
The Minimum Spanning Tree (MST) 
problem in graphs with selfish 

edges  
 



Recap 

 VCG-mechanism: pair M=<g,p> where 

 g(r) = arg maxyX i vi(ri,y)  

 pi(g(r)) = -j≠i vj(rj,g(r-i)) +j≠i vj(rj,g(r)) 

 VCG-mechanisms are truthful for utilitarian problems 

 The classic shortest-path problem on (private-edge) 
graphs is utilitarian  we showed an efficient O(m+n log n) 
time implementation of the corresponding VCG-mechanism: 

 g(r) = compute a shortest-path 

 pe(g(r)) = pays for the marginal utility of e (difference 
between the length of a replacement shortest path in 
G-e and the length of a shortest path in G) 

 

 



Another very well-known problem: the 
Minimum Spanning Tree problem 

 INPUT: an undirected, weighted graph G=(V,E,w), 
w(e)R+ for any eE, with n nodes and m edges 

 OUTPUT: a minimum spanning tree (MST) T=(V,ET) 
of G, namely a spanning tree of G having minimum 
total weight w(T)= w(e) 

 

 Recall: T is a spanning tree of G if: 
1. T is a tree 
2. T is a subgraph of G 
3. T contains all the nodes of G 

 Fastest centralized algorithm costs O(m (m,n)) time (B. 
Chazelle, A minimum spanning tree algorithm with Inverse-
Ackermann type complexity. J. ACM 47(6): 1028-1047 
(2000)), where  is the inverse of the Ackermann function 

 

eET 



The Ackermann function 
A(i,j) and its inverse (m,n) 

Notation: By ab
c
 we mean a(b

c
), and not (ab)

c
=ab·c. 

For integers i,j1, let us define A(i,j) as: 
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The (m,n) function 

For integers mn0,  let us define (m,n) as: 



Properties of (m,n)  

1. For fixed n, (m,n) is monotonically 
decreasing for increasing m 

(m,n)= min {i>0 :  A(i, m/n) > log2 n} 

growing in m 

2. (n,n)          for n    

(n,n)= min {i>0 :  A(i, n/n) > log2 n} 

= min {i>0 :  A(i, 1) > log2 n} 

   



(m,n)  4 for any practical purposes 
(i.e., for reasonable values of n) 

A(4,m/n)   A(4,1)  = A(3,2)  

=22 
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>> 1080    estimated number of 
atoms in the universe!  

(m,n)= min {i>0 :  A(i, m/n) > log2 n} 

Remark 

 hence, (m,n)  4 for any n<21080 



The private-edge MST problem 

 Input: a 2-edge-connected, undirected graph 
G=(V,E) such that each edge is owned by a distinct 
selfish agent; we assume that agent’s private type 
t(e) is the positive cost of the edge e she owns, 
and her valuation function is equal to her type if 
the edge is selected in the solution, and 0 
otherwise.  

 Question: design an efficient (in terms of time 
complexity) truthful mechanism in order to find a 
MST of Gt=(V,E,t) 



VCG mechanism 

The problem is utilitarian (indeed, the cost of a solution is 
given by the sum of the valuations of the selected edges)  
VCG-mechanism M= <g,p>: 

 g: computes a MST T=(V,ET) of G=(V,E,r); let r(T) denote its weight; 

 pe: For any edge eE, pe =-j≠e vj(rj,g(r-e))+j≠e vj(rj,g(r)), namely 
 

   pe=r(TG-e) - [r(T)-r(e)]     if eET 

   pe=0       otherwise. 
 

 
 For any e T we have to compute TG-e, namely the 

replacement MST for e (MST in G-e =(V,E\{e},r-e)) 
Remark: G is 2-edge-connected since otherwise a bridge edge e would 
imply that TG-e does not exist, and so r(TG-e) is undefined  according to 
the payment scheme, agent owning e would get an unbounded payment! 

Remark: ue = pe+ve= pe- te = pe- r(e) = 
r(TG-e)-r(T)+ r(e) - r(e) , and since r(TG-e) ≥r (T)  ue0  



A trivial solution 

1. First, we compute a MST of G 

2. Then, e T we compute a MST of G-e 

 

Time complexity: we pay O(m (m,n)) for 
step 1, and O(m (m,n)) for each of the 
n-1 edges of the MST in step 2  

   O(nm (m,n)) total time 

We will show an efficient solution costing 
O(m (m,n)) time!!! 



A related problem: MST sensitivity analysis 

 Input 
 G=(V,E,w) weighted and undirected 

 T=(V,ET) MST of G 

 Question 
 For any eET, how much w(e) can be increased until 

the minimality of T is affected? 

 For any fT, how much w(f) can be decreased until 
the minimality of T is affected? (we will not be 
concerned with this aspect) 

 The first question is exactly what we are 
looking for to compute the marginal utility (i.e., 
the payment) of an edge selected in a solution! 

 



Computing the sensitivity of a tree edge 

G=(V,E), T any spanning tree of G. We define: 

 For any non-tree edge f=(x,y)E\E(T) 
 T(f): (unique) simple path in T joining x and y 

(a.k.a. the fundamental cycle of f w.r.t. T) 

 For any tree–edge eE(T) 
 C(e)={fE\E(T): eT(f)}; notice that C(e) 

contains all the non-tree edges that cross the 
cut induced by the removal of e from T; we will 
call them crossing edges (w.r.t. the tree edge e) 



From the classic blue rule in a MST… 

 If e is an edge of the MST T, then T 
remains minimal until w(e)≤w(f), where f 
is the cheapest crossing edge w.r.t. e (f is 
called a swap edge for e); let us call this 
value up(e) 

 More formally, for any eE(T) 
 up(e) = minfC(e)={fE\E(T): eT(f)} {w(f)} 

 swap(e) = arg minfC(e) {w(f)} 

 



MST sensitivity analysis 

up(e)=8 
swap(e)=f 
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Remark 

 Computing all the values up(e) is 
equivalent to compute a MST of G-e for 
any edge e in the MST T of G; indeed 

w(TG-e)=w(T)-w(e)+up(e) 

 In the VCG-mechanism, the payment pe 
of an edge e in the solution is exactly 
up(e), where now the graph is weighted 
w.r.t. r 



Idea of the efficient algorithm 

 From the above observations, it is easy to devise 
an O(mn) time implementation for the VCG-
mechanism: just compute a MST T of G=(V,E,r) in 
O(m (m,n)) time, and then eT compute C(e) 
and up(e) in O(m) time (can you see the details of 
this step?) 

 In the following, we sketch how to boil down the 
overall complexity to O(m(m,n)) time by 
checking efficiently all the non-tree edges which 
form a cycle in T with e 



The Transmuter 

 Given a graph G=(V,E,w) and a spanning tree T 
of G, a transmuter D(G,T) is a directed acyclic 
graph (DAG) representing in a compact way the 
set of all fundamental cycles of T w.r.t. G, 
namely {T(f) : f is not in T} 

 D will contain: 
1. A source node (in-degree=0) s(e) for any edge e in T 
2. A sink node (out-degree=0) t(f) for any edge f not 

in T 
3. A certain number of auxiliary nodes of in-degree=2 

and out-degree not equal to zero. 

 Fundamental property: there is a path in D 
from s(e) to t(f) iff eT(f) 



An example 



How to build a transmuter 

 It has been shown that for a graph of n 
nodes and m edges, a transmuter contains 
O(m (m,n)) nodes and edges, and can be 
computed in O(m (m,n)) time: 

  

 R. E. Tarjan, Application of path compression on 
balanced trees, J. ACM 26 (1979) pp 690-715 



Topological sorting 

 Let D=(V,A) be a directed graph. Then, a 
topological sorting of D is a numbering    
v1, v2, …,vn=|V| of the vertices of D s.t. if 
there exists a directed path from vi to vj 
in D, then we have  i<j. 

 D has a topological sorting iff is a DAG 

 A topological sorting, if any, can be 
computed in O(|V|+|A|) time (homework!). 

 



Computing up(e)  

 We start by topologically sorting the transmuter 
(which is a DAG) 

 We label each node in the transmuter with a 
weight, obtained by processing the transmuter in 
reverse topological order: 
 We label a sink node t(f) with r(f) 

 We label a non-sink node v with the minimum weight out 
of all its adjacent (already labeled) successors 

 When all the nodes have been labeled, a source 
node s(e) is labeled with up(e) (and the 
corresponding swap edge) 
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Time complexity for computing up(e) 

1. Transmuter build-up: O(m (m,n)) time 

2. Computing up(e) values: 
 Topological sorting: O(m (m,n)) time 

 Processing the transmuter: O(m (m,n)) time 



Time complexity of the VCG-mechanism 

Theorem 

There exists a VCG-mechanism for the private-
edge MST problem running in O(m (m,n)) time. 

Proof. 

Time complexity of g: O(m (m,n)) 

Time complexity of p: we compute all the values 
up(e) in O(m (m,n)) time. 


