

## SECOND PART on Non-cooperative Networks: Algorithmic Mechanism Design



Game Theory aims to investigate rational decision-making in conflicting situations, whereas Implementation Theory just concerns the reverse question: given some desirable outcome, can we design a game that produces it (in equilibrium)?

# The implementation problem (informally)

#### Given:

- An economic system comprising of self-interested, rational players, which hold some secret information about their preference
- A system-wide goal (social-choice function (SCF), i.e., an aggregation of players' preferences)

#### Question:

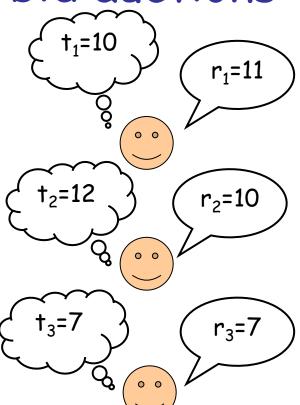
Does there exist a mechanism that can enforce (through suitable economic incentives) the players to reveal their secret information so that the desired goal is implemented optimally (w.r.t. the true preferences)?



### Designing a Mechanism

- Informally, designing a mechanism means to define a game in which a desired outcome must be reached (in equilibrium)
- However, games induced by mechanisms are different from games seen so far:
  - Players hold independent private values, called types
  - The payoffs are a function of these types
  - ⇒ each player does not really know about the other players' payoffs, but only about her one!
- ⇒ Games with incomplete information

### An example: sealedbid auctions



r; is the amount of money player i bids (in a sealed envelope) for the painting

t<sub>i</sub>: is the **maximum** amount of money player i is willing to pay for the painting, i.e., her **valuation** of the painting in case she will get it

If player i wins and has to pay p then her **utility** is  $u_i=t_i-p$ , otherwise it is 0

SCF: the winner should be the guy having in mind the highest value for the painting



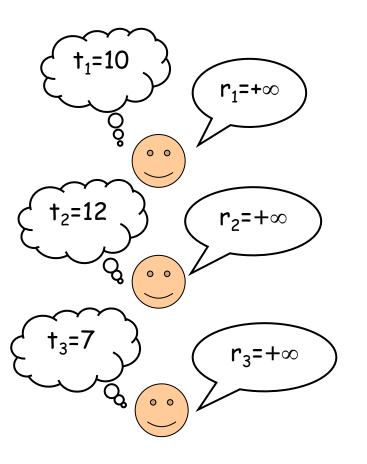


The mechanism tells to players: (1) How the item will be allocated

(i.e., who will be the winner), depending on the received bids

(2) The payment the winner has to return, as a function of the received bids

### A simple mechanism: no payment

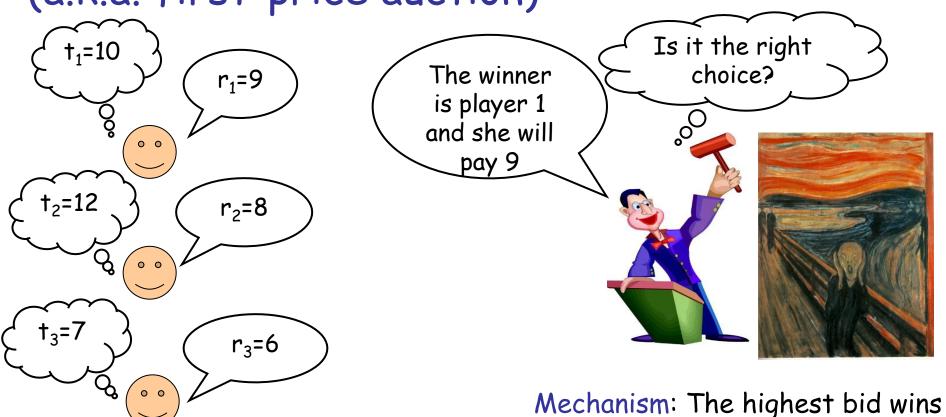




Mechanism: The highest bid wins and the price of the item is 0

...it doesn't work...

Another simple mechanism: pay your bid (a.k.a. first-price auction)



Player i may bid  $r_i < t_i$  (in this way she is guaranteed not to incur a negative utility)

...and so the winner could be the wrong one ...

...it doesn't work...

and the winner will pay her bid

#### An elegant solution: Vickrey's second price auction



every player has convenience to declare the truth! (we prove it in the next slide) Mechanism: The highest bid wins (ties are broken arbitrarily) and the winner will pay the second highest bid

#### Theorem

## In the Vickrey auction, for every player i, $r_i=t_i$ is a dominant strategy

proof Fix i and  $t_i$ , and look at strategies for player i. Let  $R = \max_{j \neq i} \{r_j\}$ .

Case  $t_i > R$  (observe that R is unknown to player i)

- 1. declaring  $r_i = t_i$  gives utility  $u_i = t_i R > 0$  (player wins)
- 2. declaring any  $r_i > R$ ,  $r_i \neq t_i$ , yields again utility  $u_i = t_i R > 0$  (player wins)
- 3. declaring  $r_i = R$  yields a utility depending on the tie-breaking rule: if player i wins, she has again utility  $u_i = t_i R > 0$ , while if she loses, then  $u_i = 0$
- 4. declaring any  $r_i < R$  yields  $u_i=0$  (player loses)
- $\Rightarrow$  In any case, the best utility is  $u_i = t_i R$ , which is obtained when declaring  $r_i = t_i$

#### Case $t_i < R$

- 1. declaring  $r_i = t_i$  yields utility  $u_i = 0$  (player loses)
- 2. declaring any  $r_i < R$ ,  $r_i \neq t_i$ , yields again utility  $u_i = 0$  (player loses)
- 3. declaring  $r_i = R$  yields a utility depending on the tie-breaking rule: if player i wins, she has utility  $u_i = t_i R < 0$ , while if she loses, then she has again utility  $u_i = 0$
- 4. declaring any  $r_i > R$  yields  $u_i = t_i R < 0$  (player wins)
- $\Rightarrow$  In any case, the best utility is  $u_i$ = 0, which is obtained when declaring  $r_i$ = $t_i$

#### Proof (cont'd)

#### Case $t_i = R$

- declaring r<sub>i</sub>=t<sub>i</sub> yields utility u<sub>i</sub> = t<sub>i</sub>-R = 0 (player wins/loses depending on the tiebreaking rule, but her utility in this case is always 0)
- 2. declaring any  $r_i < R$  yields again utility  $u_i = 0$  (player loses)
- 3. declaring any  $r_i > R$  yields  $u_i = t_i R = 0$  (player wins)
- $\Rightarrow$  In any case, the best utility is  $u_i$ = 0, which is obtained when declaring  $r_i$ = $t_i$

⇒ In all the cases, reporting a false type produces a not better utility, and so telling the truth is a dominant strategy!

# Mechanism Design Problem: ingredients

- N players; each player i, i=1,...,N, has some **private** information  $t_i \in T_i$  (actually, this is the **only** private information of the game, all the other functions provided in the following are public) called **type** 
  - Vickrey's auction: the type is the value of the painting that a player has in mind, and so  $T_i$  is the set of positive real numbers
- A set of feasible outcomes X (i.e., the result of the interaction of the players with the mechanism)
  - Vickrey's auction: X is the set of players (indeed an outcome of the auction is a winner of it, i.e., a player)

# Mechanism Design Problem: ingredients (2)

- For each vector of types  $t=(t_1, t_2, ..., t_N)$ , and for each feasible outcome  $x \in X$ , a SCF f(t,x) that measures the quality of x as a function of t. This is the function that the mechanism aims to implement (i.e., it aims to select an outcome  $x^*$  that minimizes/maximizes it, but the problem is that types are unknown!)
  - Vickrey's auction: f(t,x) is the type associated with a feasible winner x (i.e., any of the players), and the objective is to maximize f, i.e., to allocate the painting to the bidder with highest type
- Each player i selects a strategic action taken from a strategy space  $S_i$ ; we restrict ourselves to direct revelation mechanisms, in which the action is reporting a value  $r_i$  from the type space (with possibly  $r_i \neq t_i$ ), i.e.,  $S_i = T_i$ 
  - Vickrey's auction: the action is to bid a value r<sub>i</sub>

# Mechanism Design Problem: ingredients (3)

- For each feasible outcome  $x \in X$ , each player i makes a valuation  $v_i(t_i,x)$  (in terms of some common currency), expressing her preference about that output x
  - Vickrey's auction: if player i wins the auction then her valuation is equal to her type t<sub>i</sub>, otherwise it is 0
- For each feasible outcome  $x \in X$ , each player i receives a **payment**  $p_i(x)$  by the system in terms of the common currency (a negative payment means that the player makes a payment to the system); payments are used by the system to incentive players to be collaborative.
  - Vickrey's auction: if player i wins the auction then she "receives" a payment equal to  $-r_j$ , where  $r_j$  is the second highest bid, otherwise it is 0
- Then, for each feasible outcome  $x \in X$ , the **utility** of player i (in terms of the common currency) coming from outcome x will be:

$$u_i(t_i,x) = p_i(x) + v_i(t_i,x)$$

• Vickrey's auction: if player i wins the auction then her utility is equal to  $u_i = -r_j + t_i \ge 0$ , where  $r_j$  is the second highest bid, otherwise it is  $u_i = 0 + 0 = 0$ 

### Our focus: Truthful (or Strategyproof) Mechanism Design

Given all the above ingredients, design a mechanism  $M=\langle g, p \rangle$ , where:

- $g:S_1 \times ... \times S_N \to X$  is an **algorithm** which computes an outcome  $g(r) \in X$  as a function of the reported types r
- $p(g(r))=(p_1(g(r)),...,p_N(g(r)))\in \mathbb{R}^N$  is a **payment scheme** w.r.t. outcome g(r) that specifies a payment for each player

which **implements** (i.e., optimize) the SCF f(t,x) in **dominant** strategy equilibrium w.r.t. players' utilities whenever players report their true types. Such a mechanism is called a truthful (or strategy-proof) mechanism.

(In other words, with the reported type vector r=t the mechanism provides a solution g(t) and a payment scheme p(g(t)) such that players' utilities  $u_i(t_i,g(t)) = p_i(g(t)) + v_i(t_i,g(t))$  are maximed in DSE and f(t,g(t)) is optimal (either minimum or maximum)).

# Truthful Mechanism Design: a picture



Each player reports strategically to maximize her utility...
...in response to a payment which is a function of the output!



## Truthful Mechanism Design in DSE: Economics Issues

QUESTION: How to design a truthful mechanism? Or, in other words:

- 1. How to design the algorithm g, and
- 2. How to define the payment scheme p in such a way that the underlying SCF is implemented truthfully in DSE? Under which conditions can this be done?



## Truthful Mechanism Design in DSE: Computational Issues

QUESTION: What is the time complexity of the mechanism? Or, in other words:

- What is the time complexity of computing g(r)?
- What is the time complexity to calculate the N payment functions?
- What does it happen if it is NP-hard to implement the underlying SCF?

Question: What is the time complexity of the Vickrey auction? Answer:  $\Theta(N)$ , where N is the number of players. Indeed, it suffices to check all the offers, by keeping track of the largest one and of the second largest one.



### Algorithmic Mechanism Design

```
Algorithmic
Mechanism = Theory of
Algorithms + Theory
Design
```

## •

### A prominent class of problems

• Utilitarian problems: A problem is utilitarian if its SCF is such that  $f(t,x) = \sum_i v_i(t_i,x)$ , i.e., the SCF is separately-additive w.r.t. players' valuations.

Remark 1: the auction problem is utilitarian, in that f(t,x) is the type associated with the winner x, and the valuation of a player is either her type or 0, depending on whether she wins or not. Then,  $f(t,x) = \sum_i v_i(t_i,x) = \text{type of the winner}$ 

Remark 2: in many network optimization problems (which are of our special interest) the SCF is separately-additive

Good news: for utilitarian problems there exists a class of truthful mechanisms ©

### Vickrey-Clarke-Groves (VCG) Mechanisms

- A VCG-mechanism is (the only) strategy-proof mechanism for utilitarian problems:
  - Algorithm g computes:

$$g(r) = arg \max_{y \in X} \sum_{i} v_i(r_i, y)$$
• Payment function for player i:

$$p_i(g(r)) = h_i(r_{-i}) + \sum_{j \neq i} v_j(r_j, g(r))$$
 where  $h_i(r_{-i}) = h(r_1, r_2, ..., r_{i-1}, r_{i+1}, ..., r_N)$  is an arbitrary function of the types reported by players other than player i.

 What about non-utilitarian problems? Strategy-proof mechanisms are known only when the type is a single parameter.

#### Theorem

#### VCG-mechanisms are truthful for utilitarian problems

**Proof:** We show that a player has no interest in lying.

Fix i,  $r_{-i}$ ,  $t_i$ . Let  $\check{r}=(r_{-i},t_i)$  and consider a strategy  $r_i\neq t_i$ 

$$x=g(r_{-i},t_i)=g(\check{r})$$
  $x'=g(r_{-i},r_i)$ 

– ř¡=r¡ if j≠i, and ř¡=t¡

$$\mathbf{u}_{i}(\mathsf{t}_{i},\mathsf{x}) = \left[ \mathsf{h}_{i}(\mathsf{r}_{-i}) + \Sigma_{\mathsf{j}\neq i} \mathsf{v}_{\mathsf{j}}(\mathsf{r}_{\mathsf{j}},\mathsf{x}) \right] + \mathsf{v}_{i}(\mathsf{t}_{i},\mathsf{x}) = \mathsf{h}_{i}(\mathsf{r}_{-i}) + \Sigma_{\mathsf{j}} \mathsf{v}_{\mathsf{j}}(\check{\mathsf{r}}_{\mathsf{j}},\mathsf{x})$$

$$\mathbf{u}_{i}(\mathbf{t}_{i},\mathbf{x}') = [\mathbf{h}_{i}(\mathbf{r}_{-i}) + \Sigma_{j\neq i}\mathbf{v}_{j}(\mathbf{r}_{j},\mathbf{x}')] + \mathbf{v}_{i}(\mathbf{t}_{i},\mathbf{x}') = \mathbf{h}_{i}(\mathbf{r}_{-i}) + \Sigma_{j}\mathbf{v}_{j}(\check{\mathbf{r}}_{j},\mathbf{x}')$$

but x is an optimal solution w.r.t.  $\mathring{r} = (r_{-i}, t_i)$ , i.e.,

$$x = arg max_{y \in X} \sum_{j} v_{j}(\mathring{r}_{j}, y)$$



$$\Sigma_{j} \mathbf{v}_{j}(\mathbf{\check{r}}_{j}, \mathbf{x}) \geq \Sigma_{j} \mathbf{v}_{j}(\mathbf{\check{r}}_{j}, \mathbf{x}')$$



$$\mathbf{u}_{i}(\mathbf{t}_{i},\mathbf{x}) \geq \mathbf{u}_{i}(\mathbf{t}_{i},\mathbf{x}').$$

## How to define $h_i(r_i)$ ?

Remark: not all functions make sense. For instance, what does it happen in our Vickrey's auction if we set for every player  $h_i(\mathbf{r}_{-i})$ =-1000 (notice this is independent of reported value  $\mathbf{r}_i$  of player i, and so it obeys to the definition)? Answer: It happens that players' utility become negative; more precisely, in our example the winner's type/valuation was 12, and so her utility becomes  $u_i(t_i,x) = p_i(x) + v_i(t_i,x) = h_i(\mathbf{r}_{-i}) + \sum_{i\neq i} v_i(\mathbf{r}_{i},x) + v_i(t_i,x) = -1000+0+12 = -988$ 

while utility of losers becomes  $u_i(t_i,x) = p_i(x) + v_i(t_i,x) = h_i(r_{-i}) + \sum_{j\neq i} v_j(r_j,x) + v_i(t_i,x) = -1000 + 12 + 0 = -988$ 

⇒This is undesirable in reality, since with such perspective players would not participate to the auction!



### Voluntary participation

A mechanism satisfies the voluntary participation condition if players who reports truthfully never incur a net loss, i.e., for every player i, type  $t_i$ , and other players' bids  $r_{-i}$ 

$$u_i(t_i,g(r_{-i},t_i)) \geq 0.$$

#### The Clarke payments

solution maximizing the sum of valuations when player i doesn't play

This is a special VCG-mechanism in which

$$h_{i}(\mathbf{r}_{-i}) = -\sum_{j\neq i} v_{j}(\mathbf{r}_{j}, g(\mathbf{r}_{-i}))^{*}$$

$$\Rightarrow p_{i}(g(\mathbf{r})) = -\sum_{j\neq i} v_{j}(\mathbf{r}_{j}, g(\mathbf{r}_{-i})) + \sum_{j\neq i} v_{j}(\mathbf{r}_{j}, g(\mathbf{r}))$$

With Clarke payments, it can be shown that players' utility are always non-negative; indeed:

$$u_{i}(t_{i},g(\mathbf{r})) = p_{i}(g(\mathbf{r})) + v_{i}(t_{i},g(\mathbf{r})) = -\sum_{j\neq i} v_{j}(\mathbf{r}_{j},g(\mathbf{r}_{-i})) + \sum_{j\neq i} v_{j}(\mathbf{r}_{j},g(\mathbf{r})) + v_{i}(t_{i},g(\mathbf{r})) = -\sum_{j\neq i} v_{j}(\mathbf{r}_{j},g(\mathbf{r}_{-i})) + \sum_{j} v_{j}(\mathbf{r}_{j},g(\mathbf{r})) \geq 0$$

since the first term is never larger (in absolute value) than the second one (intuitively, in utilitarian problems, adding one more player will never decrease the social welfare)

 $\Rightarrow$  players are interested in playing the game

## The Vickrey's auction is a VCG mechanism with Clarke payments

- Recall that auctions are utilitarian problems. Then, the VCG-mechanism associated with the Vickrey's auction is:
  - $g(\mathbf{r}) = \arg\max_{\mathbf{y} \in \mathbf{X}} \sum_i v_i(\mathbf{r}_i, \mathbf{y})$ ...this is equivalent to allocate to the bidder with highest reported type (in the end, the highest type, since it is strategy-proof)
  - $p_i(g(r)) = -\sum_{j\neq i} v_j(r_j, g(r_{-i})) + \sum_{j\neq i} v_j(r_j, g(r))$ ...this is equivalent to say that the winner pays the second highest reported type (in the end, the second highest type, since it is strategy-proof), and the losers pay 0, respectively

**Remark**: the difference between the second highest offer and the highest offer is unbounded (frugality issue)

## VCG-Mechanisms: Advantages

- For System Designer:
  - The goal, i.e., the optimization of the SCF, is achieved with certainty
- For players:
  - players have truth telling as the dominant strategy, so they need not any computational systems to deliberate about other players strategies

## VCG-Mechanisms: Disadvantages

- For System Designer:
  - The payments may be sub-optimal (frugality)
  - Apparently, with Clarke payments, the system may need to run the mechanism's algorithm N+1 times: once with all players (for computing the outcome g(r)), and once for every player (indeed, for computing the payment  $p_i$  associated with player i, we need to know  $g(r_{-i})$ )
  - ⇒ If the problem is hard to solve then the computational cost may be very heavy
- For players:
  - players may not like to tell the truth to the system designer as it can be used in other ways

# Algorithmic mechanism design and network protocols

- Large networks (e.g., Internet) are built and controlled by diverse and competitive entities:
  - Entities own different components of the network and hold private information
  - Entities are selfish and have different preferences
- ⇒ Mechanism design is a useful tool to design protocols working in such an environment, but time complexity is an important issue due to the massive network size

# Algorithmic mechanism design for network optimization problems

- Simplifying the Internet model, we assume that each player owns a **single edge** of a graph G=(V,E), and privately knows the **cost** for using it
- ⇒ Classic optimization problems on G become private-edge mechanism design optimization problems, in which the player's type is the weight of the edge!
- Many basic network design problems have been studied in this framework: shortest path (SP), single-source shortest-path tree (SPT), minimum spanning tree (MST), and many others
- Remark: Quite naturally, SP and MST are utilitarian problems: indeed the cost of a solution (social-choice function) is simply the sum of the edge costs
- On the other hand, the SPT is not! Can you see why?

### Some remarks

- In general, network optimization problems are minimization problems (the Vickrey's auction was instead a maximization problem)
- Accordingly, we have:
  - for each  $x \in X$ , the valuation function  $v_i(t_i,x)$  represents a cost incurred by player i in the solution x (and so it is a negative function of her type)
  - the social-choice function f(t,x) is negative (since it is an "aggregation" of negative valuation functions), and so its maximization corresponds to a minimization of the costs incurred by the players
  - payments are now from the mechanism to players (i.e., they are positive)

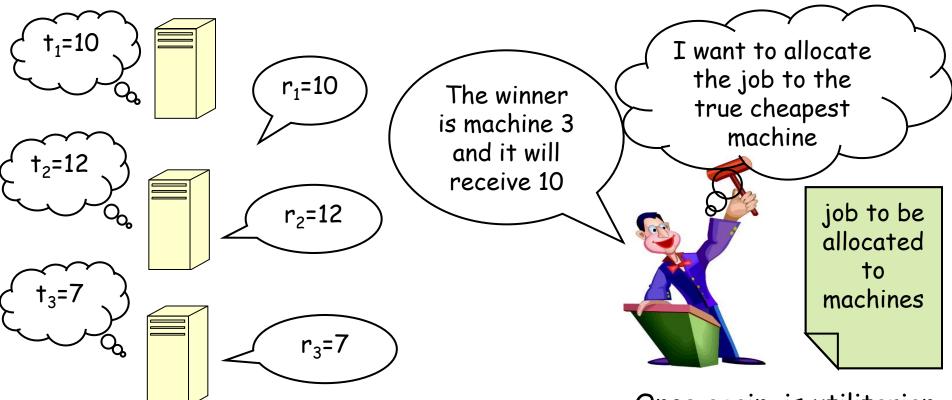
### Summary of forthcoming results

|     | Centralized algorithm | Private-edge<br>mechanism           |
|-----|-----------------------|-------------------------------------|
| SP  | O(m+n log n)          | O(m+n log n) (VCG)                  |
| MST | $O(m \alpha(m,n))*$   | $O(m \alpha(m,n)) (VCG)$            |
| SPT | O(m+n log n)          | O(m+n log n) (single-<br>parameter) |

 $\alpha$ (m,n) is the extremely slow-growing inverse of the Ackermann function

⇒ For all these basic problems, the time complexity of the mechanism equals that of the canonical centralized algorithm!

## Exercise: redefine the Vickrey auction in the minimization version (so-called procurement auction)



 $t_i$ : cost incurred by i if she does the job  $v_i$ : is equal to  $-t_i$  if i is the winner, and 0 otherwise  $p_i$ : is equal to the second highest type if i is the winner, and 0 otherwise

Once again, is utilitarian, and so the the second price auction (VCG mechanism) is truthful: the cheapest bid wins and the winner will get the second cheapest bid