
Answer Set Programming via Examples

Yuliya Lierler

University of Kentucky

1



What is Answer Set Programming (ASP)

ASP is a declarative programming paradigm intended to solve

difficult (NP-hard) combinatorial search problems (Marek and

Truszczyński, 2000; Niemelä, 2000).

ASP applications:

• planning

• model checking

• logical cryptanalysis

• computational biology

• . . .

2



ASP Solvers

(Gelfond and Lifschitz, 1988): answer sets

answer

setsASP Solver
program

logic

program

grounded
Grounder

Grounders: gringo, dlv, lparse

ASP solvers: smodels, dlv, cmodels, clasp,. . .

Under one roof: clingo (gringo+clasp), dlv

3



ASP Programs

A program consists of rules

a0
︸︷︷︸

Head

← a1, . . . , am, not am+1, . . . , not an

︸ ︷︷ ︸

Body

Useful generalizations:

• atoms with variables

• special constructs: choice rules and constraints

4



Answer Sets

Input: Output:

p :- q. Answer: 1

Answer set:

p :- q. Answer: 1

q :- not r. Answer set: q p

p :- not q. Answer: 1

q :- not p. Answer set: p

Answer: 2

Answer set: q

The idea of ASP is to represent the given search problem by a logic

program so that the solutions correspond to its answer sets.

5



Choice Rules and Constraints

Input: Output:

p :- q. Answer: 1

q :- not r. Answer set: t s p q

{s,t} :- p. Answer: 2

:- s, not t. Answer set: p q

Answer: 3

Answer set: t p q

6



ASP Programs with Variables

Input: Output:

p(a). Answer: 1

p(b). Answer set: p(b) p(a)

{q(X) : p(X)}. Answer: 2

Answer set: q(a) p(b) p(a)

Answer: 3

% {q(a), q(b)}. Answer set: q(b) p(b) p(a)

Answer: 4

Answer set: q(b) q(a) p(b) p(a)

7



Using ASP to Find a Large Clique of 5

A clique in a graph is a set of pairwise adjacent vertices.

vertex(1..99). % 1,...,99 are vertices

edge(3,7). % 3 is adjacent to 7

. . .

edge(X,Y) :- edge(Y,X), vertex(X;Y).

%% GENERATE

5 {in(X) : vertex(X)}.

%% TEST

:- in(X), in(Y), vertex(X), vertex(Y),

X!=Y, not edge(X,Y).

8



Diners

Mr and Mrs Astor, Mr and Mrs Blake, Mr and Mrs Crane, and Mr

and Mrs Davis were seated around a circular table. Mrs Astor was

insulted by Mr Blake, who sat next to her on her left. Mr Blake

was insulted by Mrs Crane, who sat opposite him across the center

of the table. Mrs Crane was insulted by the hostess, who was the

only person to sit next to each one of a married couple. The

hostess was insulted by the only person to sit next to each one of

two men. Who insulted the hostess? Mrs. Davis is the hostess and

she is seated at place 0.

9



Given

spot(0..7).

%male(mrAstor). male(mrBlake). ...

male(mrAstor;mrBlake;mrCrane;mrDavis).

person(mrAstor;mrsAstor;mrBlake;mrsBlake;

mrCrane;mrsCrane;mrDavis;mrsDavis).

married(mrAstor,mrsAstor).

married(mrBlake,mrsBlake).

married(mrCrane,mrsCrane).

married(mrDavis,mrsDavis).

%married is symmetric

married(P,P1) :- married(P1,P), person(P;P1).

10



GENERATE and DEFINE

%% GENERATE

%% Mr and Mrs Astor, Mr and Mrs Blake, Mr and Mrs Crane,

%% Mr and Mrs Davis were seated around a circular table.

%every person is assigned a spot

1{place(P,S): spot(S)}1:-person(P).

%% DEFINE

% two places at a table are opposite

opposite(S,S+4) :- spot(S;S+4).

% opposite is symmetric

opposite(S1,S2) :- opposite(S2,S1), spot(S1;S2).

11



TEST

% two people cannot occupy the same spot

:-place(P1,S), place(P2,S), P1!=P2, spot(S), person(P1;P2).

%% Mrs Astor was insulted by Mr Blake, who sat

%% next to her on her left.

%%

% Mr Blake sat next to Mrs Astor on her left.

:- place(mrsAstor,S), not place(mrBlake,S+1), spot(S).

%% Mr Blake was insulted by Mrs Crane, who sat opposite

%% him across the center of the table.

%%

:- place(mrBlake,S1), not place(mrsCrane,S2),

opposite(S1,S2), spot(S1;S2).

...

12



Output

/u/yuliya % lparse diners | cmodels 0

cmodels version 3.79 Reading...done

Program is tight.

Calling SAT solver zChaff 2007.3.12 ...

Answer: 1

Answer set: place(mrsDavis,0) place(mrDavis,4)

place(mrsCrane,6) place(mrCrane,3)

place(mrsBlake,5) place(mrBlake,2)

place(mrsAstor,1) place(mrAstor,7)

insult(mrCrane)

13



Gatlin Johnson: Co-op Scheduling

Roughly 100 people live in the 21st Street Co-op at any given time.

There is a core subset of labor that must be done or the house falls

apart (kitchen, maintenance, groundskeeping, etc).

Most people are required to do 4 hours of work and some 2 hours.

Each labor has their time and duration (eg, Monday Lunch cleanup

1, 2 hours). All labor is required and nobody has to do more than 4

hours.

14



Given

ASP-language clingo (gringo):

http://ai.ustc.edu.cn/cn/seminar/files/guide.pdf

Sample instance of 20 people and 50 jobs:

person_hours(1,2).

person_hours(2,2).

...

person_hours(6,4).

person_hours(7,4).

...

wid_wtype_day_time_duration(1, kitchen, mon, 12, 1).

wid_wtype_day_time_duration(2, kitchen, mon, 12, 1).

...

15



DEFINE

%Definitions from the input instance

%work id definition

wid(X):-wid_wtype_day_time_duration(X,_,_,_,_).

%work id - duration relation definition

wid_duration(X,D):-wid_wtype_day_time_duration(X,_,_,_,D).

%person id definition

pid(X):-person_hours(X,_).

16



GENERATE

%each "job" has to be assigned to exactly one person

1{assign(P,W):pid(P)}1:-wid(W).

17



TEST

% a person may not be assigned multiple jobs

% such that their sum duration is greater than

% the hours he has to work

:- pid(P), person_hours(P,H),

S = #sum[assign(P,W):wid_duration(W,D)=D],

S>H.

% Here we ASSUME that the DURATION of each JOB is

% at least ONE HOUR

:-N=#count{assign(P,W)}, pid(P), N>4.

18



OUTPUT

%output predicate

assigned(P,W,Ty,D,Ti,Du):-assign(P,W),

wid_wtype_day_time_duration(W,Ty,D,Ti,Du).

%output only assigned relation

#show assigned(P,W,Ty,D,Ti,D).

#hide.

19



Solver Output

clingo available at http://potassco.sourceforge.net/

/u/yuliya % clingo schedInstance sched.cl

Answer: 1

assigned(6,50,maintenance,fr,18,1)

assigned(6,49,maintenance,fr,18,1)

assigned(7,48,maintenance,fr,10,2)

assigned(7,47,maintenance,fr,10,1)

assigned(7,46,maintenance,fr,10,1)

...

SATISFIABLE

Models : 1+

Time : 3.670

20



Behind ASP Solvers

Propositional Satisfiability (SAT) is one of the most studied

problems in computational logic.

SAT is the problem of determining if the atoms of a given

propositional formula can be assigned truth values in such a way

that the formula is evaluated to True.

a ∨ b is satisfiable, it evaluates to True if a or b are assigned True.

a ∧ ¬a is unsatisfiable.

Modern SAT solvers zchaff, minisat,. . . find satisfying

assignments, models, for problems with millions of clauses and

hundreds of thousands of atoms.

21



Cmodels

System cmodels implements SAT-based methods for generating

answer sets.

SAT solvers:

1. relsat

2. zchaff

3. minisat

4. simo

http://www.cs.utexas.edu/users/tag/cmodels/

22



ASP Competitions

1st ASP System Competition (LPNMR 2007): 10 systems

Place MGS SCore SLparse

1 dlv clasp clasp

2 pbmodels smodels pbmodels

3 clasp cmodels smodels

2d ASP System Competition (LPNMR 2009): 16 systems

Place Decision Problem Decision Problem in NP

1 claspfolio claspfolio

2 cmodels cmodels

3 dlv IDP

23



Cmodels in Use

• reconstruction of phylogenies in historical linguistics and

biology; robot control (Sabancı University, Turkey)

• machine code optimization, automatic music composition

(University of Bath, UK)

• model checking of abstract state machines (Simon Fraser

University, Canada)

24


