
Applications of ASP

Esra Erdem
Sabanci University

Orhanli, Tuzla, 34956 Istanbul, Turkey

Michael Gelfond
Texas Tech University

Lubbock, Texas 79414, USA

Nicola Leone
University of Calabria

87030 Rende (CS), Italy

Abstract

ASP has been applied fruitfully to a wide range of ar-
eas in AI and in other fields, both in academia and in
industry, thanks to the expressive representation lan-
guages of ASP and the continuous improvement of ASP
solvers. We present some of these ASP applications,
in particular, in knowledge representation and reason-
ing, robotics, bioinformatics and computational biol-
ogy as well as some industrial applications. We dis-
cuss the challenges addressed by ASP in these appli-
cations and emphasize the strengths of ASP as a useful
AI paradigm.

1 Introduction
Answer Set Programming (ASP) is a knowledge represen-
tation and reasoning paradigm. It has rich high-level rep-
resentation languages that allow recursive definitions, ag-
gregates, weight constraints, optimization statements, de-
fault negation, and external atoms. With such expressive lan-
guages, ASP can be used to declaratively represent knowl-
edge (e.g., mathematical models of problems, behaviour
of dynamic systems, beliefs and actions of agents) and
solve combinatorial search problems (e.g., planning, diag-
nosis, phylogeny reconstruction) and knowledge-intensive
problems (e.g., query answering, explanation generation).
The idea is to represent a problem as a “program” whose
models (called “answer sets” (Gelfond and Lifschitz 1988;
1991)) correspond to the solutions of the problem. The an-
swer sets for the given program can then be computed by
special software systems called answer set solvers, such as
DLV, SMODELS or CLASP.

Due to the continuous improvement of ASP solvers and
expressive representation languages of ASP, ASP has been
applied fruitfully to a wide range of areas in AI and in other
fields. Areas of AI that include applications of ASP are plan-
ning, probabilistic reasoning, data integration and query an-
swering, multi-agent systems, natural language processing
and understanding, learning, theory update/revision, prefer-
ences, diagnosis, description logics, semantic web, multi-
context systems, and argumentation. Other areas that in-
clude applications of ASP are, for instance, computational

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

biology, systems biology, bioinformatics, automatic music
composition, assisted living, software engineering, bounded
model checking, and robotics.

ASP has also been used in industry, for instance, for deci-
sion support systems (Nogueira et al. 2001) (used by United
Space Alliance), automated product configuration (Tiiho-
nen, Soininen, and Sulonen 2003) (used by Variantum Oy),
intelligent call routing (Leone and Ricca 2015) (used by
Italia Telecom) and (re)configuration of railway safety sys-
tems (Aschinger et al. 2011) (used by Siemens).

In the following, we will describe only some of these
ASP applications, in particular, in knowledge representa-
tion and reasoning, robotics, bioinformatics, as well as some
industrial applications. For a wide variety of ASP appli-
cations and relevant references, we refer the reader to the
ASP Applications Table at https://www.dropbox.com/
s/pe261e4qi6bcyyh/aspAppTable.pdf?dl=0.

2 ASP and Knowledge Representation
2.1 Reasoning with Defaults
One of the main goals of AI is to better understand how to
build software components of agents capable of reasoning
and acting in a changing environment. Most AI researchers
agree that to exhibit such behavior the agent should have a
mathematical model of its environment and its own capa-
bilities and goals. A logic based approach to AI (McCarthy
1990) suggests that this model should contain a knowledge
base (KB)—a collection of statements in some declarative
language with precisely defined syntax and semantics. As a
rule, such a KB should include commonsense knowledge—
information an ordinary person is expected to know—as
well as some specialized knowledge pertinent to a particular
set of activities the agent is built to perform. Early propo-
nents of the logic based AI believed that such a KB could
be built in classical first-order logic (FOL) which, at the
time, was commonly used for formalization of mathemati-
cal reasoning. It was quickly discovered, however, that this
logic may not be a fully adequate tool for representing non-
mathematical (especially commonsense) knowledge. The
main problem was difficulty with using FOL for defeasi-
ble (or nonmonotonic) reasoning. In precise terms, a conse-
quence relation A |= F between statements of a declarative
language is called monotonic if, for every A, B, and F , if



A |= F then (A ∧ B) |= F . This property guarantees that,
once proven, a statement stays proven. If this condition is not
satisfied, i.e., if addition of new information can force a rea-
soner to withdraw its previous conclusion, the consequence
relation is called nonmonotonic. Though not encountered in
mathematics, nonmonotonicity seems to be a prevailing fea-
ture of commonsense reasoning. It is especially relevant to
reasoning with so called defaults—statements of the form
“Normally (typically, as a rule) elements of class C have
property P .” We all learn rather early in life that parents
normally love their children, citizens are normally required
to pay taxes, etc. We also learn, however, that these rules
are not absolute and allow various types of exceptions. It is
natural to assume that these and other defaults should be in-
cluded in a reasoner’s KB. Learning correct ways to reason
with defaults and their exceptions is necessary for building
an agent capable of using such a KB. One of the best avail-
able solutions to this problem uses a knowledge representa-
tion language CR-Prolog (Balduccini and Gelfond 2003)—a
simple extension of the original ASP language of logic pro-
grams with two types of negation and epistemic disjunction.

A program Π of CR-Prolog consists of a first-order signa-
ture, a collection Πr of standard ASP rules of the form

l0 | . . . | lk ← lk+1, . . . , lm, not lm+1, . . . , not ln

and a collection Πcr of consistency-restoring rules (or sim-
ply cr-rules)1 of the form:

l0
+←− lk+1, . . . , lm, not lm+1, . . . , not ln.

Here each li is a literal, that is, an atom p(t̄) or its negation
¬p(t̄). The last statement says that t̄ does not have prop-
erty p. In contrast, default negation not has an epistemic
character—not l is often read as “it is not believed that l is
true”. Similarly, the connective | (also denoted by or) is of-
ten called epistemic disjunction with l1 | l2 being read as l1
is believed to be true or l2 is believed to be true. Intuitively,
a regular ASP rule Head ← Body says that if the body of
the rule is believed then the reasoner must believe its head.
A cr-rule says that if the body of the rule is believed, then the
reasoner may possibly believe its head; however, this possi-
bility may be used only if Πr is inconsistent.

Informally, program Π can be viewed as a specification
for answer sets—sets of beliefs that could be held by a ratio-
nal reasoner associated with Π. Answer sets are represented
by collections of ground literals. In forming such sets the
reasoner must satisfy the rules of Π together with a so called
rationality principle, which says that the reasoner associated
with the program shall believe nothing that he is not forced
to believe by the program’s rules. In the absence of cr-rules
this idea is captured by the standard answer set semantics.

The definition of an answer set for arbitrary CR-Prolog
program is as follows. For a collection R of cr-rules, by
α(R) we denote the collection of regular rules obtained by
replacing labeled arrows in cr-rules of R by←. A minimal

1The definition of a program also includes the fourth
component—a preference relation on sets of cr-rules. In what fol-
lows, we assume that a set with the smaller number of rules is pre-
ferred to that with the larger one.

(with respect to the preference relation of the program) col-
lection R of cr-rules of Π such that Πr ∪ α(R) is consistent
(that is has an answer set) is called an abductive support of
Π. A set A is called an answer set of Π if it is an answer set
of the regular ASP program Πr ∪ α(R) for some abductive
support R of Π.

In the following, we assume that the rules that are in tele-
type font are in the the ASP Core language ASP-Core-2,2
whereas the rules in math font (e.g., cr-rules) are in lan-
guages (e.g., CR-Prolog) that extend the ASP Core language
in different ways. The schematic variables (resp. object con-
stants) in rules are denoted by strings whose first letters are
in upper-case (resp. in lower-case).
Example 1 [Representing Defaults] A default “parents
normally love their children” can be represented by the fol-
lowing rule:
(1) loves(P,C) :-

parent(P,C), not -loves(P,C).

Consider a program P1 consisting of this rule and a fact:
(2) parent(mary,john).

Since the answer set semantics of CR-Prolog incorporates
the rationality principle and no rule of the program forces
the reasoner to believe that Mary does not love John, the
first rule allows it to conclude that she does. Additional in-
formation,
(3) -loves(mary,john)

will not lead to a contradiction. The new statement will ren-
der the first rule inapplicable and allow the reasoner to with-
draw its earlier conclusion. Statement (3) is an example of
so-called direct exceptions to defaults, i.e., exceptions which
directly contradict the default conclusion. The situation is
not always that neat. Let us now consider a program P2 con-
sisting of statements (1) and (2) above, together with a new
rule:
(4) cares(P,C) :- loves(P,C) .

It is easy to see that P2 entails cares(mary, john). If, how-
ever, we were to learn that Mary does not care for John and
expanded P2 by
(5) -cares(mary,john)

the new program, P3, would become inconsistent, i.e., will
not have answer sets. In our everyday reasoning we do not
seem to have difficulties in dealing with such indirect excep-
tions to defaults. We would avoid the contradiction by sim-
ply concluding that Mary and John constitute an (indirect)
exception to default (1). So the fact (5) is the only conclu-
sion which can be derived from the program. To model this
type of reasoning, we should make it possible for our pro-
gram to recognize that the relationship between parents and
their children may be not that of love, but still be able to use
our default whenever possible. This is done using a cr-rule.

Indirect exceptions to default (1) can be represented as
follows:

¬loves(P,C)
+←− parent(P,C). (6)

2https://www.mat.unical.it/aspcomp2013/
files/ASP-CORE-2.03c.pdf



The new program P4 consisting of regular rules (1), (2) and
(4) and cr-rule (6) entails that Mary cares about John. A con-
sistent answer set of the program can be obtained from its
regular rules only and cr-rule (6) is not used. If, however, we
expand P4 by statement (5), regular rules of the program are
not sufficient to avoid the contradiction. Consistency restor-
ing rule (6) will be activated and the reasoner will conclude
that Mary does not love John.

The example above is rather general and allows for repre-
sentation of different types of exceptions to defaults. More
information on this can be found in (Gelfond and Kahl
2014).

2.2 Reasoning about Effects of Actions
Gaining better understanding of basic principles and mathe-
matical models of default reasoning helped researchers to
move forward in solving a number of other longstanding
problems of AI and KR. In this section we briefly describe
an ASP-based solution of one such problem—finding log-
ical means for representing and reasoning about direct and
indirect effects of actions.

To act in a changing (dynamic) domain, a rational agent
should have a mathematical model of this domain allowing
it to predict such effects. Here we limit ourselves to discrete
dynamic domains represented by transition diagrams whose
nodes correspond to possible physical states of the domain
and whose arcs are labeled by actions.

A transition 〈σ1, a, σ2〉 indicates that the execution of ac-
tion a in state σ1 may cause the domain to move to state
σ2. Due to the size of the diagram, the problem of finding a
concise specification for it is not trivial and has been a sub-
ject of research for a comparatively long time. Its solution
requires a good understanding of the nature of causal effects
of actions in the presence of complex interrelations between
fluents—propositions whose truth value may depend on the
state of the domain.

An additional level of complexity is added by the need to
specify what is not changed by actions in a concise, clear,
and elaboration tolerant way. A seminal paper (Hayes and
McCarthy 1969) in which the problem of finding such a
specification (called the Frame Problem) was discussed also
suggested a direction in which its possible solution could be
found. The proposal was to reduce the solution of the Frame
Problem to the problem of finding a concise, accurate and
elaboration tolerant representation of the inertia axiom—a
default which says that things normally stay as they are. The
search for such a representation substantially influenced AI
research during the next thirty years. An interesting account
of the history of this research together with some possible
solutions can be found in (Shanahan 1997). We have already
discussed the ways of using ASP for representing defaults
and their exceptions so it shall not come as a surprise that
ASP provides a good solution to the Frame Problem. It also
turned out that rules of ASP languages can nicely capture
causal relations between fluents which led to the develop-
ment of a powerful methodology for representing and rea-
soning about actions and their effects.

We illustrate this methodology by way of example—

representation of a simple hydraulic system of a space shut-
tle. The example is taken from an actual decision support
software system (Nogueira et al. 2001) developed to help
shuttle controllers to deal with critical situations caused by
multiple failures.
Example 2 [Effects of Actions] Consider a hydraulic sys-
tem viewed as a graph whose nodes are labeled by tanks con-
taining propellant, jets, junctions of pipes, etc. Arcs of the
graph are labeled by valves which can be opened or closed
by a collection of switches. The system is used to deliver
propellant from tanks to a proper combination of jets.

To axiomatize the knowledge pertinent to this example, we
describe the graph by a collection of statements of the form
connected(N1, V,N2)—valve V labels the arc from N1 to
N2, and controls(S, V )—switch S controls valve V . Flu-
ents pos(S, open) and pos(S, closed) define positions of
switch S. Fluents pos(V, open) and pos(V, closed), defin-
ing the position of a valve, and fluent pressurized(N),
which holds when node N is reached by propellant from
some tank, will be defined in terms of positions of switches
of the system.

The following axiom
(1) -h(pos(X,P1),I) :-

h(pos(X,P2),I), P1 != P2

guarantees that positions of switches and valves are mutu-
ally exclusive, i.e., cannot both be true at the same time-step.
Here relation h(F, I), where h stands for holds, is true if a
fluent F holds (is true) at time-step I of the system’s trajec-
tory.

Now we concentrate on the representation of action flip(S)
which flips the switch S from position open to position
closed and vice versa. Note that this action has compara-
tively complex effects including the propagation of the de-
livery of propellent from tanks to other nodes of the system.
The effects will be divided into direct and indirect.

The direct effect of flipping a switch S from closed to open
will be given by the following axiom
(2) h(pos(S,open),I+1) :-

occurs(flip(S),I), h(pos(S,closed),I)

where occurs(A, I) is true if action A occurs (happened, is
executed) at I . The rule states that if action flip(S) occurred
at a time-step I in which the fluent pos(S, closed) was true
then at the next step, I + 1, the fluent pos(S, open) would
become true. A similar axiom is needed for flipping a switch
from the open to closed position.

To represent indirect effects we simply need to state the
relations between fluents of the domain. The next rule de-
scribes a relationship between fluents representing positions
of switches and valves.
(3) h(pos(V,P),I) :-

controls(S,V), h(pos(S,P),I).

The rule states that if a switch is placed in a particular posi-
tion, then so is the valve controlled by this switch.

The next rule describes the relationship between the values
of fluent pressurized(N) for neighboring nodes.



(4) h(pressurized(N2),I) :-
connected(N1,V,N2),
h(pressurized(N1),I),
h(pos(V,open),I).

The rule says that if nodesN1 andN2 are connected by open
valve V and node N1 is pressurized then so is node N2. We
also assume that tanks are always pressurized and encode
this as follows:
(5) h(pressurized(N),I) :- tank(N), step(I).

To complete the definition of this fluent we need to state that
no other nodes except those defined by rules (4) and (5) are
pressurized. This is done by the rule
(6) -h(pressurized(N),I) :- node(N), step(I),

not h(pressurized(N),I).

Suppose now that the system contains nodes n1, n2, and n3
where n1 is a tank; n1 and n2 are connected by valve v1; n2
and n3 are connected by valve v2; v1 and v2 are controlled
by switches s1 and s2, respectively. Assume also that ini-
tially, the switches are closed. One can see that at the initial
step 0, node n1 is pressurized (axiom (5)), and nodes n2 and
n3 are not (axiom (6)). To compute the effects of flipping
switch s1 let us expand the program by statement
occurs(flip(s1),0).

The direct effect of this action, determined by axiom (2),
is h(pos(s1, open), 1). There are also indirect effects which
follow from axioms (3), (4), and (1): h(pos(v1, open), 1),
h(pressurized(n2), 1), and ¬h(pos(v1, closed), 1). To
complete our formalization we need to add our solution to
the Frame Problem, which will allow us to conclude that
flipping switch s1 does not change the status of switch s2
and valve v2. As discussed earlier, this can be done by sim-
ply axiomatizing the default stating that normally the value
of fluent pos(S, V al) remains unchanged:
(7a) h(pos(S,Val),I+1) :-

switch(S), h(pos(S,Val),I),
not -h(pos(S,Val),I+1).

(7b) -h(pos(S,Val),I+1) :-
switch(S), -h(pos(S,Val),I),
not h(pos(S,Val),I+1).

This is, of course, a typical ASP representation of a default
which provides the solution to the Frame Problem. It guar-
antees that at step 1 switch s2 is still closed. Since positions
of v2 and the value of pressurized(n3) are fully determined
by positions of the switches, nothing else is necessary—v2
will remain closed and n3 depressurized.

The ability of ASP languages to represent defaults and to
express indirect effects of actions by a unidirectional impli-
cation made it a good tool for representing knowledge about
dynamic domains. Nowadays, however, such knowledge is
more frequently represented in so-called action languages
(Gelfond and Lifschitz 1998) which are more specialized,
higher-level languages designed for specifying state-action-
state transition diagrams. Consider, for example, one of such
languages, called AL (Gelfond and Kahl 2014). Axiom (2)
from Example 2 may be written in AL as

flip(S) causes pos(S, open) if pos(S, closed)

which is a special case of a dynamic causal law of AL—a
statement of the form

A causes F if P.

The law says that execution of action A in a state satisfying
property P causes fluent F to become true in a resulting
state. Axiom (4) from Example 2 may be written as

pressurized(N2) if pressurized(N1),
connected(N1, V,N2),
pos(V, open)

which is a special case of an action language AL statement

F if P.

The statement guarantees that every state of the system sat-
isfying property P also satisfies F . The inertia axioms (7a)
and (7b) can be replaced by the simpler statement

fluent(inertial, pos(S, V al))

which indicates that the fluent pos(S, V al) is subject to the
inertia axiom. Overall, use of action languages leads to sub-
stantially simpler representations allowing the system de-
signer to avoid some ASP related details. ASP, however,
continues to play an important role in reasoning about ac-
tions.

First, answer set semantics of logic programs is often used
to define semantics of action languages. Natural translations
from action languages to logic programs allow us to use the
notion of answer set to precisely define the effects of execut-
ing an action A in a state σ. Rules (1)–(6) of Example 2 can
be viewed as part of such translation from the description of
our domain in an action language. The translation will also
contain a more general version of axioms (7a) and (7b):
h(F,I+1) :-

fluent(inertial,F), h(F,I), not -h(F,I+1)
-h(F,I+1) :-

fluent(inertial,F), -h(F,I), not h(F,I+1)

which provide a rather general solution of the Frame Prob-
lem.

Second, translation from action languages to logic pro-
grams enables us to reduce classical reasoning tasks such as
prediction, planning, and finding explanations of unexpected
events to computing answer sets of logic programs. An in-
terested reader may look into (Gelfond and Kahl 2014) for
further details.

There are other interesting applications of ASP to classi-
cal KR problems. These include its early use for providing
a declarative semantics to the negation as failure construct
of the Prolog programming language (Gelfond and Lifschitz
1988) as well as comparatively recent work on combining
subtle forms of logical and probabilistic reasoning (Baral,
Gelfond, and Rushton 2009).

3 Applications of ASP to Robotics
ASP has been applied in various robotic applications, such
as assembly planning, mobile manipulation, geometric rear-
rangement, multi-robot path finding, multi-robot coordina-
tion, multi-robot planning, plan execution and monitoring,



Figure 1: Multiple robots tidying up a house.

Figure 2: Multiple robots collaboratively working in a cog-
nitive factory.

and human-robot interaction, to provide methods for high-
level reasoning (like planning, hypothetical reasoning, diag-
nostic reasoning) and for declarative problem solving (like
team coordination, gridization of continuous space).

For instance, Erdem et al. (2012) use ASP for planning of
actions of multiple robots to collaboratively tidy up a house
within a given time (Figure 1). They illustrate applications
of their ASP-based planning, execution and monitoring ap-
proach with dynamic simulations with PR2 robots. Videos
of these simulations can be seen at http://cogrobo.
sabanciuniv.edu/?p=214 .

In another study (Erdem et al. 2013), they use ASP to
find an optimal global plan for multiple teams of heteroge-
neous robots in a cognitive factory to manufacture a given
number of orders within a given time (Figure 2). They
also use ASP for finding diagnosis of plan failures during
plan execution monitoring (Erdem, Patoglu, and Saribatur
2015). They illustrate applications of their ASP-based plan-
ning with dynamic simulations and with an augmented re-
ality physical implementation utilizing KuKa youBots and
Lego NXT robots controlled over Robot Operating System
(ROS). They show applications of their execution monitor-

Figure 3: A mobile service robot rearranging objects on a
cluttered table top.

ing algorithm, in particular, the use of diagnostic reason-
ing for replanning and repairs, with dynamic simulations
using Kuka youBots and a Nao humanoid robot. Videos
of these simulations and implementations can be found at
http://cogrobo.sabanciuniv.edu/?cat=24.

Havur et al. (2014) use ASP for geometric rearrangement
of multiple movable objects on a cluttered surface, where
objects can change locations more than once by pick and/or
push actions (Figure 3). They use ASP for gridization of
the continuous plane for a discrete placement of the initial
configurations and the tentative final configurations of ob-
jects on the cluttered surface, and for planning of robots’
actions. The authors illustrate applications of their method
with the CoCoA service robot, which features a holonomic
mobile base and two 7 degrees of freedom (DoF) arms with
grippers. Videos showing these simulations can be found at
http://cogrobo.sabanciuniv.edu/?p=762 .

Zhang et al. (2015) use ASP to describe objects and rela-
tions between them, and utilize this knowledge to improve
localization of target objects in an indoor domain using
(primarily) visual data. Such a use of ASP has been illus-
trated by a physical implementation with a wheeled robot
navigating in an office building. Videos of these applica-
tions can be found at http://youtu.be/CvKJyCI_YNE
and http://youtu.be/2U6oOTuEd-Q.

In these robotic applications, there are some important
challenges from the point of view of robotic planning and di-
agnosis. The following discusses how ASP can handle them.

Hybrid reasoning One of the key challenges addressed in
these robotic applications is hybrid reasoning, which can be
understood as integrating high-level reasoning tasks, such as
planning, hypothetical reasoning, and diagnosis, with low-
level external computations. These external computations
include, for instance, feasibility checks of robotic actions us-



ing probabilistic motion planning methods, as well as auto-
matic extraction of relevant commonsense knowledge from
the existing knowledge bases available on the web. Such a
variety of hybrid reasoning is possible in ASP, thanks to
“external atoms” (Eiter et al. 2006). These atoms provide
a general interface between high-level reasoning and low-
level external computations, in the spirit of semantic attach-
ments in theorem proving. More precisely, an external atom
is an expression of the form

&g [Y1, . . . , Yn](X1, . . . , Xm)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms
(called input and output lists, respectively), and g is an ex-
ternal predicate name. Intuitively, an external atom provides
a way for deciding the values of an output tuple with respect
to the values of an input tuple. External atoms allow us to
embed results of external computations into ASP programs.
Therefore, external atoms are usually implemented in a pro-
gramming language of the user’s choice.

Integrating high-level reasoning with low-level feasibility
checks: Consider, for instance, multiple robots rearranging
objects on a cluttered table (Havur et al. 2014). The objects
can only move when picked up and placed, or pushed by
robots, and the order of pick-and-place and push operations
for rearranging objects may matter to obtain a feasible kine-
matic solution. Therefore, motion planning (e.g., finding a
continuous trajectory from one configuration of the robot to
another configuration) and other low-level feasibility checks
alone are not sufficient to solve them. On the other hand, ma-
nipulation of objects also requires feasibility checks, such as
whether the robot will be able to move an object from one
location to another location without colliding with the other
objects, or whether the robot will be able to reach the object
on the table and grasp it without any collisions. Therefore,
task planning only (e.g., finding a sequence of robotic ac-
tions from an initial state to a goal state) is not sufficient
to solve the problem either. These examples illustrate the
necessity for a hybrid approach to planning, that integrates
task planning with feasibility checks.

One of the preconditions of the action pickPlace(R,O,C)
of a robot R picking and placing an object O onto location
C is that the object O is graspable by the end effector of
the robot. This precondition can be formalized in ASP as
follows:

← occurs(pickPlace(R,O,C), I),
not &reachableGraspable[O,R]().

Here &reachableGraspable[O,R]() is an external atom; it
returns true if and only if the end-effector of the manipu-
lator R can successfully reach and grasp the given object
O according to kinematics and force-closure calculations of
OPENRAVE. Note that these calculations are done in a con-
tinuous configuration space using real-numbers; and thus are
not possible in ASP.

One of the preconditions of the action push(R,O,C) of
a robot R pushing an object O to location C is that the vol-
ume swept by the object O from its current configuration to-
wards another configuration in C does not collide with other

objects. This precondition can be described as follows:

← occurs(push(R,O,C), I),
not &pushPossible[location,O, I]().

Here &pushPossible is an external predicate as well: it takes
as input all locations of objects at time step I , and checks
whether the swept volume of the objectO collides with other
objects using Open Dynamics Engine (ODE).

Embedding commonsense knowledge in high-level rea-
soning: Consider, for instance, the housekeeping domain
with multiple robots (Erdem, Aker, and Patoglu 2012). The
commonsense knowledge about expected locations Loc of
objects Ep (e.g., dish in kitchen, bed in bedroom) can
be extracted from the existing commonsense knowledge
base CONCEPTNET (Liu and Singh 2004) by means of
queries via its Python API; and can be defined by exter-
nal atoms of the form & in place[Ep,Loc](). Then, one can
represent the expected locations of objects Ep in the house
by a new fluent of the form at desired location(Ep) as fol-
lows:

h(at desired location(Ep), I)←
h(at(Ep,Loc), I),& in place[Ep,Loc]().

This rule formalizes that the object Ep is at its desired loca-
tion if it is at some “appropriate” position Loc in the right
room.

Another line of research that represents commonsense
knowledge for service robotics applications is by Chen et
al. (2010). In these applications, commonsense knowledge
such as “a long-shape object B whose center-of-mass is on
the table, is initially in balance if there is a can A on one
end E1 of it and another can B on the other end E2 of it” is
formulated in ASP:
h(balance(B,A,C),0) :-

h(on(A,E_1),0), h(on(C,E_2),0),
endof(E_1,B), endof(E_2,B).

Optimizations in planning and diagnosis There are var-
ious sorts of desired optimizations in robotic applications.
For instance, in planning, an optimal plan can be understood
as a plan with minimum makespan or a plan with minimum
total cost of actions. In diagnostic reasoning, an optimal di-
agnosis can be understood as a hypothesis with a smallest
number of broken parts of robots. Such optimizations are
possible in ASP, thanks to “optimization statements”.

For instance, consider the cognitive factories domain with
multiple teams of heterogeneous robots (Erdem et al. 2013;
Erdem, Patoglu, and Saribatur 2015). The following expres-
sion
#minimize {C,R,I : h(cost(R,C),I),

robot(R), step(I)}

is used to minimize the sum of all costs C of robotic actions
performed in a local plan, where costs of actions performed
by robot R at every time step are defined by fluents of the
form cost(R,C).

The following statement minimizes the total number of
the broken parts of robots while finding a diagnosis for a
discrepancy:



#minimize {1,P,R: broken(R,P), comp(R,P)]

where atoms of the form comp(R,P ) describe robots and
their parts, and atoms of the form broken(R,P ) describe that
part P of the robot R is broken.

Complex constraints in replanning During plan execu-
tion, discrepancies between the observed state and the ex-
pected one may be detected that are relevant for the rest of
the plan. These discrepancies may be due to an unexpected
obstacle in the environment, change of locations of objects,
broken robots, or failures of some actions. Once the cause
of a discrepancy is detected, a new plan from the current
state can be computed. While replanning, some guidance
from earlier experiences and causes of discrepancies might
be helpful to compute a better plan that does not fail due to
the same reasons. ASP allows us to include such a guidance,
by including constraints into the representation of the plan-
ning problem description. These constraints might express
not only the new knowledge about the environment, robots
and/or goals, but also what sort of actions should not be ex-
ecuted under what conditions and when. For instance, in the
housekeeping domain (Erdem, Aker, and Patoglu 2012), if
some robot’s plan fails because the robot cannot pickup an
object which turns out to be quite heavy, the robot might
want to delay asking for help as much as possible so that the
other robots are not distracted. Such a complex constraint
(e.g., heavy objects can be picked with help only during the
last three steps of the plan) can be represented in the plan-
ning problem description using ASP.

Commonsense knowledge and exceptions Consider, for
instance, the housekeeping domain with multiple robots (Er-
dem, Aker, and Patoglu 2012). Normally, the movable ob-
jects in an untidy house are not at their desired locations.
Such commonsense knowledge can be described by means
of defaults, as in the following rules

-h(at_desired_location(Ep),I) :-
endpoint(Ep), step(I),
not h(at_desired_location(Ep),I).

In a similar way, the tidiness of a house is defined by
means of defaults:

-h(tidy,I) :- -h(at_desired_location(Ep),I)
h(tidy,I) :- not -h(tidy,I), step(I).

The second rule above expresses that the house is normally
tidy. The first rule above describes the exceptions: when an
object is not at its expected location, the house is untidy.

Let us now consider diagnostic reasoning in cognitive fac-
tories with multiple teams of heterogeneous robots (Erdem,
Patoglu, and Saribatur 2015). Normally, the robots and their
parts run smoothly. However, there may be exceptions: some
parts P of robots R that are not broken currently (at time
step I) may get broken at the next state (at any time step I).
This commonsense knowledge can be represented by means
of defaults as well:

-h(broken(R,P),I) :- comp(R,P), step(I),
not h(broken(R,P),I)

Figure 4: The most plausible phylogeny reconstructed for
Indo-European languages.

h(broken(R,P),I+1) :- comp(R,P), step(I),
-h(broken(R,P),I),
not -h(broken(R,P),I+1).

Other examples of the use of ASP to represent expected
locations of objects, by means of defaults, and to find diag-
noses, by means of cr-rules, can be found in (Zhang et al.
2014).

4 Applications of ASP to Computational
Biology and Bioinformatics

ASP has been applied in various computational biology and
bioinformatics applications, providing a declarative prob-
lem solving framework for combinatorial search problems
(e.g., haplotype inference, consistency checking in bio-
logical networks, phylogeny reconstruction) and provid-
ing a knowledge representation and reasoning framework
for knowledge-intensive reasoning tasks (e.g., integrating,
query answering and explanation generation over biomed-
ical ontologies).

Tran and Baral (2009) introduce a method to model a bio-
logical signaling network as an action description in ASP to
allow prediction, planning, and explanation generation about
the network. They illustrate an application of their method
to generate hypotheses about the various possible influences
of a tumor suppressor gene on the p53 pathway. Gebser et
al. (2011) introduce a method to model biochemical reac-
tions and genetic regulations as influence graphs in ASP,
to detect and explain inconsistencies between experimental
profiles and influence graphs. With this method, they com-
pare the yeast regulatory network with the genetic profile
data of SNF2 knock-outs, and find out the data to be incon-
sistent with the network.

Brooks et al. (2007) use ASP to solve the problem
of reconstructing phylogenies (i.e., evolutionary trees) for
specified taxa, with a character-based cladistics approach.
They apply their method to infer phylogenies for Alcatae-
nia species as well as Indo-European languages (Figure 4)
and Chinese dialects; these phylogenies are found plausible
by the experts. Based on these phylogenies, phylogenetic
networks are reconstructed as well (Erdem, Lifschitz, and
Ringe 2006).

In the NMSU-PhyloWS project (Le et al. 2012), ASP is
used to query the repository CDAOStore of phylogenies.



These queries are used, for instance, to find the trees sat-
isfying a given property (e.g., whose size is smaller than a
specified constant, with a specified ratio of internal nodes to
external nodes), to find the similarity of two trees with re-
spect to a distance measure (e.g., the Robinson-Foulds dis-
tance), to compute clades with specific properties (e.g., the
minimum spanning clade for taxa in a specified tree).

Erdem et al. (2011) and Erdem and Oztok (2015) use ASP
to answer complex queries over biomedical ontologies and
databases considering the relevant parts of these knowledge
resources, and to generate shortest explanations to justify
these answers. They apply their methods to find answers
and explanations to some complex queries related to drug
discovery (e.g., “What are the genes that are targeted by the
drug Epinephrine and that interact with the gene DLG4?”,
“What are the genes related to the gene ADRB1 via a
gene-gene relation chain of length at most 3?” and “What
are the most similar 3 genes that are targeted by the drug
Epinephrine?”) over the biomedical knowledge resources
PHARMGKB, DRUGBANK, BIOGRID, CTD, SIDERand
DISEASE ONTOLOGY.

Dovier et al. (2009) use ASP to study a variation of pro-
tein structure prediction problem: the 2D HP-protein struc-
ture prediction problem. The goal is find a folding in the 2D
square lattice space, that maximizes the number of hydropic-
hydropic contacts between given amino acids.

Erdem and Ture (2008) use ASP to solve the problem of
Haplotype Inference by Pure Parsimony (HIPP) and its vari-
ations. Identifying maternal and paternal inheritance is es-
sential for finding the set of genes responsible for a partic-
ular disease. However, due to technological limitations, we
have access to genotype data (genetic makeup of an indi-
vidual), and determining haplotypes (genetic makeup of the
parents) experimentally is a costly and time consuming pro-
cedure. With these biological motivations, HIPP asks for the
minimal number of haplotypes that form a given set of geno-
types.

In these bioinformatics applications, one can identify
some important challenges addressed by ASP; these chal-
lenges illustrate also the strengths of ASP.

Declarative problem solving The declarative representa-
tion formalism of ASP allows us to easily include domain
specific information and constraints in the program, and thus
to prevent the construction of implausible solutions. For
instance, including some temporal and geographical con-
straints about Indo-European languages provided by histori-
cal linguists (e.g., “Albanian cannot be a sister of IndoIra-
nian or BaltoSlavic”) helps computing plausible phyloge-
nies more efficiently.

Well-studied properties of programs in ASP allow us to
easily prove the correctness of the formulation of the prob-
lem in ASP, as shown in (Erdem, Lifschitz, and Ringe 2006).

With a declarative representation of the problem in ASP,
one can perform various reasoning tasks, such as ontological
query answering and explanation generation (Le et al. 2012;
Erdem et al. 2011; Erdem and Oztok 2015), planning and
diagnosis (Tran and Baral 2009), consistency checking and

explanation generation (Gebser et al. 2011), and repair and
prediction (Gebser et al. 2010).

Integration of heterogeneous knowledge To answer
complex queries over a variety of biomedical ontologies (Er-
dem et al. 2011), ASP allows us to extract relevant parts of
them (thanks to external atoms) and integrate them by rules.
For instance, the drug names can be extracted from a Drug
Ontology, by first extracting the relevant triples from the on-
tology:

tripleD(X,Y, Z)←
&rdf [”URIforDrugOntology”](X,Y, Z)

and then extracting drug names from the triples:
drugName(A) :-

tripleD(_,"drugproperties:name",A).

Then, to answer queries like “What are the drugs that treat
the disease Depression and that do not target the gene
ACYP1?”, the extracted relevant knowledge can be inte-
grated by rules as follows:
whatDrugs(DRG) :- cond1(DRG), cond2(DRG)
cond1(DRG) :- drugDisease(DRG,"Depression")
cond2(DRG) :- drugName(DRG),

not drug_gene(DRG,"ACYP1").

Expressivity of representation ASP features rich, ex-
pressive formalisms (e.g., the support of recursive defini-
tions and negation as failure), and efficient solvers that sup-
port special syntactic constructs (e.g., aggregates and opti-
mization statements).

For instance, in (Gebser et al. 2011), candidates for min-
imal inconsistent components in an influence graph, where
two distinct vertices are not reachable from each other by a
cycle, can be eliminated by the following constraint:
:- active(U), active(V),

not cycle(U,V), U<V.

where the definition of a cycle requires recursion:
reach(U,V) :- edge(U,V)
reach(U,V) :- edge(U,W),

reach(W,V), vertex(V)
cycle(U,V) :- reach(U,V), reach(V,U), U!=V.

To answer queries like “What are the genes related to
the gene ADRB1 via a gene-gene relation chain of length
at most 3?”, the auxiliary concept of reachability of a gene
from another gene by means of a chain of gene-gene inter-
actions is required (Erdem et al. 2011); this concept can be
defined in ASP recursively as follows:
geneReachable(X,1) :-

geneGene(X,Y), startGene(Y)
geneReachable(X,N+1) :-

geneGene(X,Z), geneReachable(Z,N),
max_chain_length(L), 0 < N, N < L.

Aggregates allow concise and easy-to understand formu-
lations of problems. According to Le et al. (2012), we can
identify phylogenies by the parsimony tree length, which is
defined by the total number of characters of its taxa, by the
following rules:



parsimonyLength(T,L) :- tree(T),
L = #count {Char: belongsChar(_,Cell,Char),

belongsTU(_,Cell,TU),
representsTU(T,_,TU)}.

Negation as failure is useful to represent defaults (as seen
in the examples of robotics applications) and the concept
of unknown. For instance, we can define that some drugs’
toxicity is unknown as follows (Erdem et al. 2011):

unknownToxicityDrug(X) :- drugSynonym(R,X),
not drugToxic(R), not -drugToxic(R).

5 Industrial ASP Applications
As pointed out in the introduction, the availability of ef-
ficient ASP solvers has recently enabled the implemen-
tation of many advanced ASP applications, not only in
academia but also in the industry. In this section, we briefly
overview a number of real-world industrial applications of
ASP. In particular, we will focus on ASP applications to
e-Tourism, Workforce management, Intelligent call routing,
and e-Medicine, that have been implemented by using the
DLV system, and applications to Products and services con-
figuration and Decision support systems, that have been im-
plemented by using CLASP and SMODELS systems.

e-Tourism. ASP has been profitably applied in a couple
of applications arising in the tourism industry. In the follow-
ing, we overview an ASP-based application that has been
integrated into an e-tourism portal, and implements an in-
telligent advisor that selects the most promising offers for
customers of a travel agency (Ricca et al. 2010). The goal is
to devise a tool that helps the employees of a travel agency
in finding the best possible travel solution in a short time.
It can be seen as a mediator system finding the best match
between the offers of the tour operators and the requests
of the tourists. The system improves the business of the
travel agency by reducing the time needed to single out and
sell the touristic offers, and increases the level of customer-
satisfaction by suggesting the offers which match the user
profile to the best. By analyzing the touristic domain in co-
operation with the staff of a travel agency, a knowledge base
has been specified which models the key entities that de-
scribe the process of organizing and selling a complete hol-
iday package. In this framework, ASP has been first used
as the intelligent engine of a semantic-based information-
extractor (Manna, Scarcello, and Leone 2011), which ana-
lyzes the text files describing the touristic offers, extracts
the relevant information (e.g., place, date, prize), and classi-
fies them in an ontology. But the main usage of ASP in this
application has been for developing several search modules
that simplify the task of selecting the holiday packages that
best fit the customer needs. As an example, we report (a sim-
plified version of) a logic program that creates a selection of
holiday packages in Figure 5.
Input predicate askFor(TripKind,Period) specifies the kind
of trip requested by the customer and the period (s)he wants
to travel. Predicate touristicOffer(Offer, Place) specifies, for
each touristic offer available at the travel agency, what is
the place it refers to. Predicates placeOffer(Place, TripKind)

%detect possible and suggested places
possiblePlace(Place) :- askFor(TripKind,_),

placeOffer(Place, TripKind).
suggestPlace(Place) :- possiblePlace(Place),

askFor(_,Period),
suggestedPeriod(Place, Period),
not badPeriod(Place, Period).

%select packages to suggest to the user
suggestOffer(O) :- touristicOffer(O, Place),

suggestPlace(Place).

Figure 5: A program that creates a selection of holiday pack-
ages.

and badPeriod(Place, Period) are derived by other modules
of the knowledge base and define, respectively, the places
which are appropriate for a kind of trip, and the periods
that should be avoided for a place (e.g., because of a bad
weather). The first two rules select, respectively, possible
places (i.e., the ones that offer the kind of holiday requested
by the customer), and places to be suggested (because they
offer the required kind of holiday in the specified period).
The last rule selects, within the available holiday packages,
the ones which offer a holiday that matches the original input
(possible offer). This is one of the several reasoning mod-
ules that have been devised for implementing the intelligent
search and integrated in the e-tourism portal (Ricca et al.
2010).

Workforce-management. In the framework of the ef-
ficient management of employees of the Gioia Tauro
seaport—the largest transhipment port of the Mediterranean
sea—an interesting ASP application has been developed.
The problem that this application has dealt with is a form of
workforce management problem. It amounts to computing
a suitable allocation of the available personnel of the sea-
port such that cargo ships mooring in the port are properly
handled. To accomplish this task several constraints have
to be satisfied. An appropriate number of employees, pro-
viding several different skills, is required depending on the
size and the load of cargo ships. Moreover, the way an em-
ployee is selected and the specific role she will play in the
team (each employee is able to cover several roles according
to her skills) are subject to many conditions (e.g., fair dis-
tribution of the working load, turnover of heavy/dangerous
roles, employees’ contract rules, etc.). To cope with this
crucial problem ASP has been exploited for developing a
team builder. First of all, the input—the employees and their
skills—was modeled by the predicate hasSkill(employee,
skillName), and the specification of a shift for which a team
needs to be allocated, by predicate shift(id, date, duration).
The skills necessary for a certain shift, by neededSkill(shift,
skill). Weekly statistics specifying, for each employee, the
last allocation date per skill by predicate wstat(employee,
skill, lastTime). Employees excluded due to a management
decision by excluded(shift, employee). Absent employees by
predicate absent(day, employee), and total amount of work-



assign(E,Sh,Sk) | nAssign(E,Sh,Sk) :-
hasSkill(E,Sk), employee(E,_),
shift(Sh,Day,Dur), not absent(Day,E),
not excluded(Sh,E),
neededSkill(Sh,Sk),
workedHours(E,Wh), Wh+Dur<36.

:- shift(Sh,_,_),
neededEmployee(Sh,Sk,EmpNum),
#count{E: assign(E,Sh,Sk)}!=EmpNum.

:- assign(E,Sh,Sk1), assign(E,Sh,Sk2),
Sk1!=Sk2.

:- wstats(E1,Sk,LastTime1),
wstats(E2,Sk,LastTime2),
LastTime1>LastTime2, assign(E1,Sh,Sk),
not assign(E2,Sh,Sk).

:- workedHours(E1,Wh1), workedHours(E2,Wh2),
threshold(Tr), Wh1+Tr<Wh2,
assign(E1,Sh,Sk), not assign(E2,Sh,Sk).

Figure 6: A program for computing teams.

ing hours in the week per employee by predicate worked-
Hours(employee,weekHours). A simplified version of the
program computing teams is shown in Figure 6. 3

The first rule is disjunctive. It generates the search space
by guessing the assignment of a number of available em-
ployees to the shift in the appropriate roles. Absent or ex-
cluded employees, together with employees exceeding the
maximum number of weekly working hours are automati-
cally discarded. Then, inadmissible solutions are discarded
by means of four integrity constraints: the first constraint
discards assignments with a wrong number of employees for
some skill; the second one avoids that an employee covers
two roles in the same shift; the third implements the turnover
of roles; and the fourth constraint guarantees a fair distribu-
tion of the workload. Note that only the kernel part of the
employed logic program is reported here (in a simplified
form), and many other constraints were developed, tuned
and tested.

The user interface allows for modifying manually com-
puted teams, and the system is able to verify whether the
manually-modified team still satisfies the constraints. In case
of errors, causes are outlined and suggestions for fixing a
problem are proposed. E.g., if no team satisfying all con-
straints can be generated, then the system suggests the user
to relax some constraints. In this application, the pure declar-
ative nature of the language allowed for refining and tuning
both problem specifications and ASP programs while inter-
acting with the stakeholders of the seaport. The system, de-
veloped by a spin-off company of the University of Calabria
called Exeura s.r.l, has been used by the company ICO BLG
operating automobile logistics in the seaport of Gioia Tauro.
Further details can be found in (Ricca et al. 2012).

Intelligent call routing. Contact centers are used by many
organizations to provide remote assistance to a variety of

3The full version makes use of sophisticated constructs, like
weak-constraints and more complex aggregates (Alviano and
Leone 2015).

services. Their front-ends are flooded by a huge number of
telephone calls every day. In this scenario the ability of rout-
ing customers automatically to the most appropriate service
brings a two-fold advantage: improved quality of service and
reduction of costs.

The company Exeura developed a platform for cus-
tomer profiling for phone call routing based on ASP that
is called zLog (http://www.exeura.eu/en/solution/
customer-profiling/).

The key idea is to classify customer profiles and try to
anticipate their actual needs for creating a personalized ex-
perience of customer care service. Call-center operators can
define customer categories, but it is very likely that these em-
ployees may not have the competence for defining categories
with a traditional programming language. Thus, the defini-
tion of customer categories is carried out via a user-friendly
visual interface (see Figure 7) that allows one to specify
and modify categories. Once a new category has been de-
fined, zLog automatically generates an ASP program which
provides its logical encoding, and can be executed by DLV
over the database to populate the category. A category’s def-
inition criteria include customer behavioral aspects, such as
recent history of contacts (e.g., telephone calls to the con-
tact center, messages sent to customer assistance) or basic
customer demographics (e.g., age, residence). The latter is
useful, for instance, in case of natural disasters, or type of
contract. When a customer calls the call-center, he/she is au-
tomatically assigned to a category (based on his/her profile)
and then routed to an appropriate human operator or auto-
matic responder.

The zLog platform has been deployed in a production sys-
tem handling Telecom Italia call-centers, and it is in actual
use. Every day, over one million telephone calls asking for
diagnostic services reach the call-centers of Telecom Italia.
The needs are optimizing the operators assignment process,
in order to reduce the average call response times, and im-
prove customer support quality. The zLog platform can de-
tect customer category in less than 100 ms (starting from
his/her telephone number) and manage over 400 calls/sec.
As a result, zLog enables huge time savings for over one
million daily calls.

e-Medicine. Medical knowledge bases, resulting from the
integration of several different databases, often present er-
rors and anomalies, which severely limit their usefulness.
ASP has been successfully employed in this context. In par-
ticular, a multi-source data cleaning system, based on ASP
and called DLVCleaner, has been realized, which detects and
automatically corrects both syntactic and semantic anoma-
lies in medical knowledge bases (Leone and Ricca 2015),
based on ontological domain descriptions and measures for
string similarities (Greco and Terracina 2013). DLVCleaner
automatically generates the ASP programs which are able
to identify and possibly correct the errors within the med-
ical data. DLVCleaner has been employed to clean up the
data stored in the tumor registries of the Calabria Region, in-
tegrating information from several local healthcare centers,
including public hospitals, private healthcare centers, fam-



Figure 7: A visual definition of customer’s categories in zLog.

ily doctors, etc. The main input table consisted of 1,000,000
tuples collecting records from 155 municipalities, whereas
the dictionary stored about 15,000 tuples. DLVCleaner rec-
ognized that almost 50% of input tuples were wrong. More-
over, 72% of the wrong tuples were automatically corrected
by DLVCleaner, which for an additional 26% of the tuples
suggested multiple corrections to be evaluated by the user.
Only 2% of input tuples have been detected as wrong and
not repairable.

By using ASP in this application, a simplified and flex-
ible specification of the logic of the data cleaning task is
obtained.

(Re)configuration of products and services. One of
the first industrial applications of ASP (using the ASP
solver SMODELS) was for product configuration (Tiihonen,
Soininen, and Sulonen 2003), used by Variantum Oy. The
most recent (re) configuration applications have been car-
ried out by the group of Gerhard Friedrich at Alpen-Adria
Universität Klagenfurt, Austria, and deployed by Siemens.

In particular, ASP has been applied (with the ASP
solver CLASP) for the configuration of railway safety sys-
tems in order to compute the connection structure between
sensors, indicators and communication units. The task of
this part of a railway safety system is to detect objects which
entered but did not leave a section thus blocking a track. It
turned out that this configuration problem is NP-hard and is
challenging for the state-of-the-art problem solving frame-
works, i.e., SAT, CSP, MIP and ASP (Aschinger et al. 2011).
However, by applying ASP it was possible to solve config-
uration problems, which could not be solved by specialized
configuration tools.

Besides configuration, the re-configuration of products
and services plays in practice an important role. In many

areas of configurable systems where the customer require-
ments change also the configured system is subject to adap-
tations. ASP is applied to model the possible changes of
existing systems and to compute re-configuration solutions
which optimize the adaptation actions. E.g., maximize the
number of re-used modules and minimize the costs of addi-
tional equipment (Friedrich et al. 2011).

In addition to configuration tasks, ASP was applied to di-
agnose and repair systems. Friedrich et al. (2010) describes
a system which computes repair-plans for faulty workflow
instances employing ASP. Given the workflow structure, a
set of possible repair actions and a workflow instance where
an exception was triggered, a contingency plan is generated
such that after the execution of this plan a correct completion
of the workflow instances is achieved.

Decision support systems. ASP has been used by United
Space Alliance to check correctness of plans and find plans
for the operation of the Reaction Control System (RCS) of
the Space Shuttle (Nogueira et al. 2001) (as briefly discussed
in Example 2). The RCS is the shuttles system mainly for
maneuvering the aircraft while it is in space. The RCS is
computer controlled during takeoff and landing. While in
orbit, however, astronauts have the primary control. During
normal shuttle operations, there are pre-scripted plans that
tell the astronauts what should be done to achieve certain
goals. The situation changes when there are failures in the
system. The number of possible sets of failures is too large
to pre-plan for all of them. Meanwhile, RCS consists of fuel
and oxidizer tanks, valves and other plumbing to provide
propellant to the maneuvering jets of the shuttle, and it con-
sists of electronic circuitry to control the valves in the fuel
lines and to prepare the jets to receive firing commands. The
actions of flipping switches have many ramifications on the



states of valves, and thus this application domain presents
the further challenges of the ramification problem. Thanks
to the expressivity of ASP in representing dynamic systems
and handling the ramification problem (as explained in Ex-
ample 2), an intelligent system has been implemented using
ASP with the ASP solver SMODELS to verify and generate
such pre-plans.

Some challenges addressed by ASP in industrial applica-
tions. To deal with industrial applications, ASP has to ad-
dress various Software Engineering challenges. Thanks to its
powerful and expressive framework, using ASP-based soft-
ware development provides many advantages, such as flexi-
bility, readability, extensibility, and ease of maintenance. In-
deed, the possibility of modifying complex reasoning tasks
by simply editing a text file with the ASP rules, and testing it
“on-site” together with the customer, has been often a great
advantage of the ASP-based development. This aspect of
ASP-based software development was a success-reason es-
pecially for the Workforce-Management application, where
the high complexity of the requirements was a main obsta-
cle, and the availability of an executable specification lan-
guage, like ASP, allowed to clarify and formalize the re-
quirements much more quickly together with the customer.

Realizing complex features of an application in such a
way also brings about advantages of lower (implementation)
costs, compared to traditional imperative languages.

Another challenge in industrial applications is compu-
tational efficiency. Fortunately, there are are optimization
techniques implemented in ASP solver to handle such chal-
lenges. For instance, in the Intelligent call routing applica-
tion, an immediate response has to be given to queries over
huge data sets. Thanks to the availability of the Magic-Set
optimization technique (Alviano et al. 2012), DLV can lo-
calize the computation to the small fragment of the database
which is relevant for the specific query at hand; using this
optimization technique leads to a tremendous speed-up of
the computation.

6 Conclusion
We have discussed some applications of ASP in knowledge
representation and reasoning, robotics, bioinformatics and
computational biology as well as some industrial applica-
tions. In these applications, ASP addresses various chal-
lenges. For instance, representation of defaults to handle ex-
ceptions, and the commonsense law of inertia to be able
to reason about effects of actions are some of the impor-
tant challenges in knowledge representation and reasoning.
Hybrid reasoning, reasoning about commonsense knowl-
edge and exceptions, optimizations over plans or diagnoses
are some of the important challenges addressed by ASP
in robotic applications. Provability of formulation of com-
putational problems, expressing sophisticated concepts that
require recursion and/or aggregates, integration of hetero-
geneous knowledge are some of the important challenges
addressed by ASP in bioinformatics and computational bi-
ology. Similar challenges are also addressed in industrial
applications, such as data cleaning, extraction of relevant

knowledge from large databases, and software engineering
challenges. Thanks to the expressive declarative languages
of ASP that support default negation, aggregates, recursion,
external atoms, consistency restoring rules and optimization
statements, the presence of theoretical results that help for
analysis of ASP formulations, and the sophisticated meth-
ods (like Magic Sets) implemented in the ASP solvers to
improve computational efficiency, these challenges can be
addressed by ASP.

7 Acknowledgments
Thanks to Gerhard Brewka, Francesco Calimeri, Wolfgang
Faber, Martin Gebser, Tomi Janhunen, Volkan Patoglu,
Simona Perri, Enrico Pontelli, Francesco Ricca, Torsten
Schaub, Tran Son, and Mirek Truszczynski for their com-
ments on an earlier draft of this article. The work of Esra
Erdem is partially supported by TUBITAK Grants 111E116
and 114E491 (Chist-Era COACHES). The work of Nicola
Leone is partially supported by the Italian Ministry of Uni-
versity and Research under PON project “Ba2Know (Busi-
ness Analytics to Know) Service Innovation - LAB”, No.
PON03PE 00001 1.

References
Alviano, M., and Leone, N. 2015. Complexity and compi-
lation of gz-aggregates in answer set programming. TPLP
15(4-5):574–587.
Alviano, M.; Faber, W.; Greco, G.; and Leone, N. 2012.
Magic sets for disjunctive datalog programs. Artif. Intell.
187:156–192.
Aschinger, M.; Drescher, C.; Friedrich, G.; Gottlob, G.;
Jeavons, P.; Ryabokon, A.; and Thorstensen, E. 2011. Opti-
mization methods for the partner units problem. In Proc. of
CPAIOR, 4–19.
Balduccini, M., and Gelfond, M. 2003. Logic programs
with consistency-restoring rules. In Proc. of Commonsense,
9–18.
Baral, C.; Gelfond, M.; and Rushton, J. N. 2009. Proba-
bilistic reasoning with answer sets. Theory and Practice of
Logic Programming 9(1):57–144.
Brooks, D. R.; Erdem, E.; Erdogan, S. T.; Minett, J. W.; and
Ringe, D. 2007. Inferring phylogenetic trees using answer
set programming. J. Autom. Reasoning 39(4):471–511.
Chen, X.; Ji, J.; Jiang, J.; Jin, G.; Wang, F.; and Xie, J. 2010.
Developing high-level cognitive functions for service robots.
In Proc. of AAMAS, 989–996.
Dovier, A.; Formisano, A.; and Pontelli, E. 2009. An empir-
ical study of constraint logic programming and answer set
programming solutions of combinatorial problems. J. Exp.
Theor. Artif. Intell. 21(2):79–121.
Eiter, T.; G.Ianni; R.Schindlauer; and H.Tompits. 2006. Ef-
fective integration of declarative rules with external evalua-
tions for Semantic-Web reasoning. In Proc. of ESWC.
Erdem, E.; Aker, E.; and Patoglu, V. 2012. Answer set
programming for collaborative housekeeping robotics: rep-
resentation, reasoning, and execution. Intelligent Service
Robotics 5(4):275–291.



Erdem, E., and Oztok, U. 2015. Generating explanations for
biomedical queries. Theory and Practice of Logic Program-
ming 15(1):35–78.
Erdem, E., and Türe, F. 2008. Efficient haplotype inference
with answer set programming. In Proc. of AAAI, 436–441.
Erdem, E.; Erdem, Y.; Erdogan, H.; and Öztok, U. 2011.
Finding answers and generating explanations for complex
biomedical queries. In Proc. of AAAI.
Erdem, E.; Patoglu, V.; Saribatur, Z. G.; Schüller, P.; and
Uras, T. 2013. Finding optimal plans for multiple teams of
robots through a mediator: A logic-based approach. Theory
and Practice of Logic Programming 13(4-5):831–846.
Erdem, E.; Lifschitz, V.; and Ringe, D. 2006. Temporal
phylogenetic networks and logic programming. Theory and
Practice of Logic Programming 6(5):539–558.
Erdem, E.; Patoglu, V.; and Saribatur, Z. G. 2015. Integrat-
ing hybrid diagnostic reasoning in plan execution monitor-
ing for cognitive factories with multiple robots. In Proc. of
ICRA, 2007–2013.
Friedrich, G.; Fugini, M.; Mussi, E.; Pernici, B.; and Tagni,
G. 2010. Exception handling for repair in service-based
processes. IEEE Trans. Software Eng. 36(2):198–215.
Friedrich, G.; Ryabokon, A.; Falkner, A. A.; Haselböck, A.;
Schenner, G.; and Schreiner, H. 2011. (Re)configuration
based on model generation. Proceedings of the International
Workshop on Logics for Component Configuration 26–35.
Gebser, M.; Guziolowski, C.; Ivanchev, M.; Schaub, T.;
Siegel, A.; Thiele, S.; and Veber, P. 2010. Repair and predic-
tion (under inconsistency) in large biological networks with
answer set programming. In Proc. of KR.
Gebser, M.; Schaub, T.; Thiele, S.; and Veber, P. 2011. De-
tecting inconsistencies in large biological networks with an-
swer set programming. Theory and Practice of Logic Pro-
gramming 11(2):1–38.
Gelfond, M., and Kahl, Y. 2014. Knowledge Representa-
tion, Reasoning, and the Design of Intelligent Agents: The
Answer-Set Programming Approach. New York, NY, USA:
Cambridge University Press.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proc. of ICLP, 1070–
1080. MIT Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9:365–385.
Gelfond, M., and Lifschitz, V. 1998. Action languages.
Electronic Transactions on AI 3.
Greco, G., and Terracina, G. 2013. Frequency-based sim-
ilarity for parameterized sequences: Formal framework, al-
gorithms, and applications. Inf. Sci. 237:176–195.
Havur, G.; Ozbilgin, G.; Erdem, E.; and Patoglu, V. 2014.
Geometric rearrangement of multiple movable objects on
cluttered surfaces: A hybrid reasoning approach. In Proc.
of ICRA, 445–452.
Hayes, P. J., and McCarthy, J. 1969. Some Philosophical
Problems from the Standpoint of Artificial Intelligence. In

Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
Edinburgh University Press. 463–502.
Le, T.; Nguyen, H.; Pontelli, E.; and Son, T. C. 2012. ASP
at work: An ASP implementation of phylows. In Proc. of
ICLP, 359–369.
Leone, N., and Ricca, F. 2015. Answer set programming:
A tour from the basics to advanced development tools and
industrial applications. In Reasoning Web. Web Logic Rules
- 11th International Summer School 2015, Berlin, Germany,
July 31 - August 4, 2015, Tutorial Lectures, 308–326.
Liu, H., and Singh, P. 2004. ConceptNet: A practical com-
monsense reasoning toolkit. BT Technology Journal 22.
Manna, M.; Scarcello, F.; and Leone, N. 2011. On the com-
plexity of regular-grammars with integer attributes. J. Com-
put. Syst. Sci. 77(2):393–421.
McCarthy, J. 1990. Formalization of common sense, papers
by John McCarthy edited by V. Lifschitz. Ablex.
Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.; and
Barry, M. 2001. An A-Prolog decision support system for
the space shuttle. In Proc. of PADL, 169–183.
Ricca, F.; Dimasi, A.; Grasso, G.; Ielpa, S. M.; Iiritano, S.;
Manna, M.; and Leone, N. 2010. A logic-based system for
e-tourism. Fundam. Inform. 105(1-2):35–55.
Ricca, F.; Grasso, G.; Alviano, M.; Manna, M.; Lio, V.; Iir-
itano, S.; and Leone, N. 2012. Team-building with answer
set programming in the Gioia-Tauro seaport. Theory and
Practice of Logic Programming 12.
Shanahan, M. 1997. Solving the Frame Problem: A Math-
ematical Investigation of the Commonsense Law of Inertia.
MIT Press.
Tiihonen, J.; Soininen, T.; and Sulonen, R. 2003. A practical
tool for mass-customising configurable products. In Proc. of
ICED, 1290–1299.
Tran, N., and Baral, C. 2009. Hypothesizing about signaling
networks. Journal of Applied Logic 7(3):253 – 274.
Zhang, S.; Sridharan, M.; Gelfond, M.; and Wyatt, J. L.
2014. Towards an architecture for knowledge representation
and reasoning in robotics. In Proc. of ICSR, 400–410.
Zhang, S.; Sridharan, M.; and Wyatt, J. L. 2015. Mixed log-
ical inference and probabilistic planning for robots in unreli-
able worlds. IEEE Transactions on Robotics 31(3):699–713.


