A Metalogic Programming Language

Stefania Costantini
Gaetano Aurelio Lanzarone

Universita‘ degli Studi di Milano,

Dipartimento di Scienze dell’ Informazione

Via Moretto da Brescia 9, 1-20133, Milano, laly
Tel. +39-2-2772.222, Telex 335199 MI DSI 1,
e-mail: logic@imisiam.bitnet

Abstract

A language called Reflective Prolog is presented, aimed at moving a
step forward in the declarative representation of metaknowledge
within the logic programming approach. Reflective Prolog is a
metalogic programming and knowledge representation language which
allows the definition of object—level and metalevel sentences, both
expressed in Horn clauses extended with self-reference and
metaevaluation capabilities. Namely, language entities can be
described in the language itsell, in order to represent metaknowledge,
and a meta—evaluation level can be defined in a program, in order to
express auxiliary deduction rules. Metasentences are processed by the
language interpreter via an extended resolution procedure, with an
efficiency comparable in principle to that of a Prolog interpreter.
Alter stating the main objectives of the work and the relationship with
the literature, the syntax and the procedural semantics of the language
are described; how the model-theoretic semantics has been defined is
also mentioned. An example is then discussed in order to illustrate the
capabilities of Reflective Prolog. Since the interpreter of the language
has been implemented, the architecture of the implementation, based
on reflection mechanisms, is outlined. Directions of further reasearch
are sketched in the conclusions.

Introduction

The importance of metaprogramming and metaknowledge representa-
tion is well known in the Logic Programming and in the Antificial
Intelligence areas (see for instance [1]). The Logic Programming

219

community has recognized and practically cxploited (especially with
the technique of metainterpreters) Prolog's features in this direction
since its very beginning, and is in search of a systematization for a
logic metaprogramming language since the seminal work of [3].

The present situation seems to be the following [17]. On the one
hand, the implemented languages, like Metalog, lack a semantic
definition, though a first atempt has been made very recently [23].
On the other hand, work is in progress to rationalize the metalogic
features of Prolog and to give a precise meaning 10 metaprograms
[11], in view of the definition of a suitable language.

In this paper we present a metalogic programming language which we
have both syntactically and semantically defined (7], and fully
implemented in a working protolype [2]. The objectives of our work,
and the assumptions on which we have based our approach, are the
following.

[T] The main objective is to improve the declarative expressive power
ol a logic programming language. We also agree with Gallaire’s
claim [9] that in order to gain ground in the real world, the logic
programming approach has to provide more effective languages
and tools. We believe that this is necessary especially for sophisti-
cated applications like those in the Artificial Intelligence area,
which is still dominated by Lisp and other formalisms. Some ap-
plications of the problem=solving capabilities ol the language we
are proposing have been shown in [5].

[Z] Tt is advisable to maintain the language characteristics within com-
putationally tractable bounds, amenable in principle to efficient
implementations. We stayed within a first—order, Horn-clause,
resolution—based language.

[3] It is important to achieve the added power of the language not at
the expense of its logic basis. We gave up allogether the 'impure’
metalogic predicatcs of Prolog and dcfined differently the
metastructural features of the language [4]. Specifically, the lan-
guage has been equipped with sclf-reference capabilities based on
a full naming mechanism, similar to those of [19], and with a
multilevel structure. The latter consists of a base (object and meta)
execution level and a metaevaluation level; swilching between
levels is taken care of by an exiended resolution algorithm, and
has Feferman's logic reflection principles |8] as the semantic
counterpart.

220

[4] The realization of the language should not simply be an im-
plementation exercise, instrumental in obtaining the interpreter,
but has to be bhased on a suitable computational architecture. We
identified procedural reflection [21], [10] as the simple and
powerful technique best fitting the deductive apparatus of the lan-
guage.

1. The Language

Syntax and semantics of Reflective Prolog are fully defined in |7];
they are described here only by mentioning the main differences with
respect to the usual definitions of definitc programs [15].

The language dcflined by a Rellective Prolog program P consists of all
the well-formed formulac in Horn-clausal form obtained from the
alphabet of P. The main dilference in the alphabet with respect o
(raditional Horn=clause languages is the presence ol meravariables and
name constants. Each metavariable 1s either a funcrion metavariable
(written with first character '$') or a predicate metavariable (written
with first characier '#'). Each name constant is either a guoted name
constant (written enclosed in quotation marks) or a bracketed name
constant (written enclosed in angle brackets). The alphabet contains
the distinguished function symbols predication, predicate, function,
functor, arity, args, and the distinguished unary predicates solve,
- theory solve and theory fact.

The definition of terms is extended to deal with self-reference:
variables can be cither object variables or metavariables, and there is
a new class ol terms, name terms, that are deflined inductively as
follows.

(Q Name constants (either quoted or bracketed), described above.

(Q Function name terms, which arc ol the form function(functor(d),
arity(l), args(a1, ..., an)), where ¢ is a quoted name constant, 1 is
a non-negative integer number and (o1, ..., an) are name terms.
The following abbreviations are availahlc:

- “é(a1, ..., an)", where quotation is shifted [rom inside (o out-
side the term and arity is omitled; c.g., "f(a)" is shortened for
function(functor(“f"), arity(1), args("a")).

- “¢"“ (a1, ..., an), “f"("a") for the above example, where ar-
guments are extracted and arity omiltled.

221

(Q Relation name terms, which are of the [orm predication(predi-
cate(p), arity(l), args(r1, ..., 1)), where p is a bracketed name
constant, I is a non—negative integer number and (71, ..., Tn) are
name terms. Abbreviations similar to those for function name
terms are allowed, that is “p(11, ...,)" (e.g., predication(predi-
cate(<p>), arity(1), args("a")) can be shortened as “p(a)") as
well as <p>(T1, ..., 1) (<p>("2a")).

Name terms realize the ground representation of Reflective Prolog
terms and atoms in the language itself: the definitions above introduce
quoted name constants to denote constants, variables and function
symbols (e.g. “c", "V", "fun"); brackteled name constants to denote
predicate symbols (e.g. <pred>); function and relation name terms to
denote terms and atoms respectively (c.g. “fun”(“c","V") and
<pred>("c","V"), which are sintactically equivalent to "fun(c,V)",
“pred(c.V)"“).

Name terms arc internally represented in the language interpreter in
the form <p>(71, ...,), because subterms are directly accessible,
allowing easy inspection and composition/decomposition of metalevel
terms (with no need of either run—time parsing or complex term
manipulation, that a less expressive representation would require).
Conversion among the different available forms is taken care by the
language parser al program—consultation time.

Terms and atoms can be seen as divided into metalevel terms (atoms),
containing name terms and/or metavariables as subterms, and objecr—
level terms (afoms).

The notion of Rellective Prolog definite clause includes some syntactic
restrictions. First, levels are distinct: if the conclusion of a clause is an
object-level atom, the conditions must be objeci—level atoms as well
and, conversely, il the conclusion is a metalevel atlom, the conditions
must be metalevel atoms. Moreover, being the language based on
clear distinction between use and mention, a syntactic prevention
against auto—mention is provided: atoms such as p(<p>), containing a
reference 1o their own head predicalc among the arguments, are not
allowed.

A Reflective Prolog definite program is divided into a metaevaluation
level, consisting of the clauses decfining the distinguished predicate
solve and its auxiliary predicates, and a base level, consisting of the
remaining metalevel clauses and all the object=lcvel clauses. Precisely,
a predicate p belongs to the metaevaluation level if:

222

(i) its definition makes use of at least one of the distinguished predi-
cates solve, theory solve, theory fact,

(i1) it is directly or indirectly used in the definition of solve; that is, it
either appears in the body of a solve clause, or it is directly or
indirectly uscd in the definition of some predicate q that appears in
the body of a solve clause.

The distinguished predicates can only be uscd in clauses at the
metaevaluation level, and cannot be nested, not even one within the
other. Metaevaluation predicates cannot be used at the base level.
Conversely, basc=level predicates can be used al the metacvaluation
level, provided that the above—mentioned syntactic restriclions are
respected. All syntactic restrictions are verified at program—consulta-
tion time.

The uniflication algorithm is extended 1o deal with metavariables and
melalevel terms. Namely, rules for substitution are:

[Tl any object=lcvel variable V can be substituted by an object—level
term t distinct from V;

[2] any predicalc metavariable #V can be substituted by a bracketed
name constant <t>;

(3] any function metavariable 8V can be substituted by a metalevel
term t distinct from $V.

The extended unification algorithm has been proved to terminate
- finitely, giving either an mgu for the expressions to be unified, or
reporting that they are not unifiable [7]. Relying on a [lexible
representation ol metalevel terms, extended unification can be easily
implemented as a straight extension ol object-level unification, with
still linear complexity and only a slight overhead for the above-
specified “type-checking” in variable substitution.

Derivation by resolution is extended (o state the role of base (object—
or meta—) level clauses as well as metacvaluation clauses in a proof.
Forms of reflection are introduced to shiflt from the base level to the
metaevaluation level and vice versa. The delinition is the lollowing,
where the notation tA is adopted, to indicate the relation name term
denoting the alom A (for instance, tp(a) stands for <p>(“a"“)).

Definition. (Reflective SLD-Resolution, or RSLD-Resolution)
Let G be a dcfinite goal «A,...,Am,...,Axand C a clause. Il Amis
the selected atom in G, then G' is derived from G and C using
mgu © iff one of the following conditions holds:

(i) C is A=Bs,....Bq

6 is an mgu of Amand A

G' is the goal —(A1,...,Am-1,B1,...,Ba,Ams1,...,Ak) B
(i) C is solve(a)«S;,...,Sw,

Amstsolve (8) AAmstheory solve(8) AAmsttheory fact(d)

6 is an mgu of tAmand

G' is the goal —(As,...,Am-1,51,....Sw,Ams1,...,Ax) 0
(iii) Am is solve(M)

Cis A*—-B'I.....B:l

€ is an mgu of M and tA

G' is the E.oal C—(Ai....,Am-l,Bl,....Bﬂ.Arn'H.....Ak)e
(iv) Am is theory solve(M)
VG s AeBn,....Bq

6 is an mgu of M and tA

G' is the goal «(A,...,Am-1,B1,...,Ba, Ams1,... ,Ax) B
(v) Am is theory_fact(M)

C is A

6 is an mgu of M and tA

G’ is the goal 4—[A|,...,Am—:.Amn....,Ak)B

To explain, the definition considers the following different possibilities
about the sclected goal Am.

[0 Ams< solve(d), theory_solve(d), theory fact(s). The goal Amcan
be proved in two ways. First, (similar to classical SLD-Resolution)
using the clauses defining the corresponding predicate (case (i)):
for instance, il Am= p(a,b), the clauses deflining the predicate p,
whose head uniflies with p(a,b). Second, the clauses delining the
solve predicate, whose head argument unifies with tAm, can be
used (case (ii), upward reflection): in the above example, clauses
with head solve(<p>("2“,"b")), or solve(<p>($X,8Y)) or
solve(#P("a",$K)), and so on.

2] Am = solve(d). Again, there are two choices. First, using the
clauses defining the predicate solve itsell, similarly to any other
goal (case(i)). Second, using the clauses dcfining the predicate
corresponding to the atom denoted by the argument & of solve
(case (iii), downward reflection): for instance, if Am =
solve(<g>("X","b")), the clauses delining the predicate g, whose

224

head unifies with q(X, b). That is, cach goal gencrated at the
metaevaluation level can be tried at the metaevaluation level, as
well as at the base level.

[3] Am = theory_solve(8). The clauses deflining the predicate cor-
responding to the atom denoted by & can be used (case(iv),
downward reflection): il for instance Am = theory solve(<h>("k")),
the clauses deflining the predicate h, whose head unifies with h(k).
That corresponds to proving at the base level the (dereferenced)
argument of theory solve.

(4] Am = theory fact(d). A fact is searched at the base level that
matches the (dereferenced) argument of theory fact. For in-
stance, theory fact(#P("a")) matches the representation
<h>("a") of a fact h(a), instantiating #P to <h>.

The resolution procedure implemented in the Reflective Prolog inter-
preter follows a generalized depth—[irst strategy, where cases (i) and
(iii) have higher priority than (ii): each goal is first attempted at the
base level and then at the metaevaluation level. It is worth noting that,
given a selected atom Amin a deflinite goal G, the new selected alom
Am' in the new goal G' ohtained as described above is treated in the
same way: that is, an RSLD-Refutation is in general obtained by an
interleaving betwcen base level and metaevaluation level.

The flollowing is a simple example of a Reflcctive Prolog program.

/* metaevaluation level */

solve(#P($X,8Y)):—symmetric (#P) ,theory_solve (#P($Y,$X)).
/* base level */

/" metalevel */

symmetric (<friend>).

/* object-level */

friend(giorgio,mary).

friend(lucia,albert).

The solve rule delines symmetry: (the objects denoted by) $X and $Y
are in the relation (denoted by) #P in the theory, provided that the
theory contains the assertions of #P being symmetric and it can be
proved that 8Y and $X are in #P.

Queries can concern both objeci—level and metalevel predicales. For
instance, the query 7-symmetric(#P) instantiates #P to <friend>; the
query ?-friend(albert,lucia) fails at thc base level, causing the applica-
tion of the solve rule, which first proves symmetric(<friend>) and

225

then attempts theory_solve(<friend>("lucia","albert")), dctermining
a shift—=down to friend(lucia,albert) that succeeds.

This formulation avoids the problem of circular application of
symmetry when expressed at the object=level, since the call to
theory_solve results in directly proving its argument at the base level;
in addition, exclusion of the metaevaluation rule when it is no longer
needed significantly improves efficiency.

At this point, a comparison with other approaches is in order.

The distinguished predicate solve is nol an axiomatization of
provability, but expresses only what is beyond the normal behaviour.
The distinguished predicate theory_solve stands for provability in the
theory, but it is engendered by the interpreter rather than explicitly
defined: it is a way for a theory to refer implicitly to its own inference
mechanism. '

Reflective Prolog is not an amalgamated language in the sensc of [3]:
the provability relation is not explicitly expressed in the language, and
it is not the case that no theorem is provable that cannot be proved
either in the language or in the metalanguage. The different levels are
distinct, but procedurally and semantically integrated. The flexibility
and power of their interaction through the extended resolution makes
new theorems provable, which cannot be proved in the base—level or
in the metaevaluation level only.

The metaevaluation level of Reflective Prolog is basically different
from a Prolog metainterpreter, for the [ollowing reasons. First,
base-level resolution nced not be reproduced at the metaevaluation
level, with the consequent gain in efficiency and conciseness. Second,
different metaevaluation rules can be easily integrated, relying on the
fact that each goal is metaevalualed when needed. On the contrary,
with a Prolog mectainterpreter it is nccessary to explicitly state which
goals are lo be melaevaluated and which ones can be directly
evaluated: possible uses of metaknowledge in a prool must therefore
be identilied in advance. Third, since basc clauses and metaevalua-
tion clauses are treated in the same way by the interpreter, there is no
run—time overhead related to upward and downward refllection (other
than referencing-derefcrencing a goal). Fourth, the interpreter per-
forms run—time checks to prevent auto-relerence, lorcing immediate
failure of calls, such as p(<p>), that could be attempted via back-
tracking on the solve rules, leading to infinite loops; solving the same
problem in Prolog metainterpreters is not at all straightforward.

226

To summarize, Reflective Prolog provides an automathic (“when
needed“) form of reflection (considered an open problem in [16]).
This overcomes the “non insignificant control problem* [3] of when
to use reflection, that contrasts with the principle of expressing
knowledge in declarative form and leaving the procedural aspects to
the deductive apparatus of the language [13]. Augmenting resolution
with implicit reflection Ieads to reintroduce a declarative attitude in the
definition of metaknowledge, without sacrificing efficiency.

The declarative semantics of the language has been defined in a
model-theorelic fashion: a least model semantics has been provided,
based on the definition of a concepl of Least Reflective Herbrand
Model of a theory. Starting from a notion ol Extended Herbrand
Interpretation of a Reflective Prolog definite program P (introduced to
deal with name terms and distinguished predicate symbols), a Refllec-
tive Herbrand Model for P is defined to be an Extended Herbrand
Interpretation which is a model for the theory P' obtained by applying
to P the first of the Reflection Principles introduced in [8]. The Least
Reflective Herbrand Model has then been characterized (similarly to
the classical Horn—clause language semantics [15]) as the fixpoint of
a suitable mapping, in order to provide a link between the declarative
and procedural semantics of a Reflective Prolog deflinite program.

2. An example

The declarative representation ol the transitivity property of a binary
relation in Prolog:

r(X,Y):=r(X,2),r(Z,Y).

cannot be procedurally used without problems, since with the depth-
first strategy the interpreter may undergo an infinite branch before
examining success branches. The problem is the application of the
recursive clause twice consecutively: it has to be interleaved with the
application of different clauses (facts): using a flag for this purpose
[18] is awkward. Although in some cases a transitive relation can be
defined in terms of transitive closure of a subrelation, this is not
feasible for every relation. Even for those relations that can be defined
as closures, it is not always possible to represent all the intended
connections. Given for example the clauses:

parent(a,b).
parent(c,d).

227

ancestor(b,c).
ancestor(X.Y):-parent(X,Y).
ancestor(X,Y) —parent(X,Z),ancestor(Z,Y).

the solutions (a,d) and (b,d) to the query 7- ancestor(X,Y) cannot be
obtained unless the following clause is added to the database (deter-
mining repetitions in answers):

ancestor(X,Y):—parent(Z,Y),ancestor(X,Z).

But also in this case, adding the fact ancestor(c,e) the same query
cannot obtain the answers (a,e) and (b,e)..

The problem occurs not only with Prolog, but also with other
representation and inference systems [20]. One solution to determine
the couples belonging to a transitive (as well as symmetric and/or
rellexive) relation, is that of representing the relation couples by
means of composable sets (as in [20]), and defining a suitable
metainterpreter which uses them to infer those couples not explicitly
asserted [6].

A simpler solution, which is possible in Reflective Prolog, is the
following.

/* metaevaluation level */

solve(<ancestor>($AL)):~-fact(<ancestor>($AL)). [

solve(<ancestor>($X,8Y)):~fact(<ancestor>($X,$2)), 2
solve(<ancestor>(%$Z,5Y)).

fact(<ancestor>($AL)):~theory fact(<ancestor>($AL)).
fact(<ancestor>($AL)) . ~theory_fact(<parent>($AL)).

/* base level */
parent(a,b).
parent(c,d).
ancestor(b,c).
ancestor(c,e).

Rules (1] and (2| define transitivity of the relation ancestor in a way
that prevents loops by forcing each transitive step to be performed on
facts; the predicate fact gives the possibility of considering both
ancestor and parent [acts.

For instance, the query ?- ancestor(a,e) is proved by means of
subsequent applications of rule [2] and a final application of rule (1],
precisely in the following way.

228

(Q On failure of the goal at the object level, the consequent shift—up
leads to selection of rule (1] that fails because neither the fact an-
cestor(a,e) nor the fact parent(a,e) exist in the database. The
extended unification algorithm provides a special feature for name
terms, i.e. it is able to unify <ancestor>("a","e") and <ances-
tor>($AL) by binding $AL to ["a","e"].

(Q Selection of rule [2] results in attempting
fact(<ancestor>("a",%2)), solve(<ancestor>($Z,"e")).
The first subgoal succeeds via the second alternative of fact, that is
fact(<ancestor>("a",$2)):~theory fact(<parent>(“a"“,$2))
that instantiates $Z to "b".

(Q Then solve(<ancestor>("b", "e")) is attempled, leading in a
similar way to solve(<ancestor>("c","e")) that succeeds via rule
[T} and the first alternative of fact, concluding the proof.

To further develop the example, it can be noted that a family has
actually a tree structure, where ancestors are connected 1o descendants
by paths (a meraphor can be stated between the two concepts, to follow
the terminology of [12]). In fact, the definition of path-finding in a
generic directed acyclic graph, shown below, is appearently analogous
o ancestor determination.

solve(<path>(8AL)):-fact(<path>($X,$Y)). (1]
solve(<path>(8X,8Y)):~fact(<path>($X,$2)),
solve(<path>($Z, $Y)).

fact(<path>($AL)):-theory fact(<path>($AL)).
fact(<path>($AL)):~theory_fact(<arc>(3AL)).

Hence, ancestor finding could also be obtained by adapting path
finding, adding the following part:

solve (#P($AL)):—map (#P,#Q),solve (#Q($AL)). @
solve (#P($X,8Y)) :=symmetric (#P),
theory_solve (#P(3Y,$X)). 4]

map (<parent>,<arc>).
map(<ancestor>,<path>),
symmetric(<map>).
parent(a,b).

parent(c,d).
ancestor(b,c).
ancestor(c,e).

229

Suitable facts map family concepts into tree concepts (and vice versa,
in that map is declared as symmetric), and metaevaluation rule (3]
engenders the mapping. Rule [@] concerning symmetry is the same as
in the previous section.

Notice that composition of different solve clauses is obtained simply
by justaposition, while composition of metainterpreters needs
elaborate techniques [22].

Rather than mapping one solution onto the other, a common general
structure can be identiflied, expressed by the rules below,

solve (#P($AL)):~fact(#P(SAL)).

solve (#P($X,8Y)): ~transitive (#P) fact (#P($X.$2)),
solve(#P($Z,8Y)).

fact (#P($AL)):—theory fact(#P(SAL)).

fact(#P($AL)):—subsumes(#P.#Q), theory fact(#Q(SAL)).

Rules (1] and 2] 'dell'inc in general the transitivity of a relation, relying
on the explicit declaration of a predicate being transitive. fact takes
subsumption (intended as set inclusion of relation extensions) into
account in facts lookup, stating that il a predicatc #P subsumes
another predicate #Q, then #P(SAL) (where $AL denotes the argu-
ment list) holds in the theory if #Q($AL) holds. It also relies on
explicit declaration of subsumption.

Supposing that the above theory is available, for instance in a system
library, ancestor determination as well as path-finding can be
obtained by adding to that theory a suitable definition of the base
level, containing the object [acts plus metalevel declarations of
transitivity (for ancestor and path respectively) and subsumption (of
parent by ancestor and of arc by path). In the family case for
instance, the basc level to be added is the following.

subsumes (<ancestor>,<parent>).
transitive (<ancestor>),
parent(a,b).

parent(c,d).

ancestor(b,c).

ancestor(c,e).

In substance, the general theory of transitivity constitutes a metaphor
for both families and directed acyclic graphs powerful enough not to
require to be adapted, but only to be used. Put aside the problem of
how to recognize such abstractions, in Refleclive Prolog it is possible

230

o express and make use of them.

The Reflective Prolog interpreter also has the ability to expand and
include in the data base some consequences of the program during
program consullation, guided by directives expressed as metasen-
tences. In the example, a directive transitive closure(#P) can be
defined (and then called over <ancestor>), that expands the defini-
tion of its argument, adding to the databasc all the facts obtained as
transitive closure from those already present. In this case, any subgoal
concerning ancestor is solved in just one step. Trading off time
against space is left to the user; in both cases, expressiveness and
conciseness in theory definition are not alfected.

3. The implementation

Reflective Prolog has been implemented on the basis of a Horn clause
language with procedural reflection, formerly developed (in Quintus
Prolog on the IBM 6150 workstation) in our Department.

The procedural reflection architecture allows program execution to
develop (on demand) along an arbitrary number of levels; at each
level, the deductive apparatus of the basic formalism (in this case
Horn clauses) is fully available. Shifting by procedural reflection to
the next upper level, a program can look at and/or modify its own
computational state. The state is explicitly modeled as the representa-
tion of the database and the proof tree (the latter including the binding
environment) “frozen* at the moment of the shift—up.

Procedural reflection is a too low-level concept for direct use in
applications, but is useful as an implementation tool for more
advanced formalisms. It has been used for several features, like
inspection and modification of variable bindings, necessary for the
implementation of basic primitives of Reflective Prolog, namely
exiended unification and referentiation/derclerentiation. Furthermore,
control predicates (like 'cut’, 'fail') have been realized by procedural
reflection, via access to the control part of the model (proof tree).
These predicates do not have a high~level counterpart in Reflective
Prolog, being related to aspects that are not explicit in the language.

Prolog’s metalogic predicates for term inspection/manipulation are of
course unnecessary in Reflective Prolog since explicit representation of

terms and atoms is available, only the syntactic identity '==' is
retained, realized via unification as in Prolog.

A prototype of the Reflective Prolog interpreter is actually working

231

[2], and includes a parser of the language (realized with the DCG
approach), for translating programs and goals into a suitable internal
form.

4. Conclusive remarks

In this paper we have presented Reflective Prolog, a metalogic
programming language. The main objective was to show how better
expressiveness, flexibility and computational power can be achieved
in the context of a Horn—clause, resolution—based language with a
firm semantic ground: syntactically, by introducing secll-reference
capabilities; computationally, by integrating forms of reflection in
derivation.

The possibility is being investigaled of making some aspects of the
inference process explicit, so as to allow high-level forms ol control
(thus eliminating the need of predefined predicates like 'cut’, 'fail’).
The difficult is not in technical feasibility, but in the identification of:
(i) what aspects to make explicit, and how to cope with them
semantically; (i) in which form they should be represented in a
program, so as o preserve conceptual clarity, and to allow easy
manipulation.

One theoretical open problem concerns the introduction of negation,
in a semantically sound way. Recent investigations suggest [14] that
the availability of a distinguished predicate, like solve, standing for
provability, could help safely introducing 'negation as failure’ in the
language.

Presently, Reflective Prolog has no construct for the representation
and manipulation at the metalevel of object—level clauses. Work is
under way to defline constructs able to include in the language the
representation and use of several theories. However, in our opinion a
proper use of theories is mainly related to hypothetical reasoning or
reasoning involving multiple agents; in fact we think that the Reflective
Prolog multilevel structure overcomes in other cases the need of using
theories that arises in formalisms lacking this structure.

We are also carrying on studies and experiments on applying
Reflective Prolog to sophisticated problem solving and intelligent
reasoning. For example, some forms of non—monotonic reasoning
seem amenable to elegant representation, but more work is needed to
present results.

232

Acknowledgements

This work has been partly supported by IBM Italia S.p.A in the
context of a joint study with the Computer Science Department of the
University of Milan, and partly by the Italian Ministry ol Public
Education.

References

[1]

2]

3]

[4]

[5]

6]

7]

(8]
(9]

L. Aiello, G. Levi, The Uses of Metaknowledge in Al systems, in:
P. Maes and D. Nardi (eds.), Mecta=level Architectures and
Reflection, North—Holland 1988, 243-254.

R. Barki, G. Casaschi, S. Costantini, P. Dell'Acqua and G.A.
Lanzarone, The Implementation of Reflective Prolog, Inlernal
Report, University of Milano, Computer Science Department,
1989.

K. A. Bowen, R. A. Kowalski, Amalgamaring Language and
Metalanguage in Logic Programming, in: K.L. Clark and S.-A.
Tarnlund (eds.), Logic Programming, Academic Press, 1982,
153-172.

S. Costantini, G. A. Lanzarone, Towards Metalogic Program-
ming, in: Proceedings of Compurational Intelligence 88, Milano,
September 26-30, 1988, 41-52 (in course ol publishing by
North—Holland).

S. Costantini, G. A. Lanzarone, Problem Solving in Metalogic
Programming, in: Proceedings of IPCCC 89 - IEEE Eighth Annual
International Phoenix Conference on Computers and Communica-
tions, Phoenix, Arizona, March 22-24, 1989,

S. Costantini, G. A. Lanzarone, On the Properties of Relations in
Prolog and Beyond, Internal Report n. 32/88, University of
Milano, Computer Science Department, 1988 (appeared in
italian in: Proceedings of AICA Conference, 1988).

S. Costantini, Formal Definition of Reflective Prolog, Internal
Report n. 49/89, University of Milano, Computer Science
Department, 1989.

S. Feferman, Transfinite Recursive Progressions of Axiomalic
Theories, Journal of Symbolic Logic, n. 27, 1962, 259-316.
H. Gallaire, Boosting Logic Programming, (invited talk) in: J.-L.
Lassez (ed.), Proceedings of the Fourth International Conference
on Logic Programming, MIT Press 1987, 962-988.

[10] R. Ghislanzoni, L. Spampinato and G. Torniclli, Reflection as a

Tool for Integration: an Exercise in Procedural Introspection,
Proceedings of the Tenth International Joint Conlerence on Ar-
tificial Intelligence, Milano, August 23-28, 1987, 44-47,

233

[11]P.M. Hill, J.W.Lloyd, Analysis of Meta—programs, in: [17],
27-42,

[12] B. Indurkhya, Constrained Semantic Transference: A Formal Theory
of Metaphors, in: A. Prieditis (ed.), Analogica, Pitman 1988,
129-157. :

[13]R. A. Kowalski, Logic for Problem Solving, North—Holland El-
sevier, New York, 1979,

[14] V. Lifschitz, Negation as Failure and Introspective Reasoning, In-
vited Talk, Third International Symposium on Methodologies for
Intelligent Systems, Torino, Italy, October 12-15, 1988.

[15]1.W. Lloyd, Foundations of Logic Programming, (2nd Ed.), Sprin-
ger—Verlag, 1987.

[16] P. Maes, Introspection in Knowledge Represeniation, Proceedings of
the 7th European Conference on Artificial Intelligence, Brighton,
UK, 1986.

[17] Meta88, Proceedings of the Workshop on Meta—programming in
Logic Programming, Bristol, June 22-24, 1988.

[18] D. Nute, A Programming Solution to Certain Problems with Loops in
Prolog, ACM SIGPLAN Nolices, vol. 20, n. 8, August 1985,
32-37.

[19] D. Perlis, Languages with Self—~Reference l: Foundations, Artificial
Intelligence, vol.25, 1985, 301-322.

[20]8.C. Shapiro, Symmetric Relations, Intensional Individuals, and
Variable Binding, Proceedings of the IEEE, vol. 74, n.10, Oc-
tober 1986, 1354-1363.

[21] B. C. Smith, Reflection and Semantics in LISP, Xerox PARC
ISL-5, Palo Alto, 1984.

[22] L. Sterling, A. Lakhotia, Composing Prolog Meta—Interpreters,
Proceedings of the S5th International Logic Programming Con-
ference, Seattle, 1988.

[23] V.S. Subrahmanian, Foundations of Metalogic Programming, in:
[17], 53-66.

