The Minimum Spanning Tree (MST)
problem in graphs with selfish
edges

i Review

= VCG-mechanism: pair M=<g,p> where

= g(r) = arg maxy..x 2 vi(riy)
= pi(g(r)) = 'iji vi(r;.g(r)) "'iji vj(r;.g(r))
= VCG-mechanisms are truthful for utilitarian problems

= The classic shortest-path problem on (private-edge)
graphs is utilitarian = we showed an efficient O(m+n log n)
time implementation of the corresponding VCG-mechanism:

= g(r) = compute a shortest-path

= p.(g(r)) = pays for the marginal utility of e (difference
between the length of a replacement shortest path in
G-e and the length of a shortest path in G)

Minimum Spanning Tree problem

i Another very well-known problem: the

INPUT: an undirected, weighted graph 6=(V,E,w),
w(e)eR* for any ecE, with n nodes and m edges

OUTPUT: a minimum spanning tree (MST) T=(V,E;)
of G, namely a spanning tree of G having minimum
total weight w(T)=2 w(e)

eck;

Recall: T is a spanning tree of G if:

T is a tree

T is a subgraph of G

T contains all the nodes of G
Fastest centralized algorithm costs O(m a(m,n)) time (B.
Chazelle, A minimum spanning tree algorithm with Inverse-
Ackermann type complexity. J. ACM 47(6): 1028-1047
(2000)), where a is the inverse of the Ackermann function

The Ackermann function
A(i,j) and its inverse a(m,n)

Notation: By a®* we mean a®), and not (ab)‘=ab.
For integers i,j>1, let us define A(i,j) as:

AL, 5) =2 j > 1

a

j=1 '
j=2 '
j=3 '
1| 2 =
22
2 :
22 222 i
222
2222°
| _2} 2
22.. 16 2}22 }16 5 2.-2}16
) 32}25 }z
22

iThe a(m,n) function

For integers m>n>0, let us define a(m,n) as:

i Properties of a(m,n)

1. For fixed n, a(m,n) is monotonically
decreasing for increasing m

a(m,n)= min {i>0 : A(i,\Lm/nJ) > log, n}

growing in m
2. an,n) > © forn 2 «
a(n,n)= min {i>0 : A(i, Ln/nl) > log, n}
= min {|>O : A(I, 1) >\|092 n}
Y
> O

i Remark

a(m,n) < 4 for any practical purposes
(i.e., for reasonable values of n)

a(m,n)= min {i>0 : A(i, Lm/nJ) > log, n}

A4 m/nl) > AM41) =A(32)
2

16
=22 } >> 1080 =~ estimated number of
atoms in the universel

= hence, a(m,n) < 4 for any n«210%

i The private-edge MST problem

» Input: a 2-edge-connected, undirected
graph G6=(V,E) such that each edge is owned
by a distinct selfish agent; we assume that
agent's private type t(e) is the positive cost
(length) of the edge e she owns, and her
valuation function is equal to her type if the
edge is selected in the solution, and O
otherwise.

= Question: design a truthful mechanism in
order to find a MST of G,=(V,E,1)

i VCG mechanism

= The problem is utilitarian (indeed, the cost of a solution is
given by the sum of the valuations of the selected edges)
= VCG-mechanism M= <g,p>:
= g: computes a MST T=(V,E;) of G=(V,E,r)

= p.: For any edge ecE, p, =-2jze Vj(rj.a(r)} 2jse J(rJ 9(r)), namely

S et
P.=r(Tse) - [P(T)-r(e)] if ecEr

p.=0 otherwise.
Remark: u, = p,+v,=

1- = Pe- r(e) =
P(To.o)-r(T)+ r(g) - [e) and since r(T,..) sr (T) = u,>0
-~ For any e €T we have to compute T,_., hamely the
replacement MST for e (MST in G-e =(V,E\{e}.,r..))
Remark: G is 2-edge-connected since otherwise r(T,_.)

might be unbounded = agent owning e might report an
unbounded cost!

i A trivial solution

1. First, we compute a MST of 6
2. Then, Ve €T we compute a MST of G-e

Time complexity: we pay O(m a(m,n)) for
step 1, and O(m a(m,n)) for each of the
n-1 edges of the MST in step 2

= O(nm a(m,n)) total time

We will show an efficient solution costing
O(m a(m,n)) timelll

i A related problem: MST sensitivity analysis

= Input
= 6=(V,E w) weighted and undirected
0 T:(V,ET) MST Of G

= Question

= For any ecE+, how much w(e) can be increased until
the minimality of T is affected?

= For any f¢T, how much w(f) can be decreased until
the minimality of T is affected? (we will not be
concerned with this aspect)
= The first question is exactly what we are
looking for to compute the marginal utility (i.e.,
the payment) of an edge selected in a solutionl

An example

The red edge can
increase its cost up
to 8 before being
replaced by the
green edge

i Computing the sensitivity of a tree edge

G=(V,E), T any spanning tree of 6. We define:

= For any non-tree edge f=(x,y)eE\E(T)
= T(f): (unique) simple path in T joining x and y
(a.k.a. the fundamental cycle of f w.r.t. T)

= For any tree-edge ecE(T)

s C(e)={fcE\E(T): ecT(f)}; notice that C(e)
contains all the non-tree edges that cross the
cut induced by the removal of e from T, we will
call them crossing edges (w.r.t. the tree edge

e)

i Therefore...

= If eisan edge of the MST T, then T
remains minimal until w(e)<w(f), where f
is the cheapest non-tree edge forming a
cycle with e in the MST (f is called a swap
edge for e); let us call this value up(e)

= More formally, for any ecE(T)

= up(e) = MiNg ciey=tfepre(my: ecTery (W(F)}
= swap(e) = arg ming () {w(f)}

,‘h MST sensitivity analysis

up(e)=8

i Remark

= Computing all the values up(e) is
equivalent to compute a MST of G-e for
any edge e in the MST T of G; indeed

W(Ts)=w(T)-w(e)+up(e)

- In the VCG-mechanism, the payment p,
of an edge e in the solution is exactly
up(e), where now the graph is weighted
w.r.t. r

i Idea of the efficient algorithm

= From the above observations, it is easy to devise
an O(mn) time implementation for the VCG-
mechanism: just compute a MST T of G=(V,E,r) in
O(m a(m,n)) time, and then VeeT compute C(e)
and up(e) in O(m) time (can you see the details of
this step?)

= In the following, we sketch how to boil down the
overall complexity to O(ma(m,n)) time by
checking efficiently all the non-tree edges which
form a cycle in T with e

i The Transmuter

Given a graph G=(V E,w) and a spanning tree T
of G, a fransmuter D(G,T) is a directed acyclic
graph (DAG) representing in a compact way the
set of all fundamental cycles of T w.r.t. G,
namely {T(f) : f is not in T}
D will contain:
1. A source node (in-degree=0) s(e) for any edge e in T
2. A §‘jnk node (out-degree=0) ¥(f) for any edge f not
N
3. A certain number of auxiliary nodes of in-degree=2
and out-degree not equal to zero.

Fundamental property: there is a path in D
from s(e) to t(f) iff ee T(f)

oL Anexample

i How to build a transmuter

= It has been shown that for a graph of n
nodes and m edges, a transmuter contains
O(m a(m,n)) nodes and edges, and can be
computed in O(m a(m,n)) time:

R. E. Tarjan, Application of path compression on
balanced trees, J. ACM 26 (1979) pp 690-715

i Topological sorting

s Let D=(V,A) be a directed graph. Then, a
topological sorting of D is a numbering
Vi, Va, ..Vp-|v| OF The vertices of D s.t. if
there exists a directed path from v, to v,
in D, then we have i<j.

= D has a topological sorting iff is a DAG

= A topological sorting, if any, can be
computed in O(|V|+|A|) time (homework!).

i Computing up(e)

= We start by topologically sorting the transmuter
(which is a DAG)

s We label each node in the transmuter with a
weight, obtained by processing the transmuter in
reverse topological order:
= We label a sink node 1(f) with r(f)
= We label a hon-sink node v with the minimum weight out

of all its adjacent successors

= When all the nodes have been labeled, a source
node s(e) is labelled with up(e) (and the
corresponding swap edge)

i Time complexity for computing up(e)

1. Transmuter build-up: O(m a(m,n)) time

2. Computing up(e) values:
Topological sorting: O(m a(m,n)) time
Processing the transmuter: O(m a(m,n)) time

i Time complexity of the VCG-mechanism

Theorem

There exists a VCG-mechanism for the private-
edge MST problem running in O(m a.(m,n)) time.

Proof.

Time complexity of g: O(m a(m,n))

Time complexity of p: we compute all the values
up(e) in O(m a(m,n)) time.

