
The Minimum Spanning Tree (MST)
problem in graphs with selfish

edges

Review

 VCG-mechanism: pair M=<g,p> where

 g(r) = arg maxyX i vi(ri,y)

 pi(g(r)) = -j≠i vj(rj,g(r-i)) +j≠i vj(rj,g(r))

 VCG-mechanisms are truthful for utilitarian problems

 The classic shortest-path problem on (private-edge)
graphs is utilitarian  we showed an efficient O(m+n log n)
time implementation of the corresponding VCG-mechanism:

 g(r) = compute a shortest-path

 pe(g(r)) = pays for the marginal utility of e (difference
between the length of a replacement shortest path in
G-e and the length of a shortest path in G)

Another very well-known problem: the
Minimum Spanning Tree problem

 INPUT: an undirected, weighted graph G=(V,E,w),
w(e)R+ for any eE, with n nodes and m edges

 OUTPUT: a minimum spanning tree (MST) T=(V,ET)
of G, namely a spanning tree of G having minimum
total weight w(T)= w(e)

 Recall: T is a spanning tree of G if:
1. T is a tree
2. T is a subgraph of G
3. T contains all the nodes of G

 Fastest centralized algorithm costs O(m (m,n)) time (B.
Chazelle, A minimum spanning tree algorithm with Inverse-
Ackermann type complexity. J. ACM 47(6): 1028-1047
(2000)), where  is the inverse of the Ackermann function

eET

The Ackermann function
A(i,j) and its inverse (m,n)

Notation: By ab
c
 we mean a(b

c
), and not (ab)

c
=ab·c.

For integers i,j1, let us define A(i,j) as:

A(i,j) for small values of i and j

2 23 24

22

22

22 2
22 2

2 2
22 2 2

22 2
22

2
16

22

2
2

2

2

16

22

2
2

2

2

2
2

2
16

. .
. . .

.
. . . .

. .

. .

j=1 j=2 j=3 j=4

i=1

i=2

i=3

The (m,n) function

For integers mn0, let us define (m,n) as:

Properties of (m,n)

1. For fixed n, (m,n) is monotonically
decreasing for increasing m

(m,n)= min {i>0 : A(i, m/n) > log2 n}

growing in m

2. (n,n)   for n  

(n,n)= min {i>0 : A(i, n/n) > log2 n}

= min {i>0 : A(i, 1) > log2 n}

 

(m,n)  4 for any practical purposes
(i.e., for reasonable values of n)

A(4,m/n)  A(4,1) = A(3,2)

=22

2
16 . .

.

>> 1080  estimated number of
atoms in the universe!

(m,n)= min {i>0 : A(i, m/n) > log2 n}

Remark

 hence, (m,n)  4 for any n<21080

The private-edge MST problem

 Input: a 2-edge-connected, undirected
graph G=(V,E) such that each edge is owned
by a distinct selfish agent; we assume that
agent’s private type t(e) is the positive cost
(length) of the edge e she owns, and her
valuation function is equal to her type if the
edge is selected in the solution, and 0
otherwise.

 Question: design a truthful mechanism in
order to find a MST of Gt=(V,E,t)

VCG mechanism

 The problem is utilitarian (indeed, the cost of a solution is
given by the sum of the valuations of the selected edges)
 VCG-mechanism M= <g,p>:
 g: computes a MST T=(V,ET) of G=(V,E,r)

 pe: For any edge eE, pe =-j≠e vj(rj,g(r-e))+j≠e vj(rj,g(r)), namely

 pe=r(TG-e) - [r(T)-r(e)] if eET

 pe=0 otherwise.

 For any e T we have to compute TG-e, namely the

replacement MST for e (MST in G-e =(V,E\{e},r-e))
 Remark: G is 2-edge-connected since otherwise r(TG-e)

might be unbounded  agent owning e might report an
unbounded cost!

Remark: ue = pe+ve= pe- te = pe- r(e) =
r(TG-e)-r(T)+ r(e) - r(e) , and since r(TG-e) ≥r (T)  ue0

A trivial solution

1. First, we compute a MST of G

2. Then, e T we compute a MST of G-e

Time complexity: we pay O(m (m,n)) for
step 1, and O(m (m,n)) for each of the
n-1 edges of the MST in step 2

  O(nm (m,n)) total time

We will show an efficient solution costing
O(m (m,n)) time!!!

A related problem: MST sensitivity analysis

 Input
 G=(V,E,w) weighted and undirected

 T=(V,ET) MST of G

 Question
 For any eET, how much w(e) can be increased until

the minimality of T is affected?

 For any fT, how much w(f) can be decreased until
the minimality of T is affected? (we will not be
concerned with this aspect)

 The first question is exactly what we are
looking for to compute the marginal utility (i.e.,
the payment) of an edge selected in a solution!

An example

8
6

2

7

1

9

3

10

4

10

8

13

11
The red edge can
increase its cost up
to 8 before being
replaced by the
green edge

Computing the sensitivity of a tree edge

G=(V,E), T any spanning tree of G. We define:

 For any non-tree edge f=(x,y)E\E(T)
 T(f): (unique) simple path in T joining x and y

(a.k.a. the fundamental cycle of f w.r.t. T)

 For any tree–edge eE(T)
 C(e)={fE\E(T): eT(f)}; notice that C(e)

contains all the non-tree edges that cross the
cut induced by the removal of e from T; we will
call them crossing edges (w.r.t. the tree edge
e)

Therefore…

 If e is an edge of the MST T, then T
remains minimal until w(e)≤w(f), where f
is the cheapest non-tree edge forming a
cycle with e in the MST (f is called a swap
edge for e); let us call this value up(e)

 More formally, for any eE(T)
 up(e) = minfC(e)={fE\E(T): eT(f)} {w(f)}

 swap(e) = arg minfC(e) {w(f)}

MST sensitivity analysis

up(e)=8 6

2

7

1

9

3

10

4

10

8

13

11

e

C(e)

Remark

 Computing all the values up(e) is
equivalent to compute a MST of G-e for
any edge e in the MST T of G; indeed

w(TG-e)=w(T)-w(e)+up(e)

 In the VCG-mechanism, the payment pe
of an edge e in the solution is exactly
up(e), where now the graph is weighted
w.r.t. r

Idea of the efficient algorithm

 From the above observations, it is easy to devise
an O(mn) time implementation for the VCG-
mechanism: just compute a MST T of G=(V,E,r) in
O(m (m,n)) time, and then eT compute C(e)
and up(e) in O(m) time (can you see the details of
this step?)

 In the following, we sketch how to boil down the
overall complexity to O(m(m,n)) time by
checking efficiently all the non-tree edges which
form a cycle in T with e

The Transmuter

 Given a graph G=(V,E,w) and a spanning tree T
of G, a transmuter D(G,T) is a directed acyclic
graph (DAG) representing in a compact way the
set of all fundamental cycles of T w.r.t. G,
namely {T(f) : f is not in T}

 D will contain:
1. A source node (in-degree=0) s(e) for any edge e in T
2. A sink node (out-degree=0) t(f) for any edge f not

in T
3. A certain number of auxiliary nodes of in-degree=2

and out-degree not equal to zero.

 Fundamental property: there is a path in D
from s(e) to t(f) iff eT(f)

An example

How to build a transmuter

 It has been shown that for a graph of n
nodes and m edges, a transmuter contains
O(m (m,n)) nodes and edges, and can be
computed in O(m (m,n)) time:

 R. E. Tarjan, Application of path compression on
balanced trees, J. ACM 26 (1979) pp 690-715

Topological sorting

 Let D=(V,A) be a directed graph. Then, a
topological sorting of D is a numbering
v1, v2, …,vn=|V| of the vertices of D s.t. if
there exists a directed path from vi to vj
in D, then we have i<j.

 D has a topological sorting iff is a DAG

 A topological sorting, if any, can be
computed in O(|V|+|A|) time (homework!).

Computing up(e)

 We start by topologically sorting the transmuter
(which is a DAG)

 We label each node in the transmuter with a
weight, obtained by processing the transmuter in
reverse topological order:
 We label a sink node t(f) with r(f)

 We label a non-sink node v with the minimum weight out
of all its adjacent successors

 When all the nodes have been labeled, a source
node s(e) is labelled with up(e) (and the
corresponding swap edge)

2

5

3

6

4

9

7

8

9
6

11

10

7 7 6 6 9 10

7 6 10

7 8 9 6 10 11

An example

Time complexity for computing up(e)

1. Transmuter build-up: O(m (m,n)) time

2. Computing up(e) values:
 Topological sorting: O(m (m,n)) time

 Processing the transmuter: O(m (m,n)) time

Time complexity of the VCG-mechanism

Theorem

There exists a VCG-mechanism for the private-
edge MST problem running in O(m (m,n)) time.

Proof.

Time complexity of g: O(m (m,n))

Time complexity of p: we compute all the values
up(e) in O(m (m,n)) time.

