
The Shortest Path problem in
graphs with selfish edges

Recap

 VCG-mechanism: pair M=<g,p> where

 g(r) = arg maxyX i vi(ri,y)

 pi(g(r)) = -j≠i vj(rj,g(r-i)) +j≠i vj(rj,g(r))

 VCG-mechanisms are truthful for utilitarian problems (i.e.,
problems in which the SCF is given by the sum of players’
valuation functions)

Buying a path in a
network

decides the path
and the payments

te: cost of edge e

ve= -te if selected,
and 0 otherwise

if edge e is selected
and receives a payment of pe

the utility for agent owning e is:

 ue = pe+ve = pe-te

X: set of all paths
 between s and z

I want to minimize
the length of a path

between s and z w.r.t.
the true edge costs

Mechanism

t5

t3

t6

t2

t4

t1

s

z

The private-edge SP problem

 Given: an undirected graph G=(V,E) such that
each edge is owned by a distinct player, a
source node s and a destination node z; we
assume that a player’s private type t(e) is the
positive cost (length) of the edge e she owns,
and her valuation function is equal to her
negated type if edge is selected in the solution,
and 0 otherwise.

 Question: design an efficient (in terms of time
complexity) truthful mechanism in order to find
a shortest path in Gt=(V,E,t) between s and z.

Notation and assumptions

 n=|V|, m=|E|
 dG(s,z): distance in G=(V,E,r) between s ans z

(sum of reported costs of edges on a shortest
path PG(s,z) in G)

 Nodes s and z are 2-edge-connected in G, i.e.,
there exists in G at least 2 edge-disjoint
paths between s and z for any edge of
PG(s,z) removed from the graph there exists
at least one replacement path in G-e between
s and z (this will bound the problem, since
otherwise a bridge-edge might have an
unbounded marginal utility)

VCG mechanism

 The problem is utilitarian (indeed, the (negated) cost of a solution is
given by the sum of valuations) VCG-mechanism M=<g,p>:
 g: computes arg maxyX eE ve(r(e),y), i.e., PG(s,z) in G=(V,E,r), where

r(e) denotes the reported cost of e; indeed, valuation functions are
negative, so maximizing their sum means to compute a cheapest path;

 p (Clarke payments): for each eE:

pe =-j≠e vj(r(j),g(r-e)) +j≠e vj(r(j),g(r)), namely

 dG-e(s,z)-[dG(s,z)-r(e)] = dG-e(s,z)-dG(s,z) + r(e) if ePG(s,z)
 dG(s,z)-dG(s,z) = 0 otherwise

 For each ePG(s,z), we have to compute dG-e(s,z), namely the length of a
replacement shortest path in G-e =(V,E\{e},r-e) between s and z.

Remark: Notice that G is 2-edge-connected since otherwise dG-e(s,z) may
become + according to the payment scheme, agent owning e would get
an unbounded payment!

pe= {

The replacement shortest path
s

z

e

2

2

3
4

5 6

5

10

5

12

PG-e(s,z) dG-e(s,z)=12

PG(s,z) dG(s,z)=11

Remark: ue = pe+ve= pe- te = pe- r(e) =
dG-e(s,z)-dG(s,z)+ r(e) - r(e) , and since dG-e(s,z) ≥dG(s,z) ue0

pe=dG-e(s,z)-dG(s,z) + r(e) =
12-11+2=3

A trivial but costly implementation

 Step 1: First of all, apply Dijkstra to
compute PG(s,z) this costs O(m + n log n)
time by using Fibonacci heaps.

 Step 2: Then, e PG(s,z) apply Dijkstra in
G-e to compute PG-e(s,z) we spend O(m +
n log n) time for each of the O(n) edges in
PG(s,z), i.e., O(mn + n2 log n) time

Overall complexity: O(mn + n2 log n) time
 We will see an efficient solution costing

O(m + n log n) time

Notation

 SG(s), SG(z): single-source shortest-
path trees rooted at s and z

 Ms(e): set of nodes in SG(s) not
descending from edge e (i.e., the set
of nodes whose shortest path from s
does not use e)

 Ns(e)=V/Ms(e)
 Mz(e), Nz(e) defined analogously

A picture

s

u

v

z

e

Ms(e)

Ns(e)

SG(s)

Crossing edges

 (Ms(e),Ns(e)) is a cut in G

 Cs(e)={(x,y) E\{e}: x Ms(e), yNs(e)}
edges “crossing” the cut: crossing edges

Crossing edges

s

u

v

z

e

Ms(e)

Ns(e)

SG(s)

Cs(e)

What about PG-e(s,z)?

Trivial: it does not use e, and it is shortest among all paths
between s and z not using e

There can be many replacement shortest paths w.r.t. e
between s and z, but each one of them must cross at least
once the cut Cs(e), and it is easy to see that at least one of
them must cross only once the cut Cs(e): indeed, if a
replacement shortest path contains multiple crossing edges,
then its subpath up to the last crossing edge must be as long
as the (shortest) path in SG(s) induced by the nodes in Ms(e)

Thus, the length of a replacement shortest path can be
written as follows:

 dG-e(s,z)= min {dG-e(s,x)+r(f)+dG-e(y,z)}
f=(x,y)Cs(e)

A replacement shortest path for e

s

u

v

z

e
x

y

dG-e(s,z)= min {dG-e(s,x)+r(f)+dG-e(y,z)}
f=(x,y) Cs(e)

How to compute dG-e(s,z)

Let f=(x,y) Cs(e); we will show that

 dG-e(s,x)+r(f)+dG-e(y,z)=dG(s,x)+r(f)+dG(y,z)

Remark: dG-e(s,x)=dG(s,x), since xMs(e)

Lemma: Let f=(x,y)Cs(e) be a crossing edge
(xMs(e)). Then yMz(e) (from which it follows
that dG-e(y,z)=dG(y,z)).

A simple lemma

Proof (by contr.) Assume yMz(e), then
yNz(e). Hence, y is a descendant of u in SG(z),
i.e., PG(z,y) uses e. Notice that v is closer to z
than u in SG(z), and so PG(v,y) is a subpath of
PG(z,y) and (recall that r(e) is positive):
 dG (v,y)=r(e) + dG (u,y) > dG (u,y).
But yNs(e), and so PG(s,y) uses e. However, u is
closer to s than v in SG(s), and so PG(u,y) is a
subpath of PG(s,y) and:
 dG (u,y)=r(e) + dG (v,y) > dG (v,y).

A picture

s

z

Ns(e) Mz(e)

Ms(e)

e

Computing the length of
replacement paths

Given SG(s) and SG(z), in O(1) time we can compute
the length of a shortest path between s and z
passing through f and avoiding e as follows:

k(f):= dG-e(s,x) + r(f) + dG-e(y,z)

dG(s,x)

 given by SG(s)
dG(y,z)

 given by SG(z)

A corresponding algorithm

Step 1: Compute SG(s) and SG(z) (assume that both contain a
same PG(s,z))

Step 2: e PG(s,z) check all the crossing edges in Cs(e), and
take the minimum w.r.t. the key k.

Time complexity
Step 1: O(m + n log n) time
Step 2: O(m) crossing edges for each of the O(n) edges on

PG(s,z): since we can establish whether an edge of G is
currently a crossing edge in O(1) time, after some
preprocessing (can you guess how?), Step 2 costs O(mn)
time

 Overall complexity: O(mn) time
 Improves on O(mn + n2 log n) if m=o(n log n)

A more efficient solution: the Malik,
Mittal and Gupta algorithm (1989)

 MMG have solved in O(m + n log n) time the
following related problem: given a SP PG(s,z),
compute its most vital edge, namely an edge
whose removal induces the worst (i.e.,
longest) replacement shortest path between s
and z.

 Their approach computes efficiently all the
replacement shortest paths between s and z…

 …but this is exactly what we are looking for in
our VCG-mechanism!

The MMG algorithm at work

The basic idea of the algorithm is that when an
edge e on PG(s,z) is considered, then we have a
priority queue H containing the set of nodes in
Ns(e); with each node yH remains associated a
key k(y) and a corresponding crossing edge,
defined as follows:

k(y) = min {dG(s,x)+r(x,y)+dG(y,z)}

 k(y) is the length of a SP in G-e from s to z
passing through node y, and so the minimum key is
associated with a replacement shortest path for e

(x,y)E, xMs(e)

The MMG algorithm at work (2)

 Initially, H =V, and k(y)=+ for each yV

 Let PG(s,z) = {e1, e2,…, eq}, and consider these edges one
after the other. When edge ei is considered, modify H as
follows:
 Remove from H all the nodes in Ws(ei)=Ns(ei-1)\Ns(ei) (for i=1, set

Ns(ei-1)=V)

 Consider all the edges (x,y) s.t. xWs(ei) and yH (these are new
crossing edges), and compute k’(y)=dG(s,x)+r(x,y)+dG(y,z). If
k’(y)<k(y), decrease k(y) to k’(y), and update the corresponding
crossing edge to (x,y)

 Then, find the minimum in H w.r.t. k, which returns the length of a
replacement shortest path for ei (i.e., dG-ei(s,z)), along with the
selected crossing edge

An example

Ns(e1)

e1

e2

e3

e5

e4

s

z

Ws(e1)

An example (2)

Ns(e2)

e1

e2

e3

e5

e4

s

z

Ws(e2)

Here we may have
a decrease_key
due to the new
crossing edge

Time complexity of MMG

Theorem:

Given a shortest path between two
nodes s and z in a graph G with n
vertices and m edges, all the
replacement shortest paths between s
and z can be computed in O(m + n log n)
time.

Time complexity of MMG

Proof: Compute SG(s) and SG(z) in O(m + n log n) time. Then,
use a Fibonacci heap to maintain H (observe that Ws(ei) can be
computed in O(|Ws(ei)|) time), on which the following
operations are executed:

 A single make_heap
 n insert
 q=O(n) find_min
 O(n) delete
 O(m) decrease_key

In a Fibonacci heap, the amortized cost of a delete is O(log n),
the amortized cost of a decrease_key is O(1), while insert,
find_min, and make_heap cost O(1), so

O(m + n log n)
total time

Plugging-in the MMG algorithm into the
VCG-mechanism

Corollary

There exists a VCG-mechanism for the private-
edge SP problem running in O(m + n log n) time.

Proof.

Running time for the mechanism’s algorithm: O(m +
n log n) (Dijkstra).

Running time for computing the payments: O(m + n
log n), by applying MMG to compute all the
distances dG-e(s,z).

