

Università degli Studi dell'Aquila

Non-Cooperative Networks: Mid-term Evaluation

Wednesday, November 7th, 2018 - Prof. Guido Proietti

Write your data \Longrightarrow	Last name:	First name:	ID number:	Points
EXERCISE 1				
EXERCISE 2				
TOTAL				

EXERCISE 1: Multiple-choice questions (20 points)

Remark: Only one choice is correct. Use the enclosed grid to select your choice. A correct answer scores 3 points, while a wrong answer receives a -1 penalization. You are allowed to omit an answer. If you wrongly select an answer, just make a circle around the wrong × (i.e., in the following way ⊗) and select through a × the newly selected answer. A question collecting more than one answer will be considered as omitted. The final score will be given by summing up all the obtained points (0 for a missing answer), and then normalizing

- 1. A Dominant Strategy Equilibrium is a strategy combination $s^* = (s_1^*, \dots, s_N^*)$, such that (assume p_i is a cost):
 - a) there exists a player i and an alternative strategy profile $s=(s_1,\ldots,s_i,\ldots,s_N)$, such that $p_i(s_1,\ldots,s_i^*,\ldots,s_N) \geq p_i(s_1,\ldots,s_i,\ldots,s_N)$

 - *b) for each player i and for any possible alternative strategy profile $s=(s_1,\ldots,s_i,\ldots,s_N), p_i(s_1,\ldots,s_i^*,\ldots,s_N) \leq p_i(s_1,\ldots,s_i,\ldots,s_N)$ c) there exist no player i and no alternative strategy profile $s=(s_1,\ldots,s_i,\ldots,s_N),$ such that $p_i(s_1,\ldots,s_i^*,\ldots,s_N) \leq p_i(s_1,\ldots,s_i,\ldots,s_N)$ d) for each player i and for any possible alternative strategy profile $s=(s_1,\ldots,s_i,\ldots,s_N), p_i(s_1^*,\ldots,s_i^*,\ldots,s_N^*) \geq p_i(s_1,\ldots,s_i,\ldots,s_N)$
- 2. A Nash Equilibrium is a strategy combination $s^* = (s_1^*, \dots, s_N^*)$, such that (assume p_i is a utility):

 - a) there exists a player i and an alternative strategy profile $s=(s_1,\ldots,s_i,\ldots,s_N)$, such that $p_i(s_1,\ldots,s_i^*,\ldots,s_N) \leq p_i(s_1,\ldots,s_i,\ldots,s_N)$ b) for each player i and for any possible alternative strategy profile $s=(s_1,\ldots,s_i,\ldots,s_N), p_i(s_1,\ldots,s_i^*,\ldots,s_N) \geq p_i(s_1,\ldots,s_i,\ldots,s_N)$ c) there exist no player i and no alternative strategy profile $s=(s_1,\ldots,s_i,\ldots,s_N),$ such that $p_i(s_1,\ldots,s_i^*,\ldots,s_N) \leq p_i(s_1,\ldots,s_i,\ldots,s_N)$ *d) for each player i and for any alternative strategy s_i of $i,p_i(s_1^*,\ldots,s_i^*,\ldots,s_N^*) \geq p_i(s_1^*,\ldots,s_i^*,\ldots,s_N^*)$
- 3. How the Price of Anarchy is defined for a game in which the social choice function C has to be minimized (S is the set of Nash
 - *a) $\operatorname{PoA} = \sup_{s \in S} \frac{C(s)}{C(\operatorname{OPT})}$ b) $\operatorname{PoA} = \inf_{s \in S} \frac{C(s)}{C(\operatorname{OPT})}$ c) $\operatorname{PoA} = \sup_{s \in S} \frac{C(\operatorname{OPT})}{C(s)}$ d) $\operatorname{PoA} = \inf_{s \in S} \frac{C(\operatorname{OPT})}{C(s)}$
- 4. How the Price of Stability is defined for a game in which the social-choice function C has to be maximized (S is the set of Nash equilibria)?
 - *a) $\operatorname{PoS} = \sup_{s \in S} \frac{C(s)}{C(\operatorname{OPT})}$ b) $\operatorname{PoS} = \inf_{s \in S} \frac{C(s)}{C(\operatorname{OPT})}$ c) $\operatorname{PoS} = \sup_{s \in S} \frac{C(\operatorname{OPT})}{C(s)}$ d) $\operatorname{PoS} = \inf_{s \in S} \frac{C(\operatorname{OPT})}{C(s)}$
- 5. In a network with k players and degree-p polynomial latency functions, which of the following claim on the selfish routing game is
 - a) The PoA is at most 4/3 b) The PoA is at most p *c) The PoA is $O(p/\log p)$ d) The PoA is at most k, and this is tight
- 6. In the global connection game with k players on a graph G = (V, E, c), if we denote by c_e (resp., k_e) the cost (resp., the load) of an edge $e \in E$, and by N(S) the network induced by a given strategy profile S, which of the following claim is false?
 - a) $\Psi(S) = \sum_{e \in N(S)} c_e \cdot (1 + 1/2 + \dots 1/k_e)$ is a potential function b) Finding a best response for a player is polynomial
 - c) The PoA is at most k, and this is tight * d) The PoS is at most H_k , the k-th harmonic number, but this is not tight
- 7. In a local connection game with k players and building cost $\alpha \geq 0$, which of the following claim is false? * a) for $\alpha \ge 1$, the star is an optimal solution b) for $\alpha = 1$, the clique and the star are stable graphs c) PoA $\le 6\sqrt{\alpha} + 3$ $PoS \le 4/3$
- 8. In the Malik, Mittal and Gupta algorithm on a graph with n nodes and m edges, which of the following set of operations are performed on the Fibonacci heap?
 - a) A single make-heap, O(n) insert, n find-min, O(n) delete and O(m) decrease-key
 - b) A single make-heap, n insert, O(n) find-min, n delete and O(m) decrease-key
 - *c) A single make-heap, n insert, O(n) find-min, O(n) delete and O(m) decrease-key
 - d) A single make-heap, n insert, O(n) find-min, O(n) delete and m decrease-key
- 9. Which of the following corresponds to the definition on the inverse of the Ackermann function?
 - $\text{a) } \alpha(m,n) = \min\{i \geq 1 | A(i,\lfloor m/n \rfloor) \geq n\} \quad \text{ b) } \alpha(m,n) = \min\{i \geq 1 | A(\lceil m/n \rceil,i) \geq \log n\}$
 - *c) $\alpha(m,n) = \min\{i \geq 1 | A(i,\lfloor m/n \rfloor) \geq \log n\}$ d) $\alpha(m,n) = \min\{i \geq 1 | A(i,\lceil m/n \rceil) \geq \log n\}$
- 10. In the selfish-edge single-source shortest-path tree problem, which of the following corresponds to the threshold value for an edge e = (u, v) belonging to the solution?
 - *a) $\Theta_e = \min_{f=(x,y) \in C(e)} \{d_G(s,x) + r(e) + d_G(y,v)\} d_G(s,u)$ b) $\Theta_e = \min_{f=(x,y) \in C(e)} \{d_G(s,x) + r(e) + d_G(y,v)\} d_G(s,v)$ c) $\Theta_e = \min_{f=(x,y) \in C(e)} \{d_{G-e}(s,x) + r(e) + d_{G-e}(y,v)\} - d_G(s,u)$ d) $\Theta_e = \min_{f=(x,y) \in C(e)} \{d_{G-e}(s,x) + r(e) + d_{G-e}(y,v)\} - d_G(s,u)$ d) $\Theta_e = \min_{f=(x,y) \in C(e)} \{d_{G-e}(s,x) + r(e) + d_{G-e}(y,v)\} - d_G(s,u)$ $d_G(s,v)$

Answer Grid

	Question									
Choice	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										

EXERCISE 2: Open question (10 points)

Remark: Select at your choice one out of the following two questions, and address it exhaustively.

- 1. Describe and analyze the local connection game.
- 2. Describe and analyze the VCG-mechanism for the single-edge MST problem.