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Abstract. In this paper we cope with providing an approach to declarative se-
mantics of logic-based agent-oriented languages, taking then as a case-study the
language DALI which has been previously defined by the authors. This “evolu-
tionary semantics” does not resort to a concept of state: rather, it models recep-
tion of events as program transformation steps, that produce a “program evolu-
tion” and a corresponding “semantic evolution”. Communication among agents
and multi-agent systems is also taken into account. The aim is that of modeling
agent’s evolution according to either external (environmental) or internal changes
in a logical way, thus allowing in principle the adoption of formal verification
methods. We also intend to create a common ground for relating and comparing
different approaches/languages.

1 Introduction

The original perspective on agents in Computational Logic focused on agent’s reason-
ing process, thus identifying “intelligence” with rationality, while neglecting the inter-
actions with the environment. The identification of intelligence with rationality has been
heavily criticized, even adopting the opposite point of view, i.e., that intelligent behav-
ior should result solely from the ability of an agent to react appropriately to changes in
its environment.

A novel view of logical agents, able to be both rational and reactive, i.e., capable
of timely response to external events, that has been introduced by Kowalski and Sadri
in [15] [16]. A meta-logic program defines the “observe-think-act” cycle of an agent.
Integrity constraints are used to generate actions in response to updates from the envi-
ronment. After that, both the notion of agency and its interpretation in computational
logic has evolved, and many interesting approaches and languages have been proposed
in the last two decades [23].

A foundational approach in artificial intelligence and cognitive science is BDI, in-
troduced in [4] that stands for “Belief, Desire, Intentions”: and agent’sbeliefscorre-
spond to information the agent has about the world, which may be incomplete and
incorrect; an agent’sdesiresintuitively correspond to its objectives, or to the tasks allo-
cated to it; as an agent will not, in general, be able to achieve all its desires, the desires
upon which the agent commits areintentionsthat the agent will try to achieve. The



theoretical foundations of the BDI model have been investigated (the reader may refer
to [19]). The original formal definition was in terms of modal logics. However, there
have been reformulations of the BDI approach that have led to the logic programming
language AgentSpeak(L) and to the programming language3APL[11].

Among agent-oriented languages based on logic programming are the following.
Go! [5] is a multi-paradigm programming language with a strong logic programming
aspect. Go! has strong typing, and higher-order functional aspects. Its imperative subset
includes action procedure definitions and rich program structuring mechanisms. Go!
agents can have internal concurrency, can deductively query their state components,
can communicate with other Go! agents using application specific symbolic messages.
DALI [6] [7] is syntactically very similar to traditional logic programming languages
such as prolog. The reactive and proactive behavior of a DALI agent is triggered by
several kinds of events: external events, internal, present and past events. Events are
coped with by means of a new kind of rules,reactive rules. DALI provides a filter
cn communication for both incoming and out-coming message. In fact, a message is
accepted (or otherwise discarded) only if it passes the check of the communication filter.
This filter is expressed by means of meta-rules specifying two distinguished predicates.

Interesting agent architectures are logic-based, like KGP [3], which builds on the
original work of Kowalski and Sadri, where various forms of reasoning can be grace-
fully specified. IMPACT [2] provides interoperability by accommodating into a com-
putational logic shell various others kinds of agents.

The semantics of the above-mentioned languages and approaches has been defined
in various ways. All of them have suitable operational models that account for agent’s
behavior. Many of them enjoy, in the tradition of logic, a logic declarative semantics. It
is however not so easy to find a common ground for relating and comparing the differ-
ent approaches. Aim of this paper is to introduce an approach to declarative semantics
of logical agent-oriented languages that considers evolution of agents, without intro-
ducing explicitly a concept of state. Rather, changes either external (i.e., reception of
exogenous events) or internal (i.e., courses of actions undertaken based on internal con-
ditions) are considered as making a change in the agent program, which is a logical
theory, and in its semantics (however defined). For such a change to be represented, we
understand this change as the application of a program-transformation function. Thus,
agent evolution is seen as program evolution, and semantic evolution. This novel ap-
proach will perhaps not encompass all the existing ones, but, in our opinion, it can
constitute a starting point for establishing a common viewpoint.

In Section 2 we review the features that intelligent logical agents in our opinion
possess. In Section 3 we introduce the approach. In Sections 5 and 6, as a case-study,
we show in detail the approach with respect to the DALI language, that for the sake of
clarity we shortly review in Section 4. Finally, we conclude in Section 7.

2 Features of Evolving Logical Agents

A great deal can be said about features that agents in general and logical agents in
particular should possess (for a review the reader may refer for instance to [20], for a
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discussion to [14]). It is widely recognized however that agents, whatever the language
and the approach on which they are based, should exhibit the following features.

– Autonomy:agents should be able to operate without the direct intervention of hu-
mans.

– Reactivity:agents should perceive their environment (which may be the physical
world, a user, a collection of agents, the internet,etc.) and respond in a timely fash-
ion to changes that occur in it.

– Pro-activeness:agents should not simply act in response to their environment, they
should be able to exhibit opportunistic, goal-directed behavior and take the initia-
tive where it is appropriate.

– Social ability:i. e., agents should be able to interact, when they deem it appropriate,
with other agents or with humans in order to complete their own problem solving
and to help others with their activities.

In order to exhibit these properties, logical agents usually rely upon some form of
rationality, which might be based on some or all the following internal features:

– Perceptive abilities, i.e. the possibility of be aware (to same extent) of what is going
on (whateventshappen) in the environment.

– Inferential abilities, which may include many different forms of either formal or
commonsense ways of drawing consequences from what is known.

– Introspective abilitieswhich imply some kind of control over their actions and in-
ternal state, for being able to affect their own functioning according to priorities,
desires (or goals), time or resource bounds, etc. This point may include a concept
of time.

– Meta-level controlfor establishing goals and selecting intentions.
– Learning abilitieswhich at the lowest level include the memory of what has hap-

pened so as to be able influence the future course of actions depending on the past,
and then may include more or less sophisticated forms of belief revision or classi-
fication.

– Communication controlin the sense that it should be possible to decide which social
interactions are appropriate and which not, both in terms of generating appropriate
requests and of judging incoming requests.

These abilities must be operationally combined in the context of either a cycle, or
a multi-threaded execution, or an interleaving, so as to be able to timely respond to the
environment changes based on reasoning, planning, learning, etc. Effective operational
models have been proposed, based either on versions of the observe-think-act cycle
introduced by [15], or on operational semantics of various kinds.

For logical agents, it is in our opinion important to give a declarative account of the
agent behavior. This would have at least two advantages:

(i) understanding the agent behavior more easily than in an operational model;
(ii) being able to verify properties of both agents and multi-agent systems.
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The difficulty is that agents evolve, according to both changes in the environment
and to their internal state. Traditionally, logic includes neither the notion of state nor that
of evolution. It includes the notion of a theory with some kind of model(s). In this paper
we propose a semantic approach that accounts for evolution, though not introducing
state explicitly.

3 Declarative Semantics of Evolving Agents

The evolutionary semantics that we propose is aimed at declaratively modeling the
changes inside an agent which are determined both by changes in the environment and
by the agent’s own self-modifications. The key idea is to understand these changes as
the result of the application of program-transformation functions. In this approach, a
program-transformation function is applied upon reception of either an external or an
internal event, the latter having a possibly different meaning in different formalisms.

As a typical situation, perception of an external event will have an effect on the
program which represent the agent: for instance, the event will be stored as a new fact
in the program . This transforms the program into a new program, that will procedurally
behave differently than before, e.g., by possibly reacting to the event. Or, the internal
event corresponding to the decision of the agent to undertake an activity triggers a
more complex program transformation, resulting in version of the program where the
correspondingintentionis somewhat “loaded” so as to become executable.

Then, in general one will have an initial programP0 which, according to these
program-transformation steps (each one transformingPi into Pi+1), gives rise to a Pro-
gram Evolution SequencePE = [P0, ..., Pn]. The program evolution sequence will
have a corresponding Semantic Evolution Sequence[M0, ...,Mn] whereMi is the se-
mantic account ofPi.

The different languages and different formalisms will influence the following key
points:

1. When a transition fromPi to Pi+1 takes place, i.e. which are the external and
internal factors that determine a change in the agent.

2. Which kind of transformations are performed.
3. Which semantic approach is adopted, i.e., howMi is obtained fromPi. Mi might

be for instance a model, or an initial algebra, or a set of Answer Sets if the given
language is based on Answer Set Programming (that comes from the stable model
semantics of [13]. In general, given a semanticsS we will haveMi = S(Pi)

A particular internal event that may determine a transition can be the decision of
the agent to revise its knowledge, for instance by verifying constraints, removing “old”
facts, or performing any kind of belief revision. Also belief revision in fact can be seen
in our approach as a step of program transformation that in this case results in the
updated theory.

We also believe it useful to perform anInitialization step, where the programPAg

written by the programmer is transformed into a corresponding programP0 by means
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of some sort of knowledge compilation. This initialization step can be understood as a
rewriting of the program in an intermediate language and/or as the loading of a “virtual
machine” that supports language features. This stage can on one extreme do nothing,
on the other extreme it can perform complex transformations by producing “code” that
implements language features in the underlying logical formalism.P0 can be simply a
program (logical theory) or can have additional information associated to it.

In Multi-agent systems (MAS), where new pieces of knowledge (beliefs, but pos-
sibly also rules or sets of rules) can be received by other agents, an agent might have
to decide whether to accept or reject the new knowledge, possibly after having checked
its correctness/usefulness. This can imply a further knowledge compilation step, to be
performed:

(ii) Upon reception of new knowledge.
(ii) In consequence to the decision to accept/reject the new knowledge.

To summarize, we will have in principle at least the following program-
transformation functions:Γinit for initialization,Γevents for managing event reception,
Γrevise for belief revision,Γlearn for incorporating new knowledge. Then, given an
agent programPAg we will have:

P0 = Γinit(PAg)

and

Pi+i = Γop(PAg)

with op ∈ {learn, revise, events}.
The evolutionary semantics of an agent represents the history of an agent without

introducing a concept of a “state”.

Definition 1 (Evolutionary semantics).LetPAg be an agent program. The evolution-
ary semanticsεPAg

of PAg is the couple

〈PE,ME〉.

In order to illustrate the approach on a case-study, in the rest of the paper we will
discuss the evolutionary semantics of the DALI language. With respect to previous
discussions [7] that considered external events only, we here account for all kinds of
events and also consider the DALI communication architecture.

4 DALI in a Nutshell

DALI [7] [8] [20] is an active agent-oriented Logic Programming language designed in
the line of [14] for executable specification of logical agents. The Horn-clause language
is a subset of DALI. The reactive and proactive behavior of the DALI agent is triggered
by several kinds of events: external events, internal, present and past events. All the
events and actions are time-stamped, so as to record when they occurred.
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A DALI program with its interpreter give rise to an agent since, when activated, it
stays “awake” and monitors the arrival of events from the external world. These events
are treated similarly to user’s queries in the sense that they trigger an inference activity
that in this case can be considered a reaction. At a certain frequency and/or upon certain
conditions, the interpreter tries on its own initiative to prove certain distinguished goals.
If they succeed, their success is interpreted as the reception of an event, thus triggering
further inference. This is the mechanism of “internal events” is an absolute novelty
of DALI (other languages such as 3-APL language have internal events, but with a
different meaning).

Internal events make DALI agents proactive, and make them exhibit a behavior
that depends on the logic programs, but also on the history of the interaction of the
agent with its external environment. In fact, all the external and internal events and the
actions that the agent performs are recorded as “past events”, and having past events in
the conditions of distinguished goals will influence the internal event to happen or not.
We will now shortly present the language in a more formal way.

An external event is a stimulus perceived by the agent from the environment. We
define the set of external events perceived by the agent from timet1 to timetn as a set
E = {e1 : t1, ..., en : tn} whereE ⊆ S, andS is the set of the external stimuli that the
agent can possibly perceive.

A single external eventei is an atom indicated with a particular postfix in order to
be distinguished from other DALI language events.

Definition 2 (External Event). An external event is syntactically indicated by postfix
E and it is defined as:ExtEvent ::=<< AtomE >> |seq << AtomE >>

withe the usual definition of atoms and terms.

When an event comes into the agent from its “external world”, the agent can per-
ceive it and decide to react. The reaction is defined by a reactive rule which has in
its head that external event. The special token:>, used instead of: −, indicates that
reactive rules performs forward reasoning.

Definition 3 (Reactive rule).A reactive rule has the form:

ExtEventE :> Body or

ExtEvent1E , ..., ExtEventnE :> Body

Operationally, if an incoming external event is recognized, i.e., corresponds to the
head of a reactive rule, it is added into a list calledEV and consumed according to the
arrival order, unless priorities are specified. Before the event is reacted to, the agent has
the possibility of reasoning about it. Then, each external eventAtomE has a counterpart
called “present event” that may occur in the body of rules with suffixN. In particular,
the present eventAtomN is true as far as the external eventAtomE is still in EV .

Internal events make a DALI agent proactive independently of the environment, of
the user and of the other agents, and also allow the agent to manipulate and revise its
knowledge.

Definition 4 (Internal Event). An internal event is syntactically indicated by postfix
I:
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InternalEvent ::=<< AtomI >>

The internal event mechanism implies the definition of two rules. The first one contains
the conditions (knowledge, past events, procedures, etc.) that must be true so that the
reaction (in the second rule) may happen:
IntEvent : −Conditions
IntEventI :> Body

Internal events are automatically attempted with a default frequency customizable
by means of directives in the initialization file. A DALI agent is able to build a plan in
order to reach an objective, by using internal events of a particular kind, calledplanning
goals.

After reaction to either an external or an internal event, the agent remembers to have
reacted by converting the external event into apast event, postfixP (time-stamped).

Actions are the agent’s way of affecting the environment, possibly in reaction to
either an external or internal event. An action in DALI can be also a message sent by an
agent to another one.

Definition 5 (Action). An action is syntactically indicated by postfixA:

Action ::=<< AtomA >> |messageA << Atom,Atom >>

Actions occur in the body of rules.

In DALI, actions may have or not preconditions: in the former case, the actions are
defined by actions rules, in the latter case they are just action atoms. An action rule
is just a plain rule, but in order to emphasize that it is related to an action, we have
introduced the new token:<, thus adopting the following syntax:

Definition 6 (Action rule). An action rule has the form:
Action :< Preconditions
wherePreconditions ::= seq << Object >> and
Object ::=<< PastEventP >> | << Atom >> | << Belief >> |...

Similarly to external and internal events, actions are recorded as past actions.

Procedurally, DALI is based on an Extended Resolution Procedure that interleaves
different activities, and can be tuned by the user via directives. The operational seman-
tics of DALI is based on Dialogue Games Theory [9] [20]: the DALI Interpreter is
modeled as a set of cooperating players.

4.1 DALI Communication Architecture

DALI supports inter-agent interaction and cooperation by providing a flexible com-
munication architecture. The architecture [9] [10] provides: a FIPA-compliant (i.e., a
standard [12]) communication protocol; a filter on communication, i.e. a set of rules
that decide whether or not to receive or send a message; a meta-reasoning layer, where
meta-rules can be specified to help the agent to understand message contents.

The DALI communication filter is defined by means of meta-level rules defining the
distinguished predicatestell andtold. Actually, the FIPA/DALI communication proto-
col itself is implemented by means a piece of DALI code consisting of defaulttell/told
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rules. The same agent program, if equipped with a different filter, results in a different
agent with different communication behavior.

Whenever a message is received, with content partprimitive(Content,Sender))the
DALI interpreter automatically looks for a corresponding told rule, which is of the form:

told(Sender, primitive(Content)) : −
constraint1, . . . , constraintn.

whereconstrainti can be any condition. If such a rule is found, the interpreter attempts
to prove told(Sender, primitive(Content)). If this goal succeeds, then the message is
accepted, andprimitive(Content)is added to the set of the external events incoming
into the receiver agent. Otherwise, the message is discarded.

Symmetrically, the messages that an agent means to send are subjected to a check
via tell rules. The syntax of a tell rule is:

tell(Receiver, Sender, primitive(Content)) : −
constraint1, . . . , constraintn.

For every message that is being sent, the interpreter automatically checks whether
an applicable tell rule exists. If so, the message is actually sent only if the goal
tell(Receiver,Sender,primitive(Content))succeeds.

5 Declarative Semantics of basic DALI programs

In this section we describe the declarative semantics of the basic DALI language accord-
ing to the proposed approach. In the next section we will take care of the communication
architecture.

Let us first consider the initialization step. As a design choice, a DALI program is
transformed into a corresponding Horn-clause program. In this way, we keep all the
useful properties of the Horn-clause language and we are still able to exploit all the
technical machinery related to it. Then, the semanticsS that we adopt is either the
least Herbrand model [17] (for definite programs) or the well-founded model [22] (for
programs with negation-as-failure). We give on the one hand the intuition that underlies
the transformation for the various language elements, and on the other hand a formal
description ofΓDALI

init .

Reactive rules can be declaratively modeled by making some considerations on
Horn clause language. Consider the plain Horn-clause language, and the following pro-
gram:

p.
p : −q.
q.

Its least Herbrand model is{q, p}, like in the following slightly modified version:
p.
p : −p, q.
q.

Sincep is true by means of a unit clause, the second rule forp does not change the
meaning of the program, since it differs from the previous version only in that there isp
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itself in the body. This is exactly the “trick” that we will use for our reactive Horn-clause
programs.

Precisely, for coping with external events, we have to specify that a reactive rule is
allowed to be applied only if the corresponding event has happened. We assume that
as soon as an event has happened it is recorded as a unit clause (this assumption will
be formally assessed later). Then, we reach our aim by adding, for each event atom
p(Args)E , the event atom itself in the body of its own reactive rule. The meaning
is that the reactive rule can be applied by the immediate-consequence operator only if
p(Args)E is available as a fact.

Definition 7 (Transformation of external events rulesΓer). We transform each reac-
tive rule for external events:

p(Args)E :> R1, . . . , Rq

into the standard rule:

p(Args)E : −p(Args)E , R1, . . . , Rq.

Similarly, we have to transform the reactive rule corresponding to each internal
event.

Definition 8 (Transformation of internal events rules Γir). For internal events,
q(Args)I is allowed to be applied only if the subgoalq(Args) has been proved. For
this aim, we transform each reactive rule for internal events:

q(Args)I :> R1, . . . , Rq.

into the standard rule:

q(Args)I : −q(Args), R1, . . . , Rq.

Now, we have to declaratively model actions, with or without an action rule. The
point is, an action atom should become true (given its preconditions, if any) whenever
the action is actually performed in some rule. Consider another simple program written
in the plain Horn-clause language:

p.
p : −b, a.
b.

Its least Herbrand model is{p, b}, since bothp andb are given as facts. If we modify
the program as follows:

p.
p : −b, a.
b.
a : −p, b.

its least model is{p, b, a}. Assuming thatp is an event atom anda is an action atom
with no defining clause, this modification ensures that the action atoma becomes true
whenever the action is actually performed.

Similarly, let us assume thata has no defining clause, like in the program:

9



p.
p : −b, a.
b.
a : −c.
c.

Its least Herbrand model is{p, b, a}, sincep, b andc are given as facts. We modify the
program as follows:

p.
p : −b, a.
b.
a : −c, p, b.

Its least model is still{p, b, a}, but, interpretinga as an action atom, we state thata can
be derived only if the corresponding action is actually performed in the rule definingp.

More formally, an actionA is performed by a DALI agent wheneverA is executed
as a subgoal in a rule of the form

B : −D1, . . . , Dh, A1, . . . , Ak. h ≥ 1, k ≥ 1
where theAis are actions andA ∈ {A1, . . . , Ak}. Declaratively, whenever the con-
ditionsD1, . . . , Dh of the above rule are true, the action atoms should become true as
well (given their preconditions, if any), so that the rule can be applied by the immediate-
consequence operator. To model this behavior we introduce the following:

Definition 9 (Transformation of action rules Γar). For every action atomA, with
action rule:

A : −C1, . . . , Cs, s ≥ 1
we modify this rule into:

A : −D1, . . . , Dh, C1, . . . , Cs.

If A has no defining rule, we instead add the clause:A : −D1, . . . , Dh.

Definition 10. The program-transformation initialization functionΓDALI
init is defined

asΓir

⋃
Γir

⋃
Γir. Given a DALI logic programPAg, let Ps = ΓDALI

init (PAg) be the
horn-clause logic program obtained by applying the above transformations.

Ps is the basis for the evolutionary semantics, that describes how the agent is af-
fected by actual arrival of events. In fact, we need now to specify the agent evolution
according to the events that happen. According to the proposed approach, the program
Ps is actually affected by the events by means of subsequent syntactic transformations.
When the agent receives an external event, we ideally stop the evolution and calculate
the least Herbrand model, thus generating a ’snapshot’ of the agent change process.
Then, the evolution restarts and the process goes on until the reception of an incoming
event. The declarative semantics of agent programPAg at a certain stage then coincides
with the declarative semantics of the version ofPs at that stage.

Initially, many of the rules ofPs are not applicable, since no external and present
events are available, and no past events are recorded. Later on, as soon as external events
arrive and internal events happen, the reactive behavior of the agent is put at work.
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In order to obtain the evolutionary declarative semantics ofP , as a first step we
explicitly associate toPs the list of the external events that we assume to have arrived
up to a certain point, in the order in which they are supposed to have been received and
the list of internal events that have became true. In this context, we make the simpli-
fying assumption that all internal events are attempted at the same default frequency.
Precisely, we assume that they are attempted whenever a new external event arrives. We
also assume that past events are never removed.

Let EXTH be the set of all ground instances of atoms corresponding to external
events which occur in the DALI logic program. Similarly, letINTH the set of ground
instances of internal events. Finally, letACTH be the set of ground instances of action
atoms. Given the above sets, at each step, sayn, we can consider the subsets:EXTHn

of the external events perceived up to that step;INTHn of the internal events that
have succeeded up to that step; andACTHn of the actions performed up to that step.
We consider these sets as lists, that reflect the order in which external events/internal
events/actions respectively happened/were proved/were performed.

We let P0 = 〈Ps, [ ], [ ]〉, to indicate that initially no event has happened. Later
on, the programPs will be modified by the perceived external events, the trig-
gered internal events and finally by the performed actions. Namely, letPn =
〈Progn, EXTHn, INTHn〉 be the result ofn steps, whereProgn is the current
program that has been obtained fromPs step by step by means of the program-
transformationtransition functionΓDALI

events. We also letS(Pn) be the least Herbrand
model ofProgn.

In particular,ΓDALI
events specifies that, at then − th step, the current external event

En, the triggered internal events and the performed actions are added to the program
as facts.En is also added as a present event. The immediate-consequence operator will
consequently be able both to apply the reactive rule related toEn, and the rules in
whose bodies the corresponding present event occurs. Previous step external/present
eventEn−1 is removed and is added as a past event. Concerning internal events, all
the internal events/goals that have been proved up to this step are added as facts, thus
enabling the corresponding reactive rules.

The program-transformation transition functionΓDALI
events is related to an external

event, an internal event and an action all together. In case any of them should be missing,
the corresponding part of the definition would just not apply.

Definition 11 (Transition function). Let EjE be an external event,Ik
lI an internal

event andAm
nA an action. The program-transformation transition functionΓDALI

events is
defined as follows:

ΓDALI
events(Pn−1, EnE , Ik

nI) = 〈ΓDALI
eventsP (Pn−1, EnE , Ik

nI), [EnE |EXTHn−1], [Ik
nI |INTHn−1]〉

where:

ΓDALI
events(P0, E

k
1 , Ik

1 ) = ΓDALI
events(〈Ps, [], []〉, E1, I

k
1 ) = Ps ∪ E1E ∪ E1N ∪ Ik

1 .

ΓDALI
events(〈Progn−1, [En−1E |Te], [Ik

n−1I |Ti]〉, En, Ik
n) =

{{Progn−1 ∪ EnE ∪ EnN ∪ En−1P ∪ Ik
nI ∪ Ir

n−1P ∪As
n−1P }}

We do that∀ Ik
n ∈ INTHn, ∀ Ir

n−1 ∈ INTHn−1 and∀ As
n−1 ∈ ACTHn.
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Definition 12 (Program evolution). Let Ps be a DALI program,EXTHn =
[En, . . . , E1] be the list of external events andINTHn = [In, . . . , I1] the list of in-
ternal events. Let foralli, Pi = ΓDALI

events(Pi−1, Ei, I
k
i ). The list[P0, . . . , Pn] that we

denote byPE(Ps,EXTHn, INTHn) (or for shortPE if we assume the arguments
as given) is theprogram evolutionof Ps with respect toEXTHn andINTHn.

Notice thatPi = 〈Progi, [Ei, . . . , E1], [Ik
i , . . . , I l

1]〉, whereProgi is the program
as it has been transformed after the i-th application ofΓDALI

events. If the program evolution
is understood from when the agent is activated, then we will letP0 = 〈Ps, [ ], [ ]〉.
Otherwise, the program evolution can be restarted from aPk which has been obtained
from a previous evolution.

Definition 13 (Model Evolution). LetPs be a DALI program,EXTH andINTH be
the lists of events, andPE = [P0, . . . , Pn] be the program evolution ofPs with respect
to EXTH andINTH. Let Mi be the least Herbrand model ofProgi. Then, the list
[M0, . . . ,Mn] that we denote byME(Ps, EXTHn, INTHn) (or for shortPE if we
assume the arguments as given) is themodel evolutionof Ps with respect to PE, and
Mi is the instant model at stepi.

Definition 14 (Evolutionary semantics).Let Ps be a DALI program,EXTH and
INTH be the lists of events. The evolutionary semanticsεPs of Ps with respect to
EXTH andINTH is the couple

〈PE,ME〉.

6 Semantics of Communication

In this section we extend the declarative semantics of DALI so as to encompass the
communication part. For doing so, we have to modify the initialization stage, i.e., we
have to extend the program-transformation initialization functionΓDALI

init . To this pur-
pose, we build upon some of the author’s previous work on meta-logic. In [1], a logical
framework for calledRCL (Reflective Computational Logic) is introduced, based on
the concept of “Reflection Principle”. Reflection principles are understood inRCL as
logical schemata intended to capture the basic properties of a domain. The purpose
of introducing reflection principles is to make it easier to build a complex theory, by
allowing a basic theory to be enhanced by a compact meta-theory.

These schemata need however to be given a role in the theory, both semantically
(thus obtaining a declarative semantics for the resulting theory) and procedurally (mak-
ing them usable in deduction). To this aim, they are interpreted as procedures, more
precisely as functions that transform rules into (sets of) rules. These new Horn clauses
are called “reflection axioms”. Then, the model-theoretic and fixed point semantics of
the given program plus a reflection principle coincides with the corresponding seman-
tics of the program obtained from the given one, by adding the reflection axioms.

Definition 15. Let C be a definite clause. Areflection principleR is a mapping from
rules to (finite) sets of rules. The rules inR(C) are called reflection axioms.
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Definition 16. LetR be a reflection principle. LetR(P ) be the set of reflection axioms
obtained by applyingR on all the clauses ofP . LetP ′ = P ∪ R(P ) be the resulting
program. LetΓR be a function that performs the transformation fromP to P ′.

Reflection principles thus allow extensions to be made to a logic language like for
instance the Horn-clause language leaving the underlying logic unchanged. Several re-
flection principles can be associated to a program. A potential drawback is that the
resulting program(P ∪ R(P )) may have, in general, a large number of rules, which
is allowed in principle but difficult to manage in practice. To avoid this problem, one
can apply reflection principles in the inference process only as necessary, which means
by computing the reflection axiomson the flyas needed. In [1] an extended resolution
procedure with this behavior is defined.

Reflection principles can be expressed as axiom schemata in the form

new rules ⇐ given rule

The left-hand-side of⇐ denotes a (set of) rule(s) (possibly facts) which is produced by
applying the given reflection principle to the program at hand. The right-hand-side is
the starting rule (the one that actually occurs in the given program), plus possibly some
conditions for the application of the correspondence.

For coping with the DALI communication architecture, it is then sufficient to aug-
ment ΓDALI

init so as to apply suitable reflection principles. In particular, we add the
following three, that for the sake of brevity we denote together byRDcomm.

The first reflection principle takes atold rule occurring in the
DALI logic program, and, assuming a generic incoming message
message received(Ag, primitive(Content, Sender)), generates the actual fil-
ter rule where the constraints are instantiated with the message elementsprimitive,
Content, Sender. The second reflection principle generates an external event from
every successful application oftold. Notice that the second reflection principle acts on
the actualtold rules generated by the first one. The last reflection principle transforms
a successful application of atell rule into a message to be sent.

told(Ag, primitive(Content)) : −
constraint1, . . . , constraintn,
message received(Ag, primitive(Content, Sender)).

⇐ told(Ag, primitive(Content)) : −constraint1, . . . , constraintn.

primitive(Content)E : −told(Ag, primitive(Content)).
⇐ told(Ag, primitive(Content)) : −

constraint1, . . . , constraintn,
message received(Ag, primitive(Content, Sender)).

message to be sent(To,Comm primitive(Content)) : −
tell(To,Comm primitive(Content)), constraint1, . . . , constraintn

⇐ tell(To,Comm primitive(Content)) : −constraint1, . . . , constraintn.

Let ΓRDcomm
be the function that augments a programP by applyingRDcomm.

The new initialization stage is then performed by a program-transformation function
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ΓDALIcomm
init that, beyond coping with event and action rules, also applies reflection

principles related to communication.

Definition 17. We defineΓDALIcomm
init asΓDALI

init

⋃
ΓRDcomm

.

6.1 Generalization

Reflection principles allow many kinds of language extensions to be modeled in uni-
form way. For instance, another DALI feature that can be modeled is the attempt of
understanding message contents. I.e., there can be the case where aContent passes the
told filter, but cannot be added as an external event because it is not understandable by
the agent, as it does not occur in the head of any reactive rule. In this case,Content is
automatically submitted to a proceduremeta, which is predefined but user-extensible,
which tries (possibly for instance by using ontologies) to translateContent into an
equivalent though understandable form.

Actually, also the program transformations performed byΓDALI
init for reactive and

action rules can be represented by means of reflection principles.

One may find it awkward the notion of the semantics of the given program being
defined to be the semantics of the program after the transformations. Again by resorting
to RCL, it is possible to clean up this notion, by introducing the concept of areflective
model.

Definition 18. Let I be an interpretation of a programP . Then,I reflectively satisfies
P (with respect to a (set of) reflection principle(s)R if and only if I satisfiesP ′ =
ΓR(P ) = P ∪R(P ).

Definition 19. Let I be an interpretation of a logic programP . Then,I is a reflective
modelof P if and only ifI reflectively satisfiesP .

The model intersection property still holds, so there exists a least reflective Herbrand
model ofP . Then, in the evolutionary semantics we may letS be the least reflective
Herbrand model ofProgn.

7 Concluding Remarks

In this paper we have presented an approach to giving a declarative semantics to log-
ical agents that evolve according to both their perceptions and their internal way of
“reasoning”. This semantics is evolutionary, as it models each step of this evolution
as the generation of an updated agent program with a correspondingly updated se-
mantics. The proposed approach may constitute a ground for comparing different lan-
guages/approaches, according to: (i) which factors trigger the transition form one ver-
sion of the agent program to the next one; (ii) which kind of transformation is per-
formed, and which changes this implies in the agent behavior. Then, such a semantic
view of logical agents can make verification techniques such as model-checking easier
to apply in this field.
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In logic-programming-based languages such as DALI, a procedural semantics can
be defined, that corresponds to the declarative one [20] and can then be linked to the
operational model [9]. Another advantage of the approach for logic-programming-based
languages is that all the analysis, debugging and optimization techniques related this
kind of languages (such as methods for program analysis and optimization, abstract
interpretation, partial evaluation, debugging, etc.) remain applicable.

Several aspects of the agent behavior remain however not described by the pro-
posed semantics, e.g., how often to check for incoming messages, how often to perform
belief-revision, etc. These aspects do not affect the logical semantics of the agent, but
affect in a relevant way its run-time behavior, according to Kowalski’s famous principle
Program = Logic + Control. In practice, this kind of “tuning” can be done via directives
associated to the agent program. Directives can be even specified in a separate module,
which is to be added to the agent program when the agent is initialized. Then, on the one
hand directives can be modified without even knowing the agent program. On the other
hand, the same agent program with different directives results in a different agent (e.g.,
apparently more quick, more lazy, eager to remember of ready to forget things, etc.).
Directives can be coped with in the operational semantics of the language [9]. It seems
more difficult to account for them in the declarative semantics, but this is however a
subject of future research.
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