
The Minimum Spanning Tree (MST)
problem in graphs with selfish

edges

Recap

 VCG-mechanism: pair M=<g,p> where

 g(r) = arg maxyX i vi(ri,y)

 pi(g(r)) = -j≠i vj(rj,g(r-i)) +j≠i vj(rj,g(r))

 VCG-mechanisms are truthful for utilitarian problems

 The classic shortest-path problem on (private-edge)
graphs is utilitarian we showed an efficient O(m+n log n)
time implementation of the corresponding VCG-mechanism:

 g(r) = compute a shortest-path

 pe(g(r)) = pays for the marginal utility of e (difference
between the length of a replacement shortest path in
G-e and the length of a shortest path in G)

Another very well-known problem: the
Minimum Spanning Tree problem

 INPUT: an undirected, weighted graph G=(V,E,w),
w(e)R+ for any eE, with n nodes and m edges

 OUTPUT: a minimum spanning tree (MST) T=(V,ET)
of G, namely a spanning tree of G having minimum
total weight w(T)= w(e)

 Recall: T is a spanning tree of G if:
1. T is a tree
2. T is a subgraph of G
3. T contains all the nodes of G

 Fastest centralized algorithm costs O(m (m,n)) time (B.
Chazelle, A minimum spanning tree algorithm with Inverse-
Ackermann type complexity. J. ACM 47(6): 1028-1047
(2000)), where is the inverse of the Ackermann function

eET

The Ackermann function
A(i,j) and its inverse (m,n)

Notation: By ab
c
 we mean a(b

c
), and not (ab)

c
=ab·c.

For integers i,j1, let us define A(i,j) as:

A(i,j) for small values of i and j

2 23 24

22

22

22 2
22 2

2 2
22 2 2

22 2
22

2
16

22

2
2

2

2

16

22

2
2

2

2

2
2

2
16

. .
. . .

.
. . . .

. .

. .

j=1 j=2 j=3 j=4

i=1

i=2

i=3

A(3,2)=A(2,A(3,1))=A(2,16)

A(2,2)=A(1,A(2,1))=A(1,4)

i=4 22

2
16 . .

.

The (m,n) function

For integers mn0, let us define (m,n) as:

Properties of (m,n)

1. For fixed n, (m,n) is monotonically
decreasing for increasing m

(m,n)= min {i>0 : A(i, m/n) > log2 n}

growing in m

2. (n,n) for n

(n,n)= min {i>0 : A(i, n/n) > log2 n}

= min {i>0 : A(i, 1) > log2 n}

(m,n) 4 for any practical purposes
(i.e., for reasonable values of n)

A(4,m/n) A(4,1) = A(3,2)

=22

2
16 . .

.

>> 1080 estimated number of
atoms in the universe!

(m,n)= min {i>0 : A(i, m/n) > log2 n}

Remark

 hence, (m,n) 4 for any n<21080

The private-edge MST problem

 Input: a 2-edge-connected, undirected graph
G=(V,E) such that each edge is owned by a distinct
selfish agent; we assume that agent’s private type
t(e) is the positive cost of the edge e she owns,
and her valuation function is equal to her type if
the edge is selected in the solution, and 0
otherwise.

 Question: design an efficient (in terms of time
complexity) truthful mechanism in order to find a
MST of Gt=(V,E,t)

VCG mechanism

The problem is utilitarian (indeed, the cost of a solution is
given by the sum of the valuations of the selected edges)
VCG-mechanism M= <g,p>:

 g: computes a MST T=(V,ET) of G=(V,E,r); let r(T) denote its weight;

 pe: For any edge eE, pe =-j≠e vj(rj,g(r-e))+j≠e vj(rj,g(r)), namely

 pe=r(TG-e) - [r(T)-r(e)] if eET

 pe=0 otherwise.

 For any e T we have to compute TG-e, namely the

replacement MST for e (MST in G-e =(V,E\{e},r-e))
Remark: G is 2-edge-connected since otherwise a bridge edge e would
imply that TG-e does not exist, and so r(TG-e) is undefined according to
the payment scheme, agent owning e would get an unbounded payment!

Remark: ue = pe+ve= pe- te = pe- r(e) =
r(TG-e)-r(T)+ r(e) - r(e) , and since r(TG-e) ≥r (T) ue0

A trivial solution

1. First, we compute a MST of G

2. Then, e T we compute a MST of G-e

Time complexity: we pay O(m (m,n)) for
step 1, and O(m (m,n)) for each of the
n-1 edges of the MST in step 2

 O(nm (m,n)) total time

We will show an efficient solution costing
O(m (m,n)) time!!!

A related problem: MST sensitivity analysis

 Input
 G=(V,E,w) weighted and undirected

 T=(V,ET) MST of G

 Question
 For any eET, how much w(e) can be increased until

the minimality of T is affected?

 For any fT, how much w(f) can be decreased until
the minimality of T is affected? (we will not be
concerned with this aspect)

 The first question is exactly what we are
looking for to compute the marginal utility (i.e.,
the payment) of an edge selected in a solution!

Computing the sensitivity of a tree edge

G=(V,E), T any spanning tree of G. We define:

 For any non-tree edge f=(x,y)E\E(T)
 T(f): (unique) simple path in T joining x and y

(a.k.a. the fundamental cycle of f w.r.t. T)

 For any tree–edge eE(T)
 C(e)={fE\E(T): eT(f)}; notice that C(e)

contains all the non-tree edges that cross the
cut induced by the removal of e from T; we will
call them crossing edges (w.r.t. the tree edge e)

From the classic blue rule in a MST…

 If e is an edge of the MST T, then T
remains minimal until w(e)≤w(f), where f
is the cheapest crossing edge w.r.t. e (f is
called a swap edge for e); let us call this
value up(e)

 More formally, for any eE(T)
 up(e) = minfC(e)={fE\E(T): eT(f)} {w(f)}

 swap(e) = arg minfC(e) {w(f)}

MST sensitivity analysis

up(e)=8
swap(e)=f

6

2

7

1

9

3

10

4

10

8

13

11

e

C(e)

Edge e can increase
its cost up to 8
before being
replaced by edge f

f

Remark

 Computing all the values up(e) is
equivalent to compute a MST of G-e for
any edge e in the MST T of G; indeed

w(TG-e)=w(T)-w(e)+up(e)

 In the VCG-mechanism, the payment pe
of an edge e in the solution is exactly
up(e), where now the graph is weighted
w.r.t. r

Idea of the efficient algorithm

 From the above observations, it is easy to devise
an O(mn) time implementation for the VCG-
mechanism: just compute a MST T of G=(V,E,r) in
O(m (m,n)) time, and then eT compute C(e)
and up(e) in O(m) time (can you see the details of
this step?)

 In the following, we sketch how to boil down the
overall complexity to O(m(m,n)) time by
checking efficiently all the non-tree edges which
form a cycle in T with e

The Transmuter

 Given a graph G=(V,E,w) and a spanning tree T
of G, a transmuter D(G,T) is a directed acyclic
graph (DAG) representing in a compact way the
set of all fundamental cycles of T w.r.t. G,
namely {T(f) : f is not in T}

 D will contain:
1. A source node (in-degree=0) s(e) for any edge e in T
2. A sink node (out-degree=0) t(f) for any edge f not

in T
3. A certain number of auxiliary nodes of in-degree=2

and out-degree not equal to zero.

 Fundamental property: there is a path in D
from s(e) to t(f) iff eT(f)

An example

How to build a transmuter

 It has been shown that for a graph of n
nodes and m edges, a transmuter contains
O(m (m,n)) nodes and edges, and can be
computed in O(m (m,n)) time:

 R. E. Tarjan, Application of path compression on
balanced trees, J. ACM 26 (1979) pp 690-715

Topological sorting

 Let D=(V,A) be a directed graph. Then, a
topological sorting of D is a numbering
v1, v2, …,vn=|V| of the vertices of D s.t. if
there exists a directed path from vi to vj
in D, then we have i<j.

 D has a topological sorting iff is a DAG

 A topological sorting, if any, can be
computed in O(|V|+|A|) time (homework!).

Computing up(e)

 We start by topologically sorting the transmuter
(which is a DAG)

 We label each node in the transmuter with a
weight, obtained by processing the transmuter in
reverse topological order:
 We label a sink node t(f) with r(f)

 We label a non-sink node v with the minimum weight out
of all its adjacent (already labeled) successors

 When all the nodes have been labeled, a source
node s(e) is labeled with up(e) (and the
corresponding swap edge)

2

5

3

6

4

9

7

8

9
6

11

10

7 7 6 6 9 10

7 6 10

7 8 9 6 10 11

An example

Time complexity for computing up(e)

1. Transmuter build-up: O(m (m,n)) time

2. Computing up(e) values:
 Topological sorting: O(m (m,n)) time

 Processing the transmuter: O(m (m,n)) time

Time complexity of the VCG-mechanism

Theorem

There exists a VCG-mechanism for the private-
edge MST problem running in O(m (m,n)) time.

Proof.

Time complexity of g: O(m (m,n))

Time complexity of p: we compute all the values
up(e) in O(m (m,n)) time.

