprocessing

There is a way out

- All these methods yield minimal labelings
- **Minimal labelings** have been experimentally shown to exhibit good-performance
 - Practical Preprocessing
 - Compact Labeling (Size)
 - Small Query Time
- A **minimal labeling** is s.t. the removal of any single entry breaks the **cover property**
- Good minimal labelings can be computed via **centrality measures** (e.g. degree, betweenness centrality)

◆□ → ◆◎ → ◆ ● → ▲ ● → ○ ● → ○ ○ ○
Pruned Landmark Labeling

PLL versus Modern Networks

- Modern networks are intrinsically dynamic: change over time
 - On-line Social Networks: new friends, removed friends/pages
 - Web indexing graphs: new pages/links, broken links, removed pages
 - Blogging: new replies/posts, removed users/posts/replies
 - Collaboration networks: new papers
 - Infrastructure networks: disruptions, new roads, new trains, cancelled flights
 - Evolving data sets: new entries, outdated entries

= nar

(D) (A) (A) (A) (A)

Pruned Landmark Labeling

PLL as it is, fails

- Data (labels) become easily outdated
- The number of queries that become **incorrect** grows fast (even after few updates, preliminary experiments show)
- **Repeating** the preprocessing phase every time something changes is not **doable**
- Need for efficient dynamic algorithms!

Further motivation

- There are a lot of applications that inherently rely on knowing how distances and shortest paths evolve over time
- Need for **efficient dynamic algorithms** also to efficiently support **historical** queries (ask distances at different times)

Pruned Landmark Labeling

Maximum stretch factor and number of disconnected pairs, on a "Flight Data" network subject to up to 10 edge removals.

Distance Queries in Modern Large-Scale Complex Networks

39 / 104

(D) (A) (A) (A) (A)

Some Applications

Graph Analytics

1. Dynamic Centrality Measures

Distance to *v*

(subgraph induced by v and neighbors)

Distance Queries in Modern Large-Scale Complex Networks

・ロト ・ 同ト ・ ヨト ・ ヨト

Some Applications

Graph Analytics

2. Dynamic Community Detection

Distance Queries in Modern Large-Scale Complex Networks

イロン イボン イヨン イヨン

Some Applications

Graph Analytics

3. Property Evaluation over Time (e.g. Bioinformatics)

Mattia D'Emidio

Distance Queries in Modern Large-Scale Complex Networks

42 / 104

Outline

- Reporting Shortest Paths/Distances on Graphs
- Pruned Landmark Labeling
- **3** Dynamic Algorithms
- A Experiments
- **5** Conclusion #1 and Future Work
- 6 Fault-Tolerance
- Conclusion #2 and Future Work

・ロン ・回 と ・ヨン ・ ヨン

Very active field of research

Publications in basically all **top notch CS conferences**: ESA, SODA, WWW, SIGMOD, AAAI, KDD, VLDB

Incremental Case

An efficient algorithm for handling both **edge and vertex additions** is known (Akiba+ WWW 2014)

Decremental + Fully-Dynamic Case: work by our group First algorithm for handling **edge and vertex removals** and for supporting **generic updates** (D'Angelo, D'Emidio, Frigioni – IWOCA 2016)

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Incremental Algorithm (INCPLL): intuition

- Let (u, v) be an edge to be added to the graph
- There might be some label entries that do not correspond to shortest paths anymore (insertions can induce decreases of distances only)
- Lazy strategy: forget outdated label entries, insert new ones only
- Correctness: query remains correct since the minimum is searched
- **Performance:** might **degrade** over time, perform from-scratch preprocessing **periodically**

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

INCPLL algorithm

For all vertices $v_i \in L(u) \cup L(v)$

- resume the BFS, originally rooted at v_i , from vertices u and v
- add new pairs if the query test succeeds
- prune with the same **policy** of preprocessing

Vertex addition: add an isolated vertex, add its edges, perform IncPLL

(D) (A) (A) (A) (A)

INCPLL at work²

²Thanks to Akiba+ for providing some of the figures **D** (**B** (**B** (**C**))

Mattia D'Emidio

Distance Queries in Modern Large-Scale Complex Networks

Why the lazy strategy?

• Removing **outdated entries** is costly, **takes** O(n) worst-case per update

Alternative

- Ignore outdated entries, simply add new ones
- "Exact" still holds, query looks for the minimum
- Does not guarantee minimality, requires **periodical reconstruction**
- Experimentally **behaves** pretty well (Akiba+ WWW 2014)
 - Performance degrades very slowly, few new entries added

Decremental Algorithm (DECPLL)

- Outdated entries **must** be removed
- **Cannot be ignored** (as in the incremental case), they might lead to **underestimation** of distances
- Algorithm DecPLL works in three phases
 - Detection of so-called affected vertices
 - vertices whose label contains at least one entry that might be out-of-date
 - Removal of outdated entries by analyzing such affected vertices' labels
 - > This might **break** the cover property
 - Restore the cover property for vertices that are uncovered by computing and adding new label entries

Affected Vertices

- Suppose we are given a shortest path between u and v
- Solid line: edge $\{x, y\}$
- Dashed lines: shortest paths
- Assume that $h \in L(u) \cap L(v)$ and h is a hub for pair (u, v)

• That is $(h, \delta_{vh}) \in L(v)$ and $(h, \delta_{uh}) \in L(u)$

Dynamic Algorithms for 2–Hop Cover Labelings Affected Vertices

- If $\{x, y\}$ is **removed**
- Then pair (h, δ_{vh}) in L(v) is not correct and must be **updated** (or **removed**)
 - v is said to be affected
 - Formally, v affected if there exists a shortest path induced by L between v and any other vertex u that passes through edge {x, y}
 - A shortest path is induced by L if it can be obtained by combining two hops
 - By analyzing such vertices we can find and remove obsolete labels

Detection of Affected Vertices: baseline

• Trivial computation of **all affected vertices** would require finding (and checking) the status of **all hubs** of **all pairs** (u, v) of vertices of G

Dynamic Algorithms for 2–Hop Cover Labelings Detection of Affected Vertices: advanced

- A more convenient way of computing and storing them is that of dividing them into two sets A(x) and A(y)
- Set A(x) (A(y), resp.): vertices that are affected w.r.t. y (x, resp.)
- It can be proved that is sufficient to test pairs
 - (i, x) for all $i \in V$ and (y, j) for all $j \in V$
 - to determine all affected vertices
- Intuition: if v is affected **because** of the shortest path toward u if v is affected **because** of the shortest path toward x

Detection of Affected Vertices

Different possible strategies for computing affected vertices

Common Intuition:

- Grow two BFS-like visits rooted at x and y
- During visit rooted at x (y, resp.), compute set A(y) (A(x), resp.) as follows:
 - Start the BFS visit by adding x to A(y)
 - For each settled vertex u, test the status of the corresp. hub w.r.t. y
 - Let h be the hub of pair u, y
 - ▶ If h is in A(y), add vertex u to A(y), i.e. u becomes affected
 - ▶ If *u* becomes affected, **visits** its neighbors and continue
 - Else break

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

PseudoCode (some details omitted)

```
A \leftarrow \emptyset:
foreach v \in V do
      mark[v] \leftarrow false;
Q \leftarrow \emptyset:
Q.Enqueue(x);
while Q \neq \emptyset do
      v \leftarrow Q.Dequeue();
      mark[v] \leftarrow true;
      A(x) \leftarrow A(x) \cup \{v\};
      foreach u \in N_i(v) such that \neg mark[u] do
            if d_i(u, y) \neq d_{i-1}(u, y) then
                  Q.Enqueue(u);
            else
                  if h \in A(x) for some h in the set of hubs of pair (u, y) in G_{i-1} then
                        Q.Enqueue(u);
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○

Distance Queries in Modern Large-Scale Complex Networks

Distance Queries in Modern Large-Scale Complex Networks

Theorem (Correctness)

At the end of the above routine, all affected vertices are found

(D) (A) (A) (A) (A)

Proof.

By induction on the distance from x(y)

Mattia D'Emidio Distance Queries in Modern Large-Scale Complex Networks

Dynamic Algorithms for 2–Hop Cover Labelings Removal of Outdated Labels

- 1. For all vertices $v \in \mathbf{A}(x)$
 - ▶ **Remove** from L(v) any entry (u, δ_{uv}) such that $u \in \mathbf{A}(y)$, if it exists

2. A symmetrical algorithm to **remove** labels of vertices in A(y) **PseudoCode**

Theorem (Correctness)

At the end of the above routine, all outdated entries are removed

Proof.

Trivial, we have shown that affected nodes are those which contain outdated entries

Mattia D'Emidio Distance Queries in Modern Large-Scale Complex Networks

Restoring the cover property

- 1. A BFS-like visit rooted at each vertex $a \in \hat{A}$ is restarted, where \hat{A} is the smaller in size between A(x) and A(y)
- 2. **Restore the cover property**, by adding labels to vertices settled during the BFS
- 3. **Do not add redundant labels**, by performing queries during the visit
 - Guarantees minimality

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

Dynamic Algorithms for 2–Hop Cover Labelings PseudoCode

```
foreach a \in A(x) do
      Q \leftarrow \emptyset:
      mark[a] \leftarrow true; dist[a] \leftarrow 0;
      foreach v \in V \setminus \{a\} do
            mark[v] \leftarrow false;
            dist[v] \leftarrow \infty;
      foreach v \in N_i(a) do
            Q.Enqueue(v);
            dist[v] \leftarrow 1;
      while Q \neq \emptyset do
            v \leftarrow Q.Dequeue();
            mark[v] \leftarrow true;
            if dist[v] < QUERY(a, v, L) and v \in A(y) then
                 if v < a then
                        Insert (v, dist[v]) in L(a);
                  else
                        Insert (a, dist[v]) in L(v);
                 foreach u \in N_i(v) such that \neg mark[u] do
                        dist[u] \leftarrow dist[v] + 1;
                        Q.Enqueue(u);
```

(D) (A) (A) (A) (A)

Theorem (Worst-case Complexity)

Algorithm DECPLL takes $O(m_{\hat{\mathbf{A}}} \ell \log |\hat{\mathbf{A}}|) + |\hat{\mathbf{A}}|(m + n \log |\hat{\mathbf{A}}| + n\ell))$ worst case time^a

^aworse than PLL

Theorem (Minimality)

Algorithm DECPLL computes minimal 2-Hop Cover labelings

Theorem (Fully Dynamic)

Algorithm DECPLL can be **combined** with INCPLL to obtain a fully dynamic algorithm, namely FULPLL, that computes minimal 2–Hop Cover labelings under general updates occurring onto the graph

∃ \$\0<</p>\$\0

イロト イポト イヨト イヨト

Extensions

Weighted Graphs

- Use Dijkstra's instead of BFS
- Modify labels, priorities and comparisons over labels in order to consider real-weighted edges

Directed Graphs

- It is enough to define two label sets L_{in} and L_{out}
- The former stores a set of pairs (u, δ_{uv}) , while the latter stores pairs (u, δ_{vu}) , where $\delta_{uv} = d(u, v)$ and $\delta_{vu} = d(v, u)$
- A query from vertex s to vertex t is **answered** by

$$QUERY(s, t, L) = \begin{cases} \min\{\delta_{sv} + \delta_{vt} \mid v \in L_{out}(s) \cap L_{in}(t)\} \\ \inf L_{out}(s) \cap L_{in}(t) \neq \emptyset \\ \infty & \text{Otherwise} \end{cases}$$

67 / 104

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○

Outline

- Reporting Shortest Paths/Distances on Graphs
- Pruned Landmark Labeling
- 3 Dynamic Algorithms
- 4 Experiments
- 5 Conclusion #1 and Future Work
- 6 Fault-Tolerance
- Conclusion #2 and Future Work

・ロン ・回 と ・ヨン ・ ヨン

Experiments

Setting & Executed Tests

- Real-World and Synthetic Dynamic Network Instances
- Real-World and Synthetic Edge Modifications³
- Wide combination of input parameters: various **densities**, **topologies**, number of **queries**, number of **modifications**, ...
- Basic Vertex Ordering: Degree + Approx Betweenness
- Dynamic Algorithms **against** PLL from scratch, to compare:
 - Computational Effort (i.e. time for building vs time for updating)
 - Space Occupancy (proxy for quality of labeling)
 - Query Time (proxy for quality of labeling)

³Known repositories Konect, SNAP, ...

イロン イボン イヨン イヨン 三日

Experiments – Inputs

Dataset	Network	V	E	AvgDeg	S	D	w
EU-All (eua)	EMAIL	265214	365 570	2.77	0	•	0
Twitter (twi)	SOCIAL	465 017	834 797	3.59	0	•	0
Brightkite (bkt)	Location-based	58 228	214078	7.35	0	0	0
Caida (cai)	COMMUNICATION	32 000	40 204	2.51	0	0	•
Epinions (epn)	Social	131 828	841 372	12.76	0	•	0
Google (goo)	Web	875713	4322051	9.87	0	•	0
BerkStan (wbs)	Web	685 230	7 600 595	22.18	0	•	0
WikiTalk (wtk)	COMMUNICATION	2 394 385	4 659 565	4.19	0	•	0
Netherlands (nld)	Road	892 027	2278290	5.11	0	•	•
YouTube (утв)	Social	1 134 890	2987624	5.26	0	0	0
Flickrlmg (fli)	Meta-data	105 938	2316948	43.74	0	0	0
SimpWiki-En (swe)	Hyper-link	100 312	826 49 1	16.5	0	0	0
Wiki-It (itw)	Hyper-link	1 203 995	21 639 725	36.9	0	•	0
ForestFire-U (ffu)	Synthetic	2 000 000	14908267	14.91	•	0	0
ForestFire-D (ffd)	Synthetic	2 100 000	16 044 834	15.28	•	•	0
GNUTELLA (GNU)	P2P	36 682	88 328	4.82	0	•	0
AS-Skitter (ski)	Computer	1 696 4 15	11095298	13.08	0	0	0
FlickrLinks (fll)	Social	1715255	15 550 782	18.13	0	0	0
DBPedia (dbp)	Miscellaneous	3 966 924	13 820 853	6.97	0	٠	0
Barabási-A. (baa)	Synthetic	631 912	1 000 772	3.17	•	0	•
Erdős-Rényi (erd)	Synthetic	50 000	6252811	250.11	•	0	•

E DQC

イロン 不得 とくほど くほとう

Experimental Results – DECPLL

	DEC workload						
Dataset	CT (S)		LS (MB)		QT (μs)		0
	PLL	DecPLL	PLL	DecPLL	PLL	DecPLL	
EU-ALL	19.8	0.073	217	217	7.2	7.5	D
Twitter	25.4	0.018	390	390	7.3	7.3	D
Brightkite	98.7	0.328	81	81	23.1	25.7	D
Caida	1.1	0.497	24	23	39.5	40.1	D
Epinions	71.8	0.630	372	372	13.5	14.6	D
Google	3 950	4.27	3 862	3 862	39.9	57.2	D
BerkStan	2510	0.639	1 659	1 659	31.4	28.9	D
WikiTalk	3 920	5.15	5035	5 035	35.2	37.9	D
Netherlands	1 280	371	7410	7 553	63.9	70.9	В
YouTube	2 720	104.0	2 899	2 899	43.9	60.4	D
Flickrimg	1 770	48.4	836	836	81.5	82.4	D
ForestFire-U	35 300	14.3	23 556	23 556	110	153	D
ForestFire-D	29 200	18.7	16 499	16499	57.3	90.8	D
GNUTELLA	102	21.1	322	322	62.7	61.3	D
AS-Skitter	15 800	17.2	11826	11826	70.8	110.0	D
FlickrLinks	17 900	9.92	12970	12970	77.8	102.0	D
DBPedia	20 600	2.61	14877	14877	45.9	48.7	D
Barabási-A.	143	48.4	954	954	41.8	48.1	В
Erdős-Rényi	2 530	4.37	881	879	123	119	В

Mattia D'Emidio

Distance Queries in Modern Large-Scale Complex Networks

71/104

∃ 9900

イロン イボン イヨン イヨン

Experimental Results – FuLPLL

	FUL workload						
Dataset	CT (S)		LS (MB)		QT (μs)		0
	PLL	FulPLL	PLL	FulPLL	PLL	FULPLL	
Eu-All	19.6	0.032	217	217	7.2	7.0	D
Twitter	25.6	0.007	390	390	7.3	7.3	D
Brightkite	95.3	0.217	81	81	22.7	26.4	D
Caida	1.21	0.331	24	25	39.9	41.5	D
Epinions	71.8	0.121	372	372	13.5	13.6	D
Google	3 950	0.566	3 862	3 872	39.4	52.3	D
BerkStan	2 4 8 0	0.176	1 659	1 659	30.9	27.3	D
WikiTalk	3 920	2.03	5035	5 035	34.0	49.9	D
Netherlands	1 350	350	7 057	6 990	60.5	54.9	В
YouTube	2650	79.3	2899	2 899	40.6	55.6	D
Flickrimg	1740	33.9	836	836	80.1	81.0	D
SimpWiki-En	78	0.232	181	180	47.4	49.2	D
Wiki-It	17 400	16.8	11 253	11253	54.5	80.9	D
ForestFire-U	35 300	10.1	23 555	23 555	112	143	D
ForestFire-D	25 500	9.46	16 499	16499	53.7	64.6	D
GNUTELLA	113	7.2	322	322	62.7	61.4	D
AS-Skitter	17 000	3.95	11 826	11826	72.8	120.1	D
FlickrLinks	17 300	7.29	12970	12970	75.8	125.0	D
DBPedia	20 700	0.583	14877	14877	43.8	57.9	D
Barabási-A.	141	6.97	954	954	41.1	45.9	В
Erdős-Rényi	2 520	2.42	882	880	122	119	В

Mattia D'Emidio

Distance Queries in Modern Large-Scale Complex Networks

∃ <2 <</p>
Experimental Results – Speed-up of DECPLL

Experimental Results – Speed-up of FuLPLL

> 🖹

イロト イポト イヨト イヨト

Experiments – Cumulative computational time of PLL vs DECPLL

Real-World network GoogLE: increasing number of edge update operations

イロト イポト イヨト イヨト

Experiments – Cumulative computational time of PLL vs FuLPLL

Real-World network GoogLE: increasing number of edge update operations

(D) (A) (A) (A) (A)

Experiments – Cumulative computational time of PLL vs DECPLL

Synthetic network ForestFire-U: increasing number of vertices

77 / 104

イロト イポト イヨト イヨト

Experiments – Cumulative computational time of PLL vs FuLPLL

Synthetic network ForestFire-U: increasing number of vertices

78 / 104

イロト イポト イヨト イヨト

Outline

- Reporting Shortest Paths/Distances on Graphs
- Pruned Landmark Labeling
- 3 Dynamic Algorithms
- 2 Experiments
- **5** Conclusion #1 and Future Work
- 6 Fault-Tolerance
- Conclusion #2 and Future Work

・ロン ・回 と ・ヨン ・ ヨン

Conclusion #1 and Future Work

What it is done

- First **non trivial fully dynamic** scheme for distance queries on large-scale dynamic networks with **practical performance**
 - Answer queries in microseconds (no degradation)
 - Update indices in few seconds
 - No increase in avg label size

What it has to be done

- Improve practical performance of DECPLL in "bad instances"
- Build a comprehensive theoretical background
 - Better characterize trade-off approaches, such as PLL and its dynamic versions, from the computational point of view
 - Fully distributed algorithms

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Future Work

What it has to be done

- Extensions
 - Support historical queries and batches of updates
 - Parallel versions of dynamic algorithms, if possible
 - More extensive experimental evaluation (weighted graphs)
- Fault-Tolerant Labelings?
 - Promptly react to transient failures by making the labeling robust
 - Add some "data" in advance
- Stretched labelings?
 - Relax optimality constraints

Many of the above stuffs are currently under investigation

= 990

(D) (A) (A) (A) (A)

Outline

- Reporting Shortest Paths/Distances on Graphs
- Pruned Landmark Labeling
- 3 Dynamic Algorithms
- 2 Experiments
- **5** Conclusion #1 and Future Work
- 6 Fault-Tolerance
- Conclusion #2 and Future Work

・ロン ・回 と ・ヨン ・ ヨン

2-Hop Cover Path-Reporting Labeling

A generalization, better suited for communication networks, WANs, MANET

Path-Reporting Labeling of a Graph G

- Given a graph G = (V, E), let:
 - A **label** P(v) is assigned to each vertex v of G
 - The labeling P(G) of G is given by $\{P(v)\}_{v \in V}$
- A path query between two vertices s and t returns the next hop on the shortest-path
- Can be answered by simply **looking** at the labels P(s) and P(t) of the two vertices i.e. $\pi_{st}^G = f(P(s), P(t))$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

2-Hop Cover Path-Reporting Labeling

Again 2–Hop Covers yield Path-Reporting Labelings

- A label is now intended as a set of triples (entries) $(u,\delta_{uv},p(u,\pi_{uv}^G))$, where
 - u is a vertex in V
 - $\blacktriangleright \ \delta_{uv} = d_G(u, v)$
 - $p(u, \pi^G_{uv})$ is the *predecessor* of u within a shortest path π^G_{uv}
- Compute a **2–Hop Cover** *H*(*G*) of the collection *P* of the shortest paths of *G*
- For each hop $(h, u) \in H$ add entry (v, w(h), p(h)) to L(u)
- Where v is the other **endpoint** of h, w(h) is its weight, and p(h) is the **predecessor** of u on h

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

2-Hop Cover Path-Reporting Labeling

Path-Reporting Labeling of a Graph G

A **path query** from s to t is defined as follows:

イロン イボン イヨン イヨン

э.

Attia D'Emidio Distance Queries in Modern Large-Scale Complex Networks

Distance Queries in Modern Large-Scale Complex Networks

イロト イポト イヨト イヨト

Distance Queries in Modern Large-Scale Complex Networks

 $\begin{array}{ccc} L(a) & L(f) \\ (c,\underline{3}) & (c,\underline{3}) \\ & + \longrightarrow 6 \\ (d,\underline{6}) & (d,\underline{3}) \\ & + \longrightarrow 9 \end{array}$

c is the hub and 6 is the distance between a and f.

Distance Queries in Modern Large-Scale Complex Networks

Mattia D'Emidio

Distance Queries in Modern Large-Scale Complex Networks

$$\begin{array}{ccc} L(a) & L(f) \\ (c,\underline{3},b) & (c,\underline{3},e) \\ & + & \longrightarrow 6 \\ (d,\underline{6},b) & (d,\underline{3},d) \\ & + & \longrightarrow 9 \end{array}$$

c is the *hub*, 6 is the distance between a and f, b and e are the next hops.

Distance Queries in Modern Large-Scale Complex Networks

Distance Queries in Modern Large-Scale Complex Networks

86 / 104

∃ <200</p>

イロン イボン イヨン イヨン

$$\begin{array}{ccc} L(b) & L(e) \\ (c, \underline{1}, b) & (c, 2, e) \\ & + & \longrightarrow 3 \\ (d, \underline{4}, d) & (d, 3, d) \\ & + & \longrightarrow 7 \end{array}$$

c is the *hub*, 3 is the distance between a and f, c is the next hop.

Distance Queries in Modern Large-Scale Complex Networks

State-tof-the-Art

Known Limits

- We already know that computing a compact 2-Hop Cover is hard
- An approximation algorithm is known, but it is not practical for large graphs
- PLL takes cubic time in the worst case
- Modern networks are **prone** to (often transient) **failures**
 - A link in a network can temporary be unavailable
 - A road can be blocked

イロト イポト イヨト イヨト

State-tof-the-Art

Limits of Dynamic Algos

- Dynamic algorithms **update times** are still far to be used in a **real-time** applications (e.g. routing)
- Fault-Tolerant approaches are advisable

Fault-tolerant scheme

- An approach that allows to answer to queries even in presence of a number of (transient) graph failure operations (e.g., edge or vertex removals)
- Usually achieved by suitably enriching the underlying data structure and by accordingly modifying the query strategy to consider such enrichment

イロン イボン イヨン

State-tof-the-Art

Limits of Exact Fault Tolerance

- Computing an exact fault-tolerant labeling is not feasible in terms of both space and time
 - If we want to tolerate the failure of a single edge at a time
 - It can be shown that we need to store in the worst case m times the space of a single labeling
 - And to spend m times the time taken by PLL in the worst case

Approximation

- Reasonable compromise: relax the optimality constraint
- Devise more compact schemes that return approximate (a.k.a. stretched) distances (shortest paths, resp.)
- Stretch: ratio between quality of optimal solution and quality of returned solution

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Recent Results

Fault-Tolerant approach for 2-Hop Cover Labeling

- Recently proposed by our group (unweighted graphs)
- *k*-Edge Fault-Tolerant Path-Reporting Labeling scheme (*k*-EFTPL)
- Exhibits the following **properties** (should any set of *k* edges fail):
- Time/Space overhead
 - ▶ for k = 1, 2, 3 and G at least (k + 1)-edge connected, the enrichment takes O(m + n), O(n²) and O(n³) additional time, resp., and O(n) additional space;
 - ▶ for k > 3 and G at least (2k + 2)-edge connected, the enrichment takes O(k²n²) additional time and O(kn) additional space
- Query time linear in the length of the retrieved path (as non-fault-tolerant)
- Linear stretch (in n and k)

Independent Trees

How to make a labeling resistent to the failure of k edges

- Exploiting Edge-Independent trees
- A well-known concept from the 80's

Edge-Independent Trees

Given a graph G = (V, E) and a distinguished **root** vertex $r \in V$, then $IT = \{T_1, T_2, \dots, T_q\}$ is a collection of q **edge-independent spanning trees** of G if and only if

• for each vertex $v \in V$, and for each $i \neq j$, $\pi_{rv}^{T_i}$ and $\pi_{rv}^{T_j}$ are pairwise edge-disjoint paths, i.e. they do not share any edge

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○○

Independent Trees

Theorem (Menger's Theorem)

Let IT be a graph obtained by merging a collection of q + 1edge-independent spanning trees $\{T_i\}_{i=1,2,...,q+1}$ of a graph G. Then, IT is (q + 1)-edge connected

Mattia D'Emidio Distance Queries in Modern Large-Scale Complex Networks

k-Edge Fault-Tolerant Path-Reporting Labeling

How to build a k-EFTPL

- 1. Start from a 2-Hop Cover Path Labeling
- 2. Compute k + 1 independent trees
- 3. Enrich each vertex's label by adding k tree entries
 - A tree entry contains the parent (aka next-hop) of the node in the corresponding k-th tree

(D) (A) (A) (A) (A)

On the availability of k + 1 Ind-Trees

- Depending on the value of k, **different approaches** can be used to build the k + 1 edge-independent trees
- Clearly, **a necessary condition** to guarantee that any pair of vertices remains **connected** even in presence of k edge failures is that G is at least (k + 1)-edge connected

イロト イポト イラト イラト 二日

On the computation of k + 1 Ind-Trees

- 1. If $k \in \{1, 2, 3\}$ and G is (k + 1)-edge connected, k + 1edge-independent trees can be computed in polynomial time, with a time complexity of O(m + n), $O(n^2)$ and $O(n^3)$, resp.
 - A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed networks. Inf. Comput., 79(1):43–59, 1988
 - J. Cheriyan and S. Maheshwari. Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs. Journal of Algorithms 9(4):507–537, 1988
 - S. Curran, O. Lee, and X. Yu. Finding four independent trees. SIAM J. Comput., 35(5):1023–1058, 2006
- 2. If k > 3 and G is h-edge connected, with $k + 1 \le h \le 2k + 1$
 - ► To the best of our knowledge it is not known how to build k + 1 edge-independent trees in polynomial time

On the availability of k + 1 Ind-Trees

- 1. If k > 3 and G is h-edge connected, with $k + 1 \le h \le 2k + 1$ and G is at least (2k + 2)-edge connected
 - We can build k + 1 edge-disjoint spanning trees of G, which are clearly also edge-independent, in $O(k^2n^2)$ time by using the approach
 - J. Roskind and R. E. Tarjan. A note on finding minimum-cost edge-disjoint spanning trees. Mathematics of Operations Research, 10(4):701–708, 1985

The *k*-EFTPL

How to query a k-EFTPL (note: it is distributed)

- 1. Let x and y be the **endpoints** of our query
- 2. Starting from x, compute the next-hop via path-query
- 3. If the next-hop is **not available**, start using **tree entries** to reach the root
- 4. Symmetrically, do the same from y

Theorem (From Menger's Th)

There always exists at least

- a path from the root toward vertex x
- a path from the root toward vertex y

Experimental setting

- The above solutions have **replacement** paths which can be **linearly** (in *n* and *k*) **stretched** (as compared to new shortest paths in the surviving graph)
- What about in practice?
- Experiments to assess the **performance** of the approach:
 - Real and synthetic networks
 - Implemented and run both PLL and кнь for each networkm for k=1
 - Performed 10k queries as follows
 - Randomly **remove** an edge *e*
 - Let e be on the shortest path with probability p = 5/100
 - Run a POI rerouting scheme to compare (the only known distributed fault-tolerant)
 - Measured query time and stretch

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Results: Space and Preprocessing Time

Network	V	E	time (seconds)		space per vertex (bytes)	
			PLL	KHL	P(G)	T(G, 1)
Barabasi	365 488	734347	68500	6.41	5198	18
Brightkite	33 187	188 577	5680	1.75	2326	18
CA-GrQc	2651	10 480	499	0.03	1271	18
СА-НерТн	5 898	20983	1 1 3 0	0.03	2085	18
Caida	6 855	13341	1650	0.02	1412	18
COM-YOUTUBE	452 060	2295072	66 200	5090	4136	18
Denmark	252416	320914	147 000	0.75	13152	18
FLICKREDGES	105512	2316450	2 180	165	12415	18
ForestFire	1 178 888	13849776	212 000	16100	17983	18
FLICKRLINKS	704 985	14501930	125000	17700	12525	18
OREGON	7218	19 448	638	2.54	286	18
SKITTER	1 443 769	10830987	197 000	11100	10666	18
WikiVote	4 786	98 456	751	1.12	1890	18
WikiTalk	622315	2 889 703	47 700	38700	2951	18

Distance Queries in Modern Large-Scale Complex Networks

(ロ) (同) (目) (日) (日) (日) (の)

Results: Query Time

Query time of our approach (light gray) versus query time of POI rerouting.

100 / 104

イロト イポト イヨト イヨト

Results: Stretch

Estimation of stretch factor based on 10.000 measures.

Distance Queries in Modern Large-Scale Complex Networks

101 / 104

(D) (A) (A) (A) (A)

Outline

- Reporting Shortest Paths/Distances on Graphs
- Pruned Landmark Labeling
- 3 Dynamic Algorithms
- 2 Experiments
- 5 Conclusion #1 and Future Work
- 6 Fault-Tolerance
- Occursion #2 and Future Work

attia D'Emidio Distance Queries in Modern Large-Scale Comp

・ロン ・回 と ・ヨン ・ ヨン
Conclusion #2 and Future Work

Conclusion

- First 2–Hop Cover distance/path-reporting labeling scheme in the **fault-tolerant setting**
- **Compact**, small query time, can be computed **quickly** and exhibits **worst case linear stretch**
- Practically effective (through an extensive experimental evaluation, **surprisingly small stretch**)

Future Work

- Implement the algorithms for k = 2 and k = 3
- Deeper investigation of the case of k > 3 using other techniques
- Can we design a scheme with a **better theoretical guarantee?**

∃ \$\0<</p>\$\0

Q&A

mattia.demidio@gssi.it
www.mattiademidio.com

tia D'Emidio Distance Queries in Modern Large-Scale Complex Netwo

104 / 104

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・