Movement problems on graphs

Stefano Leucci
stefano.leucci@graduate.univaq.it

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, University of L'Aquila, Italy.

Scenario

A central entity needs to plan the motion of a set P of agents (or pebbles) in a complex environment in order to reach a specific goal.

- The environment is modelled as an undirected graph G.
- Agents are placed on the vertices of G.
- We want to move the agents in order to reach a certain goal configuration (e.g. they must be on a clique of G).
- Moving an agent trough an edge costs 1 to the agent (e.g. one unit of energy, one unit of time, ...).
- Amongst all feasible movements we want the one that minimizes a certain cost function, e.g. the sum of the agents' costs.

Assumptions

- Devices do not choose their trajectory autonomously: rather, their overall movement is planned by a central authority, and hence our focus is on the computational complexity of such a centralized task.
- Quite naturally, the pebbles should follow a shortest path in G.

Example (Connectivity)

Example (Connectivity)

Example (Connectivity)

Motivation

- Robot motion planning:
- Minimizing energy consumption.
- Minimizing completion time.
- Radio-equipped agents: form a connected ad-hoc network (either single-hop or multi-hop).
- Moving antennas: build an interference-free networks.

Definition

An instance of the problem is defined as follows: Input:

- An undirected, unweighed graph $G=(V, E)$ on n vertices.
- A set of k pebbles P.
- A function $\sigma: P \rightarrow V$ that assigns each pebble to its starting position.

Output:

- A function $\mu: P \rightarrow V$ that assigns each pebble to its final position, such that the set of final pebble positions achieves a certain goal.

Measure:

- A non-negative function that maps each feasible solution to its cost.

Goals

Let U be the set of the final position of the pebbles. We consider the following goals:

Connectivity(Con): the subgraph of G induced by the set U must be connected.

Independency (IND): U must be an independent set of size k $(|U|=k)$ for G.
(Here we are not allowed to place more than one pebble on the same vertex).

Clique (Clique): U must a clique of G.
(We are allowed to place more than on pebble on the same vertex).

Measures

Every pebble $p \in P$ is moved from its starting vertex $\sigma(p)$ to its end vertex $\mu(p)$ by using a shortest path on G.
Overall movement: sum of the distances travelled by pebbles.

$$
\operatorname{SuM}(\mu)=\sum_{p \in P} d_{G}(\sigma(p), \mu(p))
$$

Maximum movement: maximum distance travelled by a pebble.

$$
\operatorname{MAx}(\mu)=\max _{p \in P} d_{G}(\sigma(p), \mu(p))
$$

Number of moved pebbles: number of pebbles that moved from their starting positions.

$$
\operatorname{NUM}(\mu)=|\{p \in P: \sigma(p) \neq \mu(p)\}|
$$

Example

Ind-Max.

Example

Ind-Max.

Example

Ind-Max. Cost=1

Example

Ind-Sum.

Example

Example

Ind-Sum. Cost=2

Example

Ind-Num. Cost=1

Complexity results

All the movement problems defined here are NP-hard.
Some are known to admit a polynomial-time algorithms for special classes of graphs:

- All connectivity problems (Sum, Max, Num) on trees.
- Ind-Sum and Ind-Num on trees.
- Ind-MAX on paths.
- Clique-Num on graphs where a maximum weight clique can be computed in polynomial time.

Independent set

Definition (Independent set)

An independent set of a graph $G=(V, E)$ is a set of vertices $U \subseteq V$ that are pairwise non-adjacent, i.e. such that $\forall u, v \in U,(u, v) \notin E$.

Independent set

Definition (Independent set)

An independent set of a graph $G=(V, E)$ is a set of vertices $U \subseteq V$ that are pairwise non-adjacent, i.e. such that $\forall u, v \in U,(u, v) \notin E$.

Maximum independent set

Definition (Maximum independent set)

A maximum independent set of a graph $G=(V, E)$ is an independent set U^{*} of maximum cardinality, i.e. such that for every other independent set U we have $\left|U^{*}\right| \geq|U|$.

Maximum independent set

Definition (Maximum independent set)

A maximum independent set of a graph $G=(V, E)$ is an independent set U^{*} of maximum cardinality, i.e. such that for every other independent set U we have $\left|U^{*}\right| \geq|U|$.

Maximum independent set

- On general graphs the problem of finding a maximum independent set is NP-hard.
- The decision version of this problem requires determining if there exists an independent set of at least a certain size.
- In independency motion problems we need to find an independent set of size at least $|P|$.
- This means that it is NP-hard even to find a feasible solution.
- Idea: We restrict to classes of graphs where a maximum independent set can be computed in polynomial time.

Maximum independent set

- On general graphs the problem of finding a maximum independent set is NP-hard.
- The decision version of this problem requires determining if there exists an independent set of at least a certain size.
- In independency motion problems we need to find an independent set of size at least $|P|$.
- This means that it is NP-hard even to find a feasible solution.
- Idea: We restrict to classes of graphs where a maximum independent set can be computed in polynomial time.

Bad news: the problem is still hard!

Special classes of graphs

A maximum independent set can be found in polynomial time on:

- Paths
- Trees
- Bipartite graphs
- Claw-free graphs (no induced claws)
- Perfect graphs

A claw and an hole.

Definition (Perfect graph)

A graph G is perfect if neither G nor it's complement have odd holes.

Hardness of Ind-MAX

Polynomial reduction from the 3-SAT problem to Ind-MAX. Ingredients of 3-SAT:

- A set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ of boolean variables.
- A literal is either an asserted or a negated variable.
- A clause is a disjunction of three literals.
- A formula f is a conjunction of clauses.

The 3-SAT problem: There exists a truth assignment to the variables so that f is true?

Hardness of Ind-MAX

Polynomial reduction from the 3-SAT problem to Ind-MAX. Ingredients of 3-SAT:

- A set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ of boolean variables. E.g. $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.
- A literal is either an asserted or a negated variable. E.g. x_{1}, $\bar{x}_{3}, \bar{x}_{1}, x_{2}, \ldots$
- A clause is a disjunction of three literals. E.g. $\left(x_{1} \vee \bar{x}_{2} \vee x_{4}\right)$, $\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right)$.
- A formula f is a conjunction of clauses. E.g. $\left(x_{1} \vee \bar{x}_{2} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right)$.

The 3-SAT problem: There exists a truth assignment to the variables so that f is true?

The variable gadget

For each variable x_{i} of f we build the following "variable" gadget:

The clause gadget

For each clause $c_{j}=\left(\ell_{j}^{1}, \ell_{j}^{2}, \ell_{j}^{3}\right)$ of f we build the following "clause" gadget:

Putting all together

For each clause $c_{j}=\left(\ell_{j}^{1}, \ell_{j}^{2}, \ell_{j}^{3}\right)$ of f we connect each literal to the opposite node of the corresponding variable gadget.

Completing the proof (forward)

Claim

The formula f can be satisfied \Longleftrightarrow there exists a solution for the Ind-MAX instance of cost 1.

Proof (forward).

- Consider a truth assignment for f.
- For each variable x_{i}, if x_{i} is asserted move the pebble starting on v_{i} to the vertex x_{i}, otherwise move it to \bar{x}_{i}.
- For each clause $\left(\ell_{j}^{1}, \ell_{j}^{2}, \ell_{j}^{3}\right)$ there must at least literal ℓ_{j}^{k} that is true.
- This means that the vertex of the variable gadget that is adjacent to ℓ_{j}^{k} does not contain pebble.
- Move the pebble starting on z_{j} to ℓ_{j}^{k}.

Completing the proof

Completing the proof

Completing the proof (backward)

Claim

The formula f can be satisfied \Longleftrightarrow there exists a solution for the Ind-MAX instance of cost 1.

Proof (backward).

- Consider a solution or the Ind-MAX instance of cost 1.
- Each pebble starting on v_{i} must have been moved to either x_{i} or \bar{x}_{i}. Set the truth value of the variable x_{i} accordingly.
- For each clause, the pebble starting on z_{j} must have been moved to a vertex $\ell_{j}^{k} \in\left\{\ell_{j}^{1}, \ell_{j}^{2}, \ell_{j}^{3}\right\}$.
- This means that the vertex of the variable gadget that is adjacent to ℓ_{j}^{k} does not contain a pebble.
- Therefore ℓ_{j}^{k}, and the whole clause are satisfied.

Completing the proof

Theorem

The problem Ind-MAx is NP-hard.

Completing the proof

Theorem

The problem Ind-MAx is NP-hard. This holds even when G is a bipartite graph.

Approximability of IND-MAX

Theorem
 If a maximum independent set of G can be found in polynomial time (e.g. on perfect graphs), InD-MAx can be approximated within an additive error of 1 .

That's the best we could possibly do in polynomial time! (unless $P=N P$).

Approximability of Ind-MAX

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

We will need...

Theorem (Hall's Matching Theorem)

Let $H=\left(V_{1}+V_{2}, E\right)$ be a bipartite graph. There exists a matching of size $\left|V_{1}\right|$ on H iff $|A| \leq\left|N_{H}(A)\right|, \forall A \subseteq V_{1}$.
$N_{H}(A)$ and $N_{H}[A]$ are the open and the closed neighborhood of A, respectively.

We will need...

Theorem (Hall's Matching Theorem)

Let $H=\left(V_{1}+V_{2}, E\right)$ be a bipartite graph. There exists a matching of size $\left|V_{1}\right|$ on H iff $|A| \leq\left|N_{H}(A)\right|, \forall A \subseteq V_{1}$.
$N_{H}(A)$ and $N_{H}[A]$ are the open and the closed neighborhood of A, respectively.

Approximability of IND-MAX

Lemma

Let U^{*} be a maximum independent set of G. For each independent set U of $G:\left|U^{*} \cap N_{G}[U]\right| \geq|U|$.

Approximability of IND-MAX

Lemma

Let U^{*} be a maximum independent set of G. For each independent set U of $G:\left|U^{*} \cap N_{G}[U]\right| \geq|U|$.

Proof.
 Suppose $\left|U^{*} \cap N_{G}[U]\right|<|U|$.

Approximability of IND-MAX

Lemma

Let U^{*} be a maximum independent set of G. For each independent set U of $G:\left|U^{*} \cap N_{G}[U]\right| \geq|U|$.

Proof.

Suppose $\left|U^{*} \cap N_{G}[U]\right|<|U|$. $U^{\prime}=\left(U^{*} \backslash N_{G}[U]\right) \cup U$ is an independent set.

Approximability of IND-MAX

Lemma

Let U^{*} be a maximum independent set of G. For each independent set U of $G:\left|U^{*} \cap N_{G}[U]\right| \geq|U|$.

Proof.

Suppose $\left|U^{*} \cap N_{G}[U]\right|<|U|$. $U^{\prime}=\left(U^{*} \backslash N_{G}[U]\right) \cup U$ is an independent set.
We have $\left|U^{\prime}\right|>\left|U^{*}\right| \Rightarrow \Leftarrow$

Approximability of IND-MAX

Lemma

For each independent set U of G, there exists an injective function $f: U \rightarrow U^{*}$ such that $d_{G}(u, f(u)) \leq 1$.

Proof.

Construct the bipartite graph $H=\left(U+U^{*}, E\right)$ and connect each vertex $u \in U$ to $U^{*} \cap N[\{u\}]$.

Approximability of IND-MAX

Lemma

For each independent set U of G, there exists an injective function $f: U \rightarrow U^{*}$ such that $d_{G}(u, f(u)) \leq 1$.

Proof.

Construct the bipartite graph $H=\left(U+U^{*}, E\right)$ and connect each vertex $u \in U$ to $U^{*} \cap N[\{u\}]$.
$\forall A \subseteq U, N(A)=\left|U^{*} \cap N_{G}[A]\right| \geq|A|$.
Claim follows using Hall's Matching Theorem.

Approximability of InD-MAX

There exists a solution of cost OPT +1 that places all the pebbles on U^{*}.

$$
\text { Cost }=0
$$

Approximability of IND-MAX

There exists a solution of cost OPT +1 that places all the pebbles on U^{*}.

$$
\text { Cost }=0
$$

Approximability of InD-MAX

There exists a solution of cost OPT +1 that places all the pebbles on U^{*}.

$$
\text { Cost }=\mathrm{OPT}
$$

Approximability of InD-MAX

There exists a solution of cost OPT +1 that places all the pebbles on U^{*}.

$$
\text { Cost }=\mathrm{OPT}
$$

Approximability of InD-MAX

There exists a solution of cost OPT +1 that places all the pebbles on U^{*}.

$$
\text { Cost }=\mathrm{OPT}+1
$$

Approximability of IND-MAX

Theorem

If a maximum independent set of G can be found in polynomial time, there exists a polynomial-time algorithm that approximates Ind-MAX within an additive error of 1 .
$U^{*} \leftarrow$ MaximumIndependentSet (G)
if $\left|U^{*}\right|<|P|$ then
L return No solution
for $k \leftarrow 0$ to $|V|-1$ do
$F \leftarrow\left\{(p, u) \in P \times U^{*} \mid d(\sigma(p), u) \leq k\right\}$
$H \leftarrow\left(P+U^{*}, F\right)$

Approximability of IND-MAX

Theorem

If a maximum independent set of G can be found in polynomial time, there exists a polynomial-time algorithm that approximates Ind-Max within an additive error of 1 .
$U^{*} \leftarrow$ MaximumIndependentSet (G)
if $\left|U^{*}\right|<|P|$ then
L return No solution
for $k \leftarrow 0$ to $|V|-1$ do
$F \leftarrow\left\{(p, u) \in P \times U^{*} \mid d(\sigma(p), u) \leq k\right\}$
$H \leftarrow\left(P+U^{*}, F\right)$
$\mathcal{M} \leftarrow$ MaximumBipartiteMatching (H)

Approximability of IND-MAX

Theorem

If a maximum independent set of G can be found in polynomial time, there exists a polynomial-time algorithm that approximates Ind-MAx within an additive error of 1 .
$U^{*} \leftarrow$ MaximumIndependentSet (G)
if $\left|U^{*}\right|<|P|$ then
L return No solution
for $k \leftarrow 0$ to $|V|-1$ do
$F \leftarrow\left\{(p, u) \in P \times U^{*} \mid d(\sigma(p), u) \leq k\right\}$
$H \leftarrow\left(P+U^{*}, F\right)$
$\mathcal{M} \leftarrow$ MaximumBipartiteMatching (H)
if $|\mathcal{M}|=|P|$ then
\llcorner return \mathcal{M}

Approximability of IND-MAX

Theorem

If a maximum independent set of G can be found in polynomial time, there exists a polynomial-time algorithm that approximates Ind-Max within an additive error of 1 .
$U^{*} \leftarrow$ MaximumIndependentSet (G)
if $\left|U^{*}\right|<|P|$ then
L return No solution
for $k \leftarrow 0$ to $|V|-1$ do
$F \leftarrow\left\{(p, u) \in P \times U^{*} \mid d(\sigma(p), u) \leq k\right\}$
$H \leftarrow\left(P+U^{*}, F\right)$
$\mathcal{M} \leftarrow$ MaximumBipartiteMatching (H)
if $|\mathcal{M}|=|P|$ then
\llcorner return \mathcal{M}

References

- D. Bilò, L. Gualà, S. Leucci, and G. Proietti, Exact and approximate algorithms for movement problems on (special classes of) graphs, SIROCCO'13.

Further readings:

- E.D. Demaine, M. Hajiaghayi, H. Mahini, A.S. Sayedi-Roshkhar, S. Oveisgharan, and M. Zadimoghaddam, Minimizing movement, SODA'07.
- P. Berman, E.D. Demaine, and M. Zadimoghaddam, O(1)-approximations for maximum movement problems, APPROX-RANDOM'11.

