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1. ASP

In this section, we briefly recall the basics about Answer Set Programming (Baral, 2003; Lifschitz,
1999; Marek & Truszczyński, 1999). In this logical framework, a problem can be encoded —by
using a function-free logic language— as a set of properties and constraints which describe the
(candidate) solutions. More specifically, an ASP-program is a collection of rules of the form

H ← L1, . . . ,Lm , not Lm+1, . . . , not Lm+n .

where H is an atom m > 0, n > 0 and each Li is an atom. The symbol not stands for what
is called “negation-as-failure” or “default negation”. Various extensions to the basic paradigm
exist, that we do not consider here all of them as they are not essential in the present context.
The left-hand side and the right-hand side of the clause are called head and body, respectively.
A rule with empty head is a constraint. A rule with empty body is a fact. A constraint ←
L1, . . . ,Lm , not Lm+1, . . . , not Lm+n can be seen as a shorthand for a rule of the form p ←
L1, . . . ,Lm , not p, not Lm+1, . . . , not Lm+n (where p is a fresh atom).

The semantics of ASP is expressed in terms of answer sets (or equivalently stable models, (Gel-
fond & Lifschitz, 1988)). Consider first the case of a ground1 ASP-program P which does not
involve negation-as-failure (i.e., n = 0). In this case, a set of atoms X is said to be an answer set
for P if it is the (unique) least model of P . Such a definition is extended to any ground program
P containing negation-as-failure by considering the Gelfond-Lifschitz reduct (GL-reduct) PX (of
P ) w.r.t. a set of atoms X . PX is defined as the set of rules of the form H ← L1, . . . ,Lm for
all rules of P such that X does not contain any of the literals Lm+1, . . . ,Lm+n . Clearly, PX does
not involve negation-as-failure. The set X is an answer set for P if it is an answer set for PX . The
rationale behind the GL-reduct is that no atom which belongs to an answer set can (directly or in-
directly) depend upon the negation of another atom that belongs to the same answer set. Therefore,
the GL-reduct performed w.r.t. a set of atoms X which is a “candidate” answer set eliminates those
rules involving some literal not A where A ∈ X . All negative literals can at this point be dropped
from remaining rules as they trivially hold in X . Thus, X is actually an answer set if it models the
resulting program. The meaning of a constraint then is that the literals in the body cannot be all
true, otherwise the whole (resulting) rule could not be satisfied in any answer set.

1. As customary, a term (atom, literal, rule, . . . ) is ground if no variable occurs in it. A ground program is a program
that does not contain variables.
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Once a problem is described as an ASP-program P , its solutions (if any) are represented by the
answer sets of P . Unlike other semantics, a logic program may have several answer sets, or may
have no answer set, because conclusions are included in an answer set only if they can be justified.
The following program has no answer set: {a ← not b. b ← not c. c ← not a .}. The reason
is that in every minimal model of this program there is a true atom that depends (in the program)
on the negation of another true atom. Whenever a program has no answer sets, we will say that
the program is inconsistent. Correspondingly, checking for consistency means checking for the
existence of answer sets.

Let us consider the program P consisting of the three rules

r ← p. p ← not q . q ← not p.

Such a program has two answer sets: {p, r} and {q}. If we add the rule (actually, a constraint)← q .
to P , then we rule-out the second of these answer sets, because it violates the new constraint. This
simple example reveals the core of the usual approach followed in formalizing/solving a problem
with ASP. Intuitively speaking, the programmer adopts a “generate-and-test” strategy: first (s)he
provides a set of rules describing the collection of (all) potential solutions. Then, the addition of
constraints rules-out all those answer sets that are not desired real solutions.

Given a rule γ in a languageL, the grounding of γ w.r.t.L is the set of all ground rules obtainable
from γ through (ground) instantiation using the constant symbols of L. Usually, given a program
P and a rule γ ∈ P , we will consider the grounding of γ w.r.t. the language underlying P . The
grounding of a set of rules is defined similarly. Given a (not necessarily ground) program P , a set
of atoms is an answer set for P if it is an answer set for the grounding of P .

To find the solutions of an ASP-program, an ASP-solver is used. Several solvers have be-
came available, see (Web references on ASP solvers), each of them being characterized by its own
prominent valuable features. As it is well-known, ASP solvers produce the grounding of the given
program as a first step, as they are able to find the answer sets of ground programs only.2

The expressive power of ASP, as well as, its computational complexity have been deeply in-
vestigated. The interested reader can refer, for instance, to (Dantsin, Eiter, Gottlob, & Voronkov,
2001). The reader can also see (Baral, 2003; Dovier, Formisano, & Pontelli, 2009), among others,
for a presentation of ASP as a tool for declarative problem-solving.

2. Weight and Cardinality Constraints in ASP

Weight and Cardinality constraints were introduced in (Niemelä, Simons, & Soininen, 1999; Si-
mons, Niemelä, & Soininen, 2002), where their semantics is also presented, as well as their im-
plementation in the context of the smodels ASP solver. Though the computational complexity of
ASP with weight constraints remains the same, the modeling power of the extended language is
higher, as proved by the wide application of this construct (see, e.g., (Soininen, Niemelä, Tiihonen,
& Sulonen, 2001)). A Weight Constraint is of the form (in the language of lparse (Syrjänen, 2000),
i.e., in the language of the grounding module of smodels3):

l [a1 = wa1 , . . . , an = wan , not b1 = wb1 , . . . , not bm = wbm ]u

2. Work is under way both theoretically and practically to overcome at least partially this limitation (cf., (Dal Palù,
Dovier, Pontelli, & Rossi, 2009; Lefèvre & Nicolas, 2009), for instance). However, at present almost all ASP solvers
perform the grounding.

3. This language has however been widely adopted. Most existing answer set solvers are compliant w.r.t. this language.
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where the ais and bis are atoms. Each literal in a constraint has an associated weight, i.e., the weight
of each ai is wai and the weight of each not bj is wbj The numbers l and u give, respectively, the
lower and upper bounds of the constraint. The weights and bounds are real numbers. Intuitively, a
weight constraint is satisfied by a set of atoms S if the sum of weights of those literals occurring in
the constraint that are satisfied by S is between l and u . Either of the bounds can also be omitted,
in which case it is taken to be not relevant. The intended meaning is that an answer set is allowed to
include a subset of the atoms occurring in the constraint so that the corresponding sum of weights
results within [l , u], where the weight of a negative literal not bj is counted only if bj is not in the
answer set.

Plain literals can be seen as a special case of weight constraint, thus a program rule (called
weight constraint rule) will have the form

C0 ← C1, . . . ,Cn .

where the Cis are weight constraints. As mentioned, the extra-expressivity is obtained without
increasing complexity of ASP. As proved in (Niemelä et al., 1999; Simons et al., 2002), deciding
whether a program composed of a set of ground weight constraint rules has an answer set is still
NP-complete, and computing an answer set is still FNP-complete.

Weight constraints have become in time a very important and widely used programming tool in
ASP, also in the formulation where all weights are equal to one. Weight constraints in this special
form are called Cardinality Constraints, for which the following shorthand form is provided:

l {a1, . . . , an , not b1, . . . , not bm} u

In order to be able to compactly write down sets of literals for weight constraints, (Niemelä
et al., 1999; Simons et al., 2002) introduce a notion of a conditional literal of the form l : d where
l is a literal and the conditional part d is a domain predicate, where the subset of given program
defining domain predicates consists of domain rules, syntactically restricted so as to admit a unique
answer set that should be relatively efficiently computable. All the other rules in the program are
required by most answer set solvers to be domain-restricted in the sense that every variable in a
rule must appear in a domain predicate which occurs positively in the body of the rule. A formal
definition can be found in (Syrjänen, 2000), Section 4.4, or (Baral, 2003), Section 8.1.2.

A conditional literal corresponds to the sequence of all the instances of the literal l obtained
by making a substitution to l : d such that for the resulting l ′ : d ′, d ′ is in the unique answer
set of the domain part of the program. This allows programmers to write, in domain-restricted
programs, weight and cardinality constraints involving variables. We remind the reader that, after
parsing, current ASP solvers perform the grounding of given program where a module (that we will
call “grounder”) produces the ground instantiation of the program, by substituting all variables by
means of constants in every possible way. The grounder also performs a number of useful checks
and simplifications. For instance, it is able to get rid of domain predicates after computing their
extension.

Definition of syntax and semantics of PWCs, basically reported from (Pichler, Rümmele, Szei-
der, & Woltran, 2010), is provided below. Optional for Intelligent Agents students

Definition 2.1 (Weight constraint programs (PWCs)) A (ground) program with weight constraints
(PWC) is a triple Π = (A, C,R), where A is a set of ground atoms, C is a set of weight constraints
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(WCs, or constraints for short), and R is a set of rules, defined as follows: each constraint c ∈ C
is a triple (S , l , u) where S is a set of weight literals over A and l ≤ u are non-negative integers,
the lower and upper bound. A weight literal over A is a pair (a, j ) or (¬a, j ) for a ∈ A and
1 ≤ j ≤ u + 1, the weight of the literal. Given constraint c = (S , l , u) ∈ C, we indicate S with
Cl(c), l with l(c) and u with u(c). Moreover, we sometimes write a ∈ Cl(c) and ¬a ∈ Cl(c) as
an abbreviation for (a, j ) ∈ Cl(c) and, respectively, (¬a, j ) ∈ Cl(c) for an arbitrary j . A weight
constraint where for every weight literal (a, j ) ∈ Cl(c) and (¬a, j ) ∈ Cl(c) we have j = 1 is
called a cardinality constraint. A rule r ∈ R is a pair (h, b) where h ∈ C (the head) and b ⊆ C (the
body). For any rule r , we indicate h with (H(r)) and b with B(r). Given a constraint c ∈ C and a
set of atoms I ⊆ A, we denote the weight of c in I by

W (c, I ) =
∑

(a,j )∈Cl(c),a∈I
j +

∑
(¬a,j )∈Cl(c),a 6∈I

j ·

I is a model of c (denoted by I |= c) iff l(c) ≤ W (c, I ) ≤ u(c). For a set C ⊆ C, I |= C iff
I |= c for all c ∈ C . Moreover, C is a model of a rule r ∈ R (denoted by C |= r ) iff h(r) ∈ C
or b(r) 6⊆ C . For a set R ⊆ R, C |= R ⇔ C |= r for all r ∈ R. I is a model of Π (denoted by
I |= Π) iff {c ∈ C : I |= c} |= R. If the lower bound of a constraint c ∈ C is missing, we assume
l(c) = 0. If the upper bound is missing, I |= c iff l(c) ≤W (c, I ).

Answer sets of a PWC can be obtained by means of an extension to the GL-reduct that, instead
of removing rules where some negative literal in the body is not modeled in given set of atoms
(candidate answer set) I , removes rules where some weight constraint in the body is not modeled.
To make the check easier, upper bound of constraints is removed and lower bound is rearranged, so
as to get rid of negative literals. All the remaining weight constraints are thus fulfilled (i.e., their
bounds are respected). For each constraint occurring as the head of a rule, that rule is replicated,
one copy for each of its positive literals which is in I . Thus, a positive PWC is obtained where the
heads of rules are atoms. Finally, I is actually an answer set if it model this resulting program.

Definition 2.2 (PWC Semantics) Consider PWC Π = (A, C,R) and an interpretation I ⊆ A.
Following (Simons et al., 2002), the reduct cI of a constraint c ∈ C w.r.t. I is obtained by removing
all negative literals and the upper bound from c, and replacing the lower bound by

l ′ = max (0, l(c)−
∑

(¬a,j )∈Cl(c),a 6∈I
j )·

The reduct ΠI of program Π w.r.t. I can be obtained by first removing each rule r ∈ R
which contains a constraint c ∈ B(r) with W (c, I ) > u(c). Afterwards, each remaining rule r is
replaced by the set of rules (h, b), where h ∈ I ∩Cl(H(r)) and b = {cI : c ∈ B(r)}. Interpretation
I is called an answer set (or stable model) of Π iff I is a model of ΠI and there exists no J ⊂ I
such that J is a model of ΠI .

3. Weight and Cardinality Constraints: a Case-Study

Our running example is freely inspired to the Italian Computer Science undergraduate Program, that
we shortly describe here in its basic features.

In order to get a bachelor degree in Computer Science (“Informatica”), an Italian student is
required to obtain 180 credits. Most of them must be obtained by attending courses and passing the
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corresponding exams. The remaining ones can be obtained by means of stages and a short Thesis.
There is a certain flexibility, so usually the number of credits that should be obtained from courses
is allowed to vary within a range, say (just for example, as actual ranges vary among different
Universities and tracks) between 153 and 171. There are different possible choices for the courses
to attend, so students are required to present what is called a “plan of studies”, that must be approved
by a Committee.

Some courses must be taken at a certain year, for others there is some flexibility. For simplicity,
we assume that the latter can be taken at any year and we neglect constraints related to the order
in which certain courses should be taken. Basically, the above (as described up to now) might be
summarized by a single ASP rule (precisely, a fact) consisting of the following weight constraint,
that generates possible plans of studies (that we indicate with ps). There, the cis are names of
courses, and the wci s are their values in credits. in ps(ci , j ) means that course ci is inserted into
the plan of studies, at year j . Since some courses are assigned to a certain year and others are free,
in the formulation below the Ys can be either a constant (ranging from one to three) or a variable,
say Y , in domain course year, again ranging from one to three:

153 [in ps(c1,Y1) = wc1 , . . . , in ps(cn ,Yn) = wcn ] 171

A specific instance of this constraints might, e.g., look like:

153 [in ps(algorithms with lab, 1) = 12, in ps(calculus basic, 1) = 6,
in ps(algorithms advanced,Y ) : course year(Y ) = 12, . . .] 171

Below, for the convenience of the reader, we report a tiny instance of such a problem, in the
form of real ASP code which can be run using smodels or any other solver compliant to the lparse
language.

course_year(1..3).

32[in_ps(programming,1)=12,
in_ps(computer_architectures,V):course_year(V)=6,
in_ps(databases,V):course_year(V)=12,
in_ps(theoretical_cs,V):course_year(V)=6,
in_ps(algorithms,2)=12,
in_ps(calculus,3)=6,
in_ps(optimization,3)=6]52.

This reduced instance (where also the lower and upper bound are given just for an example)
allows us to discuss some aspects of this formalization that might in our opinion be improved.
To follow the discussion, the reader is required to understand basic ASP code. In fact, we will
point out the pitfalls and possible improvements of the formalization. In the first place, we will
propose standard ASP solutions. Then, we will propose an enhanced formulation which in our view
encompasses the improvements in a more readable and also potentially more efficient way.

First, in this setting the predicate in ps should be defined only in the context of the constraint,
in the sense that its definition should not possibly be altered by statements that lay outside. This
might be obtained by means of a declaration, and might be easily checked during the grounding
process. This aspect is impossible to obtain in standard ASP. Second, we would like to be sure that
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constants which occur inside the constraint represent existing course (namely those defined below)
and existing course years, as defined above.

course(programming).
course(computer_architectures).
course(databases).
course(algorithms).
course(theoretical_cs).
course(calculus).
course(optimization).

This kind of “domain checking” is very difficult to obtain in ASP. One way is reported below.
One has to define, in order to respect domain restrictedness, one fact for each constant c occurring
in the program, say val(c). Then one may specify when each argument is mistaken (that is, it does
not belong to the required domain). Finally, constraints should be added to state that such errors
must not occur.

val(1).
val(2).
val(3).
val(programming).
val(computer_architectures).
val(databases).
val(algorithms).
val(theoretical_cs).
val(calculus).
val(optimization).

% domain restriction for arguments of in_ps
in_ps1err(K):- val(K),not course(K).
in_ps2err(Z):- val(Z),not course_year(Z).

% domain check for arguments of in_ps
:- val(C),val(Z),in_ps(C,Z),in_ps1err(C).
:- val(C),val(Z),in_ps(C,Z),in_ps2err(Z).

The above formulation has the problem that whenever one adds or drops new constants from the
program (by adding/deleting rules), and we mean whatsoever constant, not only those related to the
piece of code that we are considering, one has to update the val facts accordingly. Notice that the
type checking is performed outside the weight constraint, with no evidence of the fact that it refers
to it.

The above-listed weight constraint is not yet fully satisfactory with respect to all aspects of the
problem at hand. An aspect which is not represented is that repetitions are not allowed: obviously,
you cannot build a plan of study where you take for instance algorithms several times, e.g., both at
the first and third year. This can be obtained by adding the following constraint:
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:- in_ps(C,Y),course(C),course_year(Y),
in_ps(C,Y1),course_year(Y1),Y!=Y1.

Equivalently, one may adopt the cardinality constraint:

0{in_ps(C,Y):course_year(Y)}1:-course(C).

We remind the reader of how the grounding process treats such a constraint: first one rule
for each course is generated, then the constraint is instantiated, for course c, to include the atoms
in ps(c, 1), in ps(c, 2), in ps(c, 3) among which at most one can be chosen. The problem here is
that, being this constraint located outside the overall weight constraint, there is no evidence of their
being related.

In our case-study, it is always the case that some courses are mandatory. Moreover, some are
not only mandatory, but also they must be situated at a certain course year. To establish that a course
is mandatory, one might specify, for each such course c:

1{in_ps(c,Y):course_year(Y)}1.

For courses which are mandatory at a certain course year, one might specify, for each such course c
that should be located at year y :

1{in_ps(c,y)}1.

Notice that this is not a repetition with respect to the main weight constraint: in fact, the weight
constraint represents the plan of study that a student tries to construct, while the above constraints
represent what should be done according to the regulations. It would seem advisable to join the two
aspects: i.e., to introduce a form of weight constraints that allows one to define what (s)he would
like, while enforcing respect of contextual restrictions.

A more explicit (though more lengthy) version of the above constraints (in the sense that from
the code it is more easy to understand its purpose) would be the following.

mandatory(programming,1).
mandatory(computer_architectures,1).
mandatory(algorithms,2).
mandatory(theoretical_cs,3).
mandatory_course(databases).

% Mandatory courses always included
in_ps_course(C):- in_ps(C,Y),course(C),course_year(Y).
:- course(C),mandatory_course(C),not in_ps_course(C).
%in mandatory course year
:- in_ps(C,Y),course(C),course_year(Y),mandatory(C,Y1), Y!=Y1.

Finally, to avoid a student giving too many exams, there is a ministry statement that enforces
at least a minimum number of courses of the first two years to weigh 12 credits. Also, courses
are allowed to belong to certain scientific areas, namely Computer Science, Mathematics, Physics
and other different though related topics (within a list). However, there are directions stating that
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every subject should contribute to the plan of studies for a quota ranging between a minimum and
a maximum number of credits. These aspects can be coped in ASP, again with poor elaboration-
tolerance. In fact, one should separately provide a description of courses, say e.g. the following,
that is liable to easily become inconsistent with the overall weight constraint after modifications
(course addition/deletion, changes in the number of credits).

course_description(programming,computer_science,12).
course_description(computer_architectures,computer_science,6).
course_description(databases,computer_science,12).
course_description(algorithms,computer_science,12).
course_description(theoretical_cs,computer_science,6).
course_description(calculus,mathematics,6).
course_description(optimization,mathematics,6).

Then, one has to use aggregates to count the number of occurrences of in ps for the above
aspects, i.e., courses of 12 credits in the first two years, and courses of each kind of required subject.
After having computed aggregate values, suitable constraints should ensure that required intervals
are respected. We do not even attempt here to produce the code, that would be very long and
exceedingly involved. Just consider that the definition of an aggregate for counting on a single
parameter is shown in (Baral, 2003), Section 2.1.14, and requires in practical cases several pages of
code. It is relevant to notice that the DLV answer set solver (Leone, Pfeifer, Faber, Eiter, Gottlob,
Perri, & Scarcello, 2006) provides pre-defined aggregates that can be used for coping in a concise
way with this aspect.
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