
The Minimum Spanning Tree (MST) 
problem in graphs with selfish 

edges  
 



Review 

 VCG-mechanism: pair M=<g,p> where 

 g(r) = arg maxyX i vi(ri,y)  

 pi(g(r)) = -j≠i vj(rj,g(r-i)) +j≠i vj(rj,g(r)) 

 VCG-mechanisms are truthful for utilitarian problems 

 The classic shortest-path problem on (private-edge) 
graphs is utilitarian  we showed an efficient O(m+n log n) 
time implementation of the corresponding VCG-mechanism: 

 g(r) = compute a shortest-path 

 pe(g(r)) = pays for the marginal utility of e (difference 
between the length of a replacement shortest path in 
G-e and the length of a shortest path in G) 

 

 



Another very well-known problem: the 
Minimum Spanning Tree problem 

 INPUT: an undirected, weighted graph G=(V,E,w), 
w(e)R+ for any eE, with n nodes and m edges 

 OUTPUT: a minimum spanning tree (MST) T=(V,ET) 
of G, namely a spanning tree of G having minimum 
total weight w(T)= w(e) 

 

 Recall: T is a spanning tree of G if: 
1. T is a tree 
2. T is a subgraph of G 
3. T contains all the nodes of G 

 Fastest centralized algorithm costs O(m (m,n)) time (B. 
Chazelle, A minimum spanning tree algorithm with Inverse-
Ackermann type complexity. J. ACM 47(6): 1028-1047 
(2000)), where  is the inverse of the Ackermann function 

 

eET 



The Ackermann function 
A(i,j) and its inverse (m,n) 

Notation: By ab
c
 we mean a(b

c
), and not (ab)

c
=ab·c. 

For integers i,j1, let us define A(i,j) as: 



A(i,j) for small values of i and j 
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The (m,n) function 

For integers mn0,  let us define (m,n) as: 



Properties of (m,n)  

1. For fixed n, (m,n) is monotonically 
decreasing for increasing m 

(m,n)= min {i>0 :  A(i, m/n) > log2 n} 

growing in m 

2. (n,n)          for n    

(n,n)= min {i>0 :  A(i, n/n) > log2 n} 

= min {i>0 :  A(i, 1) > log2 n} 

   



(m,n)  4 for any practical purposes 
(i.e., for reasonable values of n) 

A(4,m/n)   A(4,1)  = A(3,2)  

=22 

2 
16 . . 
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>> 1080    estimated number of 
atoms in the universe!  

(m,n)= min {i>0 :  A(i, m/n) > log2 n} 

Remark 

 hence, (m,n)  4 for any n<21080 



The private-edge MST problem 

 Input: a 2-edge-connected, undirected 
graph G=(V,E) such that each edge is owned 
by a distinct selfish agent; we assume that 
agent’s private type t(e) is the positive cost 
(length) of the edge e she owns, and her 
valuation function is equal to her type if the 
edge is selected in the solution, and 0 
otherwise.  

 Question: design a truthful mechanism in 
order to find a MST of Gt=(V,E,t) 



VCG mechanism 

 The problem is utilitarian (indeed, the cost of a solution is 
given by the sum of the valuations of the selected edges) 
 VCG-mechanism M= <g,p>: 
 g: computes a MST T=(V,ET) of G=(V,E,r) 

 pe: For any edge eE, pe =-j≠e vj(rj,g(r-e))+j≠e vj(rj,g(r)), namely 
 

   pe=r(TG-e) - [r(T)-r(e)]     if eET 

   pe=0       otherwise. 
 

 
 For any e T we have to compute TG-e, namely the 

replacement MST for e (MST in G-e =(V,E\{e},r-e)) 
 Remark: G is 2-edge-connected since otherwise r(TG-e) 

might be unbounded  agent owning e might report an 
unbounded cost! 

Remark: ue = pe+ve= pe- te = pe- r(e) = 
r(TG-e)-r(T)+ r(e) - r(e) , and since r(TG-e) ≥r (T)  ue0  



A trivial solution 

1. First, we compute a MST of G 

2. Then, e T we compute a MST of G-e 

 

Time complexity: we pay O(m (m,n)) for 
step 1, and O(m (m,n)) for each of the 
n-1 edges of the MST in step 2  

   O(nm (m,n)) total time 

We will show an efficient solution costing 
O(m (m,n)) time!!! 



A related problem: MST sensitivity analysis 

 Input 
 G=(V,E,w) weighted and undirected 

 T=(V,ET) MST of G 

 Question 
 For any eET, how much w(e) can be increased until 

the minimality of T is affected? 

 For any fT, how much w(f) can be decreased until 
the minimality of T is affected? (we will not be 
concerned with this aspect) 

 The first question is exactly what we are 
looking for to compute the marginal utility (i.e., 
the payment) of an edge selected in a solution! 

 



An example 
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Computing the sensitivity of a tree edge 

G=(V,E), T any spanning tree of G. We define: 

 For any non-tree edge f=(x,y)E\E(T) 
 T(f): (unique) simple path in T joining x and y 

(a.k.a. the fundamental cycle of f w.r.t. T) 

 For any tree–edge eE(T) 
 C(e)={fE\E(T): eT(f)}; notice that C(e) 

contains all the non-tree edges that cross the 
cut induced by the removal of e from T; we will 
call them crossing edges (w.r.t. the tree edge 
e) 



Therefore… 

 If e is an edge of the MST T, then T 
remains minimal until w(e)≤w(f), where f 
is the cheapest non-tree edge forming a 
cycle with e in the MST (f is called a swap 
edge for e); let us call this value up(e) 

 More formally, for any eE(T) 
 up(e) = minfC(e)={fE\E(T): eT(f)} {w(f)} 

 swap(e) = arg minfC(e) {w(f)} 

 



MST sensitivity analysis 
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Remark 

 Computing all the values up(e) is 
equivalent to compute a MST of G-e for 
any edge e in the MST T of G; indeed 

w(TG-e)=w(T)-w(e)+up(e) 

 In the VCG-mechanism, the payment pe 
of an edge e in the solution is exactly 
up(e), where now the graph is weighted 
w.r.t. r 



Idea of the efficient algorithm 

 From the above observations, it is easy to devise 
an O(mn) time implementation for the VCG-
mechanism: just compute a MST T of G=(V,E,r) in 
O(m (m,n)) time, and then eT compute C(e) 
and up(e) in O(m) time (can you see the details of 
this step?) 

 In the following, we sketch how to boil down the 
overall complexity to O(m(m,n)) time by 
checking efficiently all the non-tree edges which 
form a cycle in T with e 



The Transmuter 

 Given a graph G=(V,E,w) and a spanning tree T 
of G, a transmuter D(G,T) is a directed acyclic 
graph (DAG) representing in a compact way the 
set of all fundamental cycles of T w.r.t. G, 
namely {T(f) : f is not in T} 

 D will contain: 
1. A source node (in-degree=0) s(e) for any edge e in T 
2. A sink node (out-degree=0) t(f) for any edge f not 

in T 
3. A certain number of auxiliary nodes of in-degree=2 

and out-degree not equal to zero. 

 Fundamental property: there is a path in D 
from s(e) to t(f) iff eT(f) 



An example 



How to build a transmuter 

 It has been shown that for a graph of n 
nodes and m edges, a transmuter contains 
O(m (m,n)) nodes and edges, and can be 
computed in O(m (m,n)) time: 

  

 R. E. Tarjan, Application of path compression on 
balanced trees, J. ACM 26 (1979) pp 690-715 



Topological sorting 

 Let D=(V,A) be a directed graph. Then, a 
topological sorting of D is a numbering    
v1, v2, …,vn=|V| of the vertices of D s.t. if 
there exists a directed path from vi to vj 
in D, then we have  i<j. 

 D has a topological sorting iff is a DAG 

 A topological sorting, if any, can be 
computed in O(|V|+|A|) time (homework!). 

 



Computing up(e)  

 We start by topologically sorting the transmuter 
(which is a DAG) 

 We label each node in the transmuter with a 
weight, obtained by processing the transmuter in 
reverse topological order: 
 We label a sink node t(f) with r(f) 

 We label a non-sink node v with the minimum weight out 
of all its adjacent successors 

 When all the nodes have been labeled, a source 
node s(e) is labelled with up(e) (and the 
corresponding swap edge) 
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Time complexity for computing up(e) 

1. Transmuter build-up: O(m (m,n)) time 

2. Computing up(e) values: 
 Topological sorting: O(m (m,n)) time 

 Processing the transmuter: O(m (m,n)) time 



Time complexity of the VCG-mechanism 

Theorem 

There exists a VCG-mechanism for the private-
edge MST problem running in O(m (m,n)) time. 

Proof. 

Time complexity of g: O(m (m,n)) 

Time complexity of p: we compute all the values 
up(e) in O(m (m,n)) time. 


