
Disjunctive Logic Programs with Inheritance Revisited
(A Preliminary Report)

Stefania Costantini1 Raḿon P. Otero2 Alessandro Provetti3 Tran C. Son4

1 Universit̀a degli Studi di L’Aquila
Dipartimento d’Informatica
Via Vetoio, Loc. Coppito, I-67100 L’Aquila - Italy
stefcost@univaq.it

2 University of Corunna
AI Lab Dep. da Computacion
E-15071 Corunna, Galicia, Spain
otero@dc.fi.udc.es

3 Universit̀a degli Studi di Messina
Dip. di Fisica
Salita Sperone 31, I-98166 Messina - Italy
ale@unime.it

4 Department of Computer Science
New Mexico State University
PO Box 30001, MSC CS
Las Cruces, NM 88003, USA
tson@cs.nmsu.edu

Abstract. We argue for a semantical modification of the language DLP<. We
show by examples that the current DLP< representation in some cases does not
provide intuitive answers, in particular when applied to inheritance reasoning.
We present and discuss an initial modification of DLP< that yields the expected
answers in some examples that we consider significant

1 Introduction

The disjunctive logic program language DLP< was introduced in [1] for knowledge
representation and non-monotonic reasoning. It has been advocated that inheritance
reasoning (see e.g. [2, 4]) can be dealt with under the DLP< framework. Using DLP<,
an inheritance network could be represented by a DLP< program and the answer set
semantics of this program specifies the entailment relation of the original network. We
demonstrate this by means of an example, written in the DLP< syntax (precise defini-
tions are in the next section). Consider a taxonomy of animals with their locomotion
properties such aswalks, swims, flies, or creeps. This can be described by the fol-
lowing DLP< rules:

animal{ walks(A) ∨ swims(A) ∨ flies(A) ∨ creeps(A)← is a(A, animal).

blood circulation(A)← is a(A, animal).}
is a(pingu, animal).

According to the DLP< semantics, this program has four answer sets [3], in each one
pinguhas exactly one locomotion method.



Let us consider a subclass ofanimal, saybird, specified by the following rules:
bird : animal{swims(B) ∨ flies(B) ∨ creeps(B)← is a(B, bird).}
is a(pingu, bird).

Intuitively, the rule describing birds locomotion is more specific than that describing
animal locomotion. Thus, the combined theory should have only three answer sets,
wherepingueither swims or flies or creeps, exclusively. On the other hand, in all three
answer sets we haveblood circulation(pingu). The DLP< semantics also yields this
conclusion.

In this paper, we propose several semantically modifications for DLP< that en-
hances its usability in inheritance reasoning. In this paper, however, we argue that, for
improving the usability of the language, some generalizations should be made, and
some unwanted behavior avoided. In particular, we propose some semantic modifica-
tions for DLP< that enhance its usability in inheritance reasoning. The proposed modi-
fications are motivated and illustrated by means of examples. We will begin with a short
overview of DLP<. Afterward, we discuss the weakness of DLP< in knowledge repre-
sentation, especially in inheritance reasoning, and discuss our initial proposal semantic
fix for DLP<.

2 Syntax and Semantics of DLP<

In this section we review the basic definitions of DLP< [1]. Let us assume a setV of
variables,a setΠ of predicates,a setΛ of constants,and a finite partially ordered set
of symbols(O, <), whereO is a set of strings, calledobject identifiers,and< is a strict
partial order (i.e., the relation< is irreflexive and transitive).

The definitions ofterm, atom, and literal are the standard ones, where function
symbols are not considered, and¬ is the strongnegationsymbol. A term, atom, literal,
rule, or program isground if no variable appears in it. Two literals arecomplementary
iff they are of the formp and¬p, for some atomp. Given a literalL, ¬ ·L denotes1 the
opposite literal. For a setL of literals,¬ · L denotes the set{¬ · L |L ∈ L}.

A rule r is an expression of the form:
a1 ∨ . . . ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm

where a1 . . . an, b1, . . . , bm are literals, andnot is the negation as failuresym-
bol. The disjunctiona1 ∨ . . . ∨ an is the head of r, while the conjunction
b1, . . . , bk, not bk+1, . . . , not bm is thebody. b1, . . . , bk, is called thepositivepart
of the body ofr, and not bk+1, . . . , not bm is called theNAF (negationas failure)
part of the body ofr. We often denote the sets of literals appearing in the head, in the
body, in the positive part of the body, and in theNAF part of the body of a ruler by
Head(r), Body(r) Body+(r), andBody−(r), respectively.

Let anobjecto be a pair〈oid(o), Σ(o)〉 whereoid(o) is an object identifier inO
andΣ(o) is a (possibly empty) set of rules associated to it.

A knowledge baseon O is a set of objects, one for each element ofO. Given a
knowledge baseK and an object identifiero ∈ O, the DLP< program foro onK is the
set of objects

P = {(o′, Σ(o′)) ∈ K | o = o′ or o < o′}
The relation< induces a partial order onP in the standard way.

1 Elsewhere the contrary literal is denotedL.



Informally, a knowledge base can be viewed as a set ofobjectsembedding the def-
inition of their properties specified through disjunctive logic rules, organized in ais a
(inheritance) hierarchy (induced by<). A programP for an objecto on a knowledge
baseK consists of the subset ofK reachable fromo in the is a-net.

Thanks to the inheritance mechanism,P incorporates the knowledge explicitly de-
fined foro plus the knowledge inherited from the higher objects. If a knowledge base
admits abottomelement (i.e., an object less than all the other objects, by the relation<),
we call it aprogram,since it is equal to the program for the bottom element. In order
to represent the membership of a pair of objects (resp., object identifiers)(o2, o1) to the
transitive reduction of< the notationo2 : o1 is used, to signify thato2 is asub-object
of o1.

2.1 The semantics of DLP<

Assume that a knowledge baseK is given and an objecto has been fixed. LetP be the
DLP< program foro onK. TheUniverseUP of P is the set of all constants appearing
in the rules. TheBaseBP of P is the set of all possible ground literals that can be
constructed from the predicates appearing in the rules ofP and the constants occurring
in UP . Note that, unlike in traditional logic programming the baseBP of a DLP<

program contains both positive and negative literals. Given a ruler occurring inP, a
ground instanceof r is a rule obtained fromr by replacing every variableX in r by
σ(r) whereσ is a mapping from the variables occurring inr to the constants inUP .
ground(P) denotes the (finite) multi-set of all instances of the rules occurring inP

A function obj of is defined, from ground instance of rules inground(P) onto the
setO of the object identifiers, associating with a ground instancer of r the (unique)
object ofr.

A subset of ground literals inBP is said to beconsistentif it does not contain a pair
of complementary literals. AninterpretationI is a consistent subset ofBP . Under an
interpretationI ⊆ BP , a ground literalL is true if L ∈ I, falseotherwise.

Given a ruler in ground(P), the head ofr is true in I if at least one literal of the
head is true w.r.tI. The body ofr is true inI if:

(i) every literal inBody+(r) is true w.r.t.I, and
(ii) every literal inBody−(r) is false v.r.t.I.

Ruler is satisfiedin I if either the head ofr is true inI or the body ofr is not true
in I.
The semantics of overriding.To deal with explicit contradictions, the following defi-
nitions – taken from [1] – are needed.

Definition 1. Given two ground rulesr1 and r2, we will say thatr1 threatensr2 on
literal L if 1. L ∈ Head(r1), 2.¬ · L ∈ Head(r2), and 3. objof(r1) < obj of(r2).

Equivalently, one can say thatr1 andr2 are conflicting onL (or r1 andr2 are in conflict
onL).

Definition 2. Given an interpretationI and two ground rulesr1 and r2 such thatr1

threatensr2 on literal L, we say that r1 overridesr2 onL in I if:
1.¬ · L ∈ I and 2. the body of r2 is true inI.

A rule r in ground(P) is overridden inI if for each L in Head(r) there existsr1 in
ground(P) such thatr1 overrides r on L inI.



The notion of overriding takes care of conflicts arising between conflicting rules. For
instance, suppose that botha and¬a are derivable inI from rulesr andr’ , respectively.
If r is more specific thanr’ in the inheritance hierarchy, thenr’ is overridden. As a
result,a should be preferred to¬a because it is derivable from a rule,r, which is more
specific and thereforemore descriptiveof the object itself thanr’ .

Definition 3. Let I be an interpretation forP. I is a model forP if every rule in
ground(P) is either satisfied or overridden inI. Moreover,I is a minimal model forP
if no (proper) subset ofI is a model forP.

Definition 4. Given an interpretationI for P, the reduction ofP w.r.t. I, denoted
G(I,P) , is the set of rules obtained from ground(P) by removing 1. every rule over-
ridden in I; 2. every ruler such that Body−(r) 6= ∅; 3. the negative part from the
bodies of the remaining rules.

The reduction of a program is simply a set of ground rules. Given a setS of ground
rules,pos(S) denotes the positive disjunctive program (called thepositive version of
S), obtained fromS by renaming each negative literal¬p(X) asp′(X).

Definition 5. LetM be a model forP. We say thatM is a DLP< answer set forP if it
is a minimal model of the positive versionpos(G(M,P)) of pos(G(M,P)). Clearly,
M is inconsistent if it contains bothp(X) asp′(X).

3 Knowledge Representation with DLP<

In [1] it has been argued that DLP< is a suitable knowledge representation language
for default reasoning with exceptions. The usefulness of DLP< in different tasks in
knowledge representation and non-monotonic reasoning has been demonstrated by the
encoding of classical examples of non-monotonic reasoning. The most interesting fea-
ture of DLP< , as advocated in [1], is the addition of inheritance into the modeling
of knowledge. For example, the famous Bird-Penguin example can be represented in
DLP< without the conventionalabnormality predicateas follows.

Example 1.Consider the following programP with O(P) consisting of three objects
bird, penguinandtweety,such thatpenguinis a sub-object ofbird andtweetyis a sub-
object ofpenguin:

bird{flies} penguin : bird{¬flies} tweety : penguin{}
The only model of the above DLP< program contains¬flies.

Unlike in traditional logic programming, the DLP< language supports two types of
negation, that isstrong negationandnegation as failure.Strong negation is useful to
express negative pieces of information under the complete information assumption.
Hence, a negative fact (by strong negation) is true only if it is explicitly derived from
the rules of the program. As a consequence, the head of rules may contain also such
negative literals, and rules can be conflicting on some literals. According to the in-
heritance principles, the ordering relationship between objects can help us to assign
different levels of acceptance to the rules, allowing us to avoid the contradiction that
would otherwise arise.



3.1 Default inheritance in DLP<

As pointed out in [1], the syntax and semantics of DLP< allow us to capture forms of
non-monotonic reasoning and knowledge representation, including inertia andis-nets
in a rather straightforward way.

For improving its usability however, we believe that some generalization should
be made, and some unwanted behavior avoided. The modifications that we propose to
DLP< are illustrated by means of the following examples.

Consider again the knowledge base that defines animals and their possible ways
of motion. For birds, the possible ways of locomotion must be defined, which consti-
tute a subset of general ones. Following Buccafurri et al., [1] we define the following
knowledge base:

P1 =

{
animal {l1 : walk ∨ swim ∨ run ∨ fly ← }
bird : animal { ¬swim← ¬run← }

The two DLP< models of this program are{¬swim,¬run,walk} and
{¬swim,¬run, fly} which implies that a bird either walks or flies but does not
swim and does not run. That is, in order to represent the fact that birds swim or fly, it
is necessary to state what birdsdo notdo, with respect to the general disjunctive rules.
Cases that are left, define implicitly what birds are allowed to do, i.e. walk or fly (or
maybe both).

We submit that an improvement is needed here, since:

– in many practical cases it is far more concise to list what the features of the object
at handare, rather than what they are not;

– a detailed knowledge of ancestor object definition should not be required;
– unwanted behavior arises if one formalizes the example in the intuitive way, as

shown by the first example below, and
– unwanted behavior arises in case of multiple inheritance, as illustrated by the sec-

ond example below.

To illustrate our point, let us consider the direct, intuitive encoding:

P2 =

{
animal {l1 : walk ∨ swim ∨ run ∨ fly ← }
bird : animal {l2 : walk ∨ fly ← }

the latter formulation may appear conceptually equivalent to the former one, and one
would expect the semantics to be the same, which is not the case though. Under the
DLP< semantics,P2 has two models{walk} and {fly} which indicate that a bird
either walks or flies. Notice that these two models can be obtained from the two models
of P1 by removing the negative literals from them. We believe that given the hierarchical
property of objects one would preferP2 overP1 for its intuitiveness and that it conforms
to the downward refinement technique one uses in software engineering. After all, we
are still able to conclude that a bird walks or fly, which is also the intuitive answer.

What happens if we follow the downward refinement technique in describing pen-
guins?Consider the addition of the following, more specific, definitions:

penguin : bird { ¬fly ← . ¬walk ← wounded. ¬walk ← newborn }
pimpi : penguin { newborn← }
pingu : penguin { }



Considerpingu, a penguin, who is neither newborn nor wounded. Fromwalk∨ fly
in bird and¬fly in penguin, we concludewalk, which also satisfiesl1. In this case, we
say that rulel1 is de facto overriddenby l2. Thus, forpingu, DLP< concludes that it
walk and¬fly, which is what we expected.

The fact that rulel2 cannot overridel1 (Definition 2) since they are not in conflict,
gives rise to some unwanted consequences, which we now discuss.

Consider the penguinpimpi who is a newborn. From the rule inpenguin, we can
conclude thatpimpi does not walk and does not fly, i.e.,¬walk and¬fly. Thus, rule
l2 is overridden by the rules inpenguin. Rule l1 will not be overridden because there
exists no conflicting rule withl1 on every literalL ∈ head(l1) \ head(l2), which are
required to overridel1 (Definition 2). This means that we will have answer sets where
pimpi runs or swims. Even though the semantics of DLP< would entail¬walk and
¬fly for pimpi, the existence of answer sets in whichpimpi runs or swims seems not
reasonable in this situation.

As a result, we believe that in this example rulel2 should overridel1. In general,
disjunctive rules should override those rules in ancestors of which they are a special
case.Moreover, when describing specializations, new knowledge may be added, which
is not present in the ancestor. I.e., rulel2 could for instance be:

walk ∨ fly ∨ run

assuming thatrun is not included inl1. Still, we think thatl1 should be overridden.

4 A semantics fix for default inheritance

The counter-intuitive results seen for the newborn penguin example above, can be
avoided by slight changes in the semantics of overriding. What is being enforced by the
new definition of overriding presented here is the fact thatspecificity should never be
context-independent,rather, it should always be evaluated w.r.t. interpretations. Some
new definitions are in order now.

Definition 6. A ground rule r1 is a specialization of ruler2 if 1. obj of(r1) <
obj of(r2), 2.Head(r1) ∩Head(r2) 6= ∅, and 3.Body(r1) ⊆ Body(r2).

It is easy to see that inP2, l2 is a specialization ofl1.

Definition 7. For an interpretationI, and two conflicting ground rulesr1, r2 in
ground(P) such thatL ∈ Head(r2) (and 6 .L ∈ Head(r1)) we say thatr1 over-
ridesr2 on L in I if: 1. obj of(r1) < obj of(r2), 2.¬ · L ∈ I, and 3. the body of r2 is
true inI.

The definition below is a stricter version of the original definition of overriding pre-
sented earlier on. The second condition is new and disallows the newborn penguin
counterexample.

Definition 8. A rule r in ground(P) is overridden inI if one of the following conditions
holds:

(i) either for eachL ∈ Head(r) there existsr1 in ground(P) such thatr1 overrides r
on L inI;

(ii) or, there exists a specializationr′ of r andr′ is overridden inI.



Going back topimpi’s example, we see that rulel2 is overridden according to con-
dition (i) but under the new definition, alsol1 is becausel2 is a specialization ofl1 and
l2 is overridden (Condition (ii)). Therefore, the new definition ensures thatoverriding a
rule in an object implies overriding all its less specific ancestors.Namely, sincepimpi
does not fly nor walks (which is what birds usually do), it won’t any more be supposed
to perform any less specific form of locomotion (run, swim, etc.). The general conclu-
sion we draw from this example and discussion is that whenever we have two rules
whose relation is similar to that ofl1 andl2 above, which was called de facto overrid-
ing, we should make sure that overriding ofl2 also causes overriding ofl1. Hence, no
redundant answer set should be generated.

4.1 Multiple inheritance

The knowledge representation style required by DLP< as it is now, may yield
some unwanted behavior when multiple inheritance and updates are used. This sec-
tion provides another example of how weak DLP< is in this task. Consider the
knowledge base of objects with their color and shapes with the following rules2:
colored object
{color(X, red) ∨ color(X, yellow) ∨ color(X, green) ∨ color(X, blue)← object(X)}
shaped object
{
shape(X, cube) ∨ shape(X, sphere) ∨ shape(X, cone)← object(X)
volume(X, V )← object(X), shape(X, S), formula(X, S, V ).
formula(X, cube, V )← edge(X, L), V = L× L× L
formula(X, sphere, V )← radius(X, R), V = (4× L× L× L×Π)/3
formula(X, cone, V )← radius(X, R), height(X, H), V = (H ×R×R×Π)/3
}
colored cube : colored object, shaped object
{object(c1). shape(c1, cube). edge(c1, 4).}

green object : colored object {color(X, green)}
red object : colored object {color(X, red)}

At the top of this knowledge base, objects are defined in terms of their color, and the
definition of objects in terms of their shape. The shape of an object allows one to com-
pute its volume, by applying the appropriate formula. Then, as a particular case there is
a cube, denoted asc1, defined in terms of its shape. In our view, as discussed above, the
specificationshape(c1, cube) should override the general disjunctive definition, while
the color is still one of those defined in the parent object. In this case, the object inherits
from parent objects both the (disjunctive) specification of the possible colors it might
assume, and the way of computing the volume.

Now, let us consider defining objects in terms of their color. The disjunctive
specification of color should no longer be applicable, while the various choices about
shape, and the corresponding formulas for computing the volume, are inherited.
However, in DLP< as it is now, this example should be defined as follows:
green object:colored object{¬color(X, red)← ¬color(X, yellow)← ¬color(X, blue)←}
red object : colored object{¬color(X, green)← ¬color(X, yellow)← ¬color(X, blue)←}
2 For the easy of reading, we use the formulas for computing the volume instead of representing

them in LP’s notation.



Not only is this definition longer and less readable, but it also yields counter
intuitive results when augmented for instance by the following definition:

redgreen radius object : green object, red object, shaped object
{object(s1)← shape(s1, sphere)← radius(s1, 3)←
object(p1)← shape(p1, cone)← radius(p1, 2)← height(p1, 3)←}

Here, there is an object (calledredgreen radius object) specifying instances of
spheres (namely,s1) and cones (namely,p1) which are either red or green. In our view,
the inheritance should lead to create, in this object, the disjunctive rule

color(X, red) ∨ color(X, green).
In fact, inheriting the same attribute by multiple sources, means that the attribute may
have multiple values (provided they are not mutually inconsistent).

In DLP< as it is,redgreen radius object inherits all definitions from its parent
objects, i.e.:
{¬color(X, red)← ¬color(X, yellow)← ¬color(X, blue)← ¬color(X, green)←}
With respect to their union, the general disjunctive rule is completely overridden, and
thereforeredgreen radius object turns out to haveno color.

In the next section, we propose a semantic fix for this problem. We will show that
a knowledge base written in this more general and concise form can be transformed
into a DLP< knowledge base, so as to reuse the semantics and the implementation. The
difference is in the easier, more intuitive style for the programmer. Consistency and
adequacy of the resulting DLP< knowledge base are guaranteed by the system.

4.2 Addressing multiple inheritance

In what follows we propose a strengthening of DLP< that allows us to deal with multi-
ple inheritance. We first define a concept calledsibling rulesas follows.

Definition 9. Two ground rulesr1, r2 are siblings if:

1. obj of(r1) 6< obj of(r2) and objof(r2) 6< obj of(r1),
2. r1 andr2 are both the specialization of another ruler, and
3. Body(r1) = Body(r2).

Intuitively, two rules are siblings if they describe the properties of two (possibly dis-
joint) sub-classes of an object.

Definition 10. Given programP, the corresponding enhanced programP ′ is defined
as follows. Given objectso, o1, o2, oi = (oid(oi), Σ(oi)) whereo < o1 and o < o2

and o1 6< o2 and rulesr1 ∈ Σ(o1), r2 ∈ Σ(o2) are siblings, add toP the rule:
Head(r1) ∨Head(r2)← Body(r1) (where, by definition,Body(r1) = Body(r2))

In the above example, we would add toredgreenradius objectthe rulecolor(X, red)∨
color(X, green) by merging the sibling rulescolor(X,red)and color(X,green)(each
one with empty body) as we wanted to do. Notice that an interpretation forP is also an
interpretation forP ′, since no new atoms are added. Then, a model forP is obtained as
a model of the enhanced versionP ′.



Definition 11. Let I be an interpretation forP ′. I is a model forP if every rule in
ground(P ′) is satisfied or overridden inI. I is a minimal model forP if no (proper)
subset ofI is a model forP.

Accordingly, we have to considerP ′ instead ofP when performing the reduction.

Definition 12. Given an interpretationI for P, the reduction ofP w.r.t. I, denoted
G(I,P) , is the set of rules obtained from ground(P ′) by removing 1. every rule over-
ridden in I; 2. every ruler such that Body−(r) 6= ∅; 3. the negative part from the
bodies of the remaining rules.

5 Conclusions

In this paper we argued, mainly by examples, that to become a viable knowledge repre-
sentation language that combines the expressiveness of disjunctive logic programming
and the convenience of inheritance, DLP< needs improvements. We showed that over-
riding in DLP< is too weak to accommodate a straightforward encoding of classical
examples of non-monotonic reasoning. The same is true for the treatment of multiple
inheritance. We proposed the strengthening of DLP< by modifying the notion of over-
riding and introducing the concept of specialization. To deal with multiple inheritance,
we defined the concept of siblings and enhanced programs. The new semantics pro-
vides the correct answers in the discussed examples, but we need more work on the
actual range of application of DLP< .

References

1. Buccafurri F., Faber W. and Leone N., 1999.Disjunctive Logic Programs with Inheritance.
Proc. of ICLP’99, pp. 79–93. Long version submitted for publication.

2. Dung P.M. and Son T.C., 1995.Nonmonotonic inheritance , argumentation, and logic pro-
gramming.In Proc. of the 3th Int’l Conference on Logic Programming and Non-Monotonic
Reasoning (LPNMR’95), pp. 316–329.

3. Gelfond, M. and Lifschitz, V., 1991.Classical Negation in Logic Programming and Dis-
junctive Databases,New Generation Computing 9, 1991: 365–385.

4. Horty J.F., 1994. Some direct theories of non-monotonic inheritance. In D. Gabbay, C. Hog-
ger, and J. Robinson, editors,Handbook of Logic and Artificial Intelligence and Logic Pro-
gramming, pages 111–187. Oxford Uni., 1994.


