
T8 – Tutorial on Agent-Mediated 
Electronic Negotiation 

 
 
 
 

Han La Poutré (CWI, Amsterdam, NL) 
Valentin Robu (University of Southampton, UK) 
Shaheen Fatima (Loughborough University, UK) 

Takayuki Ito (Nagoya Institute of Technology, Japan) 
Katsuhide Fujita (University of Tokyo, Japan) 

 
 
 

May 7, 2013  



1 

Agent-Mediated Electronic Negotiation 

 
 

Han La Poutré  
CWI, Amsterdam, NL 

 

Valentin Robu 
University of Southampton, UK 

 

Shaheen Fatima 
Loughborough University, UK 

 
 

Takayuki Ito 
Nagoya Institute of Technology, Japan 

 

Katsuhide Fujita 
University of Tokyo, Japan 

 
 
 

1 

AAMAS 2013, St. Paul, Minnesota  

 

Tutorial No. 8,  7 May ‘13 

 

Introduction: what is negotiation?  

 

• Negotiation = method of competitive (or partially 
cooperative) allocation of goods, resources, or tasks 
between agents 

• Applications:  
– Electronic commerce (shopbots etc.) 

– Distributed logistics  

– Hospital scheduling  

– Bandwidth allocation 

– Supply chain management  

– Crisis management 
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Negotiation (bargaining) versus auctions  

 
• Two main types of allocation mechanisms: 

– Auctions 
• Fixed protocol and rules, mainly centralized 
• Possible to design optimal mechanisms that guarantee certain 

desirable properties – especially in one-shot settings 
• Often target at direct revelation (bidders reveal the prices for 

preferred combinations), presence of a trusted center 

– Negotiation (bargaining) mechanisms: 
• Allows the use of more decentralized, flexible protocols 
• Allows customized and complex agreements 
• Agents can use incomplete information about their opponent (and 

their own) preferences 
• Focus is on designing agent strategies, not the mechanism itself 

– This tutorial focuses on bargaining! 
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Bargaining: introductory notions 
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Games 

• Game: players that interact with each other 
– And get a payoff at the end 

 

• A game is defined by its rules 
– Who can do What  and  When; 
– Who gets what at the end of the game  

 

• Games strategy of a player 
– Description of the actions by that player 

 

• Negotiation: specific type of game 
– Agents want to make a deal  
– 2 players: buyer and seller  
– Usually involves alternating-offers 

5 

Ex: negotiation 
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Select initiator 

Player 2  
Agree end 

Disagree end 

Player 2  Agree end Round 1 

Player 1 Agree end 

Round 0 

Player 1 

Player 2  Agree end Round n 
(last) 

... 
... 
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Perspectives on the negotiation problem 
 

• Classical game theoretic 
– Assumption 1: Rules of the game, preferences & beliefs of all players are 

common knowledge 

– A2: Full rationality on the part of all players (=unlimited computation) 

– Preferences encoded in a (limited) set of player types 

– Closed systems, predetermined interaction, small sized games 

• Heuristic perspective (<= AI, MAS research) 
– No common knowledge or perfect rationality assumptions needed 

– Agent behaviour is modeled directly 

– Suitable for open, dynamic environments 

– Space of possibilities is very large 

• Argumentation-based negotiation  
– Based on formal logics of dialogue games 
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Utility functions  

 
• Utility function = function that maps all possible game 

outcomes in the choice set into … 
– Cardinal utility - mapping to a real number (e.g. between 0 - 1) 
– Ordinal utility - specifies only an (partial) ordering between outcomes 

• Utility functions can be: 
– Over a single issue (e.g. only over price) 

• Note: In a setting where the utility is simply the expected profit to 
be obtained (monetary), utility functions are called quasi-linear. 

– Over multiple issues (attributes) 
• Discrete-values 
• Continuous  
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Example: Negotiation 

• Agents negotiate about the exchange of services or 
goods and a price 

 

• (Monetary) Utility of a possible negotiation 
outcome D for each agent a is e.g.: 
– Amount it is willing to pay for the goods/services 

exchanged in the deal: its valuation va(D)  
• the deal’s/goods/services value to it 

– minus the price of the deal itself for it: pa(D) 
• the actual price it has to pay 

– thus  va(D) - pa(D) 

• Each agent wants maximal utility 
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Example Utility 

• E.g., a possible negotiation outcome:   
– Agent 1 gives one television to agent 2 

• Agents 1’s valuation: 500 euro; agent 2: 300 euro 

– Agent 2 gives two goods to agent 1: car and a bicycle 
• Agent 1’s valuation: 2500 euro; agent 2: 1000 euro 

 

– Valuation of the goods transfer in the deal: 
for agent 1 this is +2000 euro  
for agent 2 this is -700 euro 

 

• If in addition, agent 1 has to pay the price of 1000 euro to 
agent 2, then for this possible outcome: 
– the deal has a utility value of  

1000 euro for agent 1, and  
300 euro for agent 2 
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Pareto efficiency 

• Pareto efficiency: 

– A game outcome d is pareto efficient (pareto 
optimal ) if there is no game outcome that is 
better for at least one agent and not worse for 
the other agent:  

• There is no game outcome d’ for  
agents A and B s.t. 
[ uA(d’) ≥ uA(d)  and uB(d’) ≥ uB(d) ] and  
[ uA(d’) > uA(d)  or  uB(d’) > uB(d) ] 
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Zero vs. non-zero sum games  

• Zero sum game: one party’s gain is always the other party’s 
loss 
– E.g. -  Pie-sharing game 

•    -  Negotiating over a single issue (e.g. price)  

• Non-zero-sum game: trade-offs are possible such that both 
parties improve their utility 
– Usually occur in the case of multiple issues 

– E.g.: in a work contract negotiation, the employer may concede on 
holiday days and New Year bonus 

– Employees concede on irregular work schedules 

12 Agent A Agent B 
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Negotiation protocols (1) 

 

• Protocol = rules of the game 

• Protocols for:  
– One issue negotiation 

– Multi-issue negotiation 

• Classification: 
– One shot (one party makes the offer, the other accepts or rejects) 

– Alternating offers (parties make repeating counter-offers) 

– Simultaneous vs. alternating offers 
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Multi-issue negotiation protocols 

• If there are several issues, in which order to deal with 
them? 

– “Integrative” (or “Global”) negotiation protocols: all issues 
negotiated at the same time 

– Sequential protocols: one issue at a time 
• Independent implementation -> take effect separately 

• Simultaneous implementation -> all issues must be agreed upon 
before the agreement takes effect 

• Agenda problem: in which order to negotiate the issues [Fatima et 
al ‘04] 

14 
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Equilibrium concepts: Nash equilibrium 

 

• Proposed by John Nash (1951) 

• Strategies of all players are said to be in Nash 
equilibrium if no other party can benefit by 
unilaterally changing his/her strategy 

• Other equilibrium concepts exist  

– Stronger: dominant strategies, subgame perfect 

– Weaker: Bayes-Nash 
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Other equilibrium concepts in non-cooperative 
games 

 

– Dominant strategy equilibrium: optimal in all 
circumstances, regardless of the bid of other players 
(e.g. bidding your true value in a Vickrey auction) 

– Bayes-Nash equilibrium: optimal given the known prior 
probability distribution over the other players’ types  

– Subgame perfect (Selten): optimal strategy for the 
entire game = optimal in every subgame 

16 
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Classic bargaining games  
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Nash demand game (1) 

• Setting: 2 agents want to share a pie (sum of money etc.), i.e. 
“bargaining surplus”.  

• “One shot” game 

– Both agents simultaneously demand a fraction of the pie 

– If demand are compatible (sum <1), each gets his demand 

– If not, each get the disagreement payoff (typically 0) 
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Player 1 Player 2 
Compatible demands 

Player 1 gets 50% 

Player 2 gets 33% 

Not Pareto efficient and not Nash equilibrium  
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Nash demand game (2) 

– What is a Nash equilibrium in this game? 

– Is this equilibrium always Pareto-efficient? (i.e. no piece 
of the pie gets thrown out) 
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Player 1 Player 2 
Incompatible demands 

Each player gets nothing 

NOT Pareto efficient 

BUT this strategy is a  

Nash equilibrium ! 

Nash demand game (3) 

– What is a Nash equilibrium in this game? 

– Other equilibriums are indeed Pareto-efficient? (i.e. 
no piece of the pie gets thrown out) 

20 

Player 1 Player 2 
Perfect splits of the pie 

Player 1/2 gets e.g. 70% 

Player 2 gets e.g. 30% 

Pareto efficient 

And Nash equilibrium  
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The ultimatum game (1) 

– Less “competitive” than the Nash demand game 

– Two stages: 

• Agent 1 proposes a split of the pie 

• Agent 2 can either accept or refuse 

• If agent 2 refuses, both get  nothing 

21 

• Yes 

• No Player 1 Player 2 

• Game theory: what is the expected outcome in 
case of “rational” behaviour 

• Look forward and reasoning backwards:  
what will player 2 do with my offer x? 

• Player 2 accepts any offer > 0 

• Player 1 offers (almost) 0 and gets (almost) all the added values 

• “Take-it-or-leave-it” offer of player 1  
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The ultimatum game (2) 
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The ultimatum game (3) 

– Only one subgame perfect equilibrium: (c.f. Binmore): 

• Agent 1 demands the whole surplus (or –ε where ε↓0) 

• The other agent ACCEPTS 
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• Does this equilibrium model real human behaviour? 

• Why not ? ( -> perfect rationality assumption) 

• Yes 

 Player 1 Player 2 

The alternating offers game (1) 
– Each party has a right to make a (counter-offer) offering the other x 

the pie, while he/she keeps 1-x 
– Game continues until one party accepts the other’s offer or a stop 

criterium is reached, e.g. fixed deadline 

24 

• Yes 

• No 

• Yes 

• No 

Player 1 Player 2 
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Alternating offers (2): Finite time horizon 

• Several ways to model time pressure: 
– Fixed deadlines 

– Fixed bargaining costs per round 

– Discount factors 

– Break-off probability 

• Case of discount factors:  

“Melting” ice cake 

– Utility of agent i at time t, given initial utility X:  X*(δi)
t 

• Agents can perform “backward reasoning” starting from 
possible outcomes 

25 

Alternating offers (3): Finite time horizon 
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• Yes 

• No 

• Yes 

• No 

Player 1 Player 2 
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Alternating offers (4): Finite time horizon 

• Example: cake halves each round 
• Player 2 can now only get half in the second round  

• Look forward and reason backwards: player 1 offers 
half of the cake in the first round  

– Infinite negotiation game for a melting cake: 
always a 2/3 vs. 1/3 division 
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Alternating offers game: the Rubinstein solution 

• Players 1, 2 have discount factors: δ1 , δ2 

• Both players have complete information about the  

    other’s δ  

• Rubinstein proved that the only SPE is one in which player 1 
gets: (1-δ2)/(1-δ1δ2) and player 2 gets the rest 

• In case of same factors  δ1  =   δ2   :    (1-δ)/(1-δ2)  

 

• Result: players don’t actually need to bargain  

• In SPE: Player 1 proposes (1-δ2)/(1-δ1δ2) and player 2 
accepts 

28 
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Negotiation concession tactics  

29 

Reference: 

[Faratin, Sierra & Jennings, ’98] 

Monotonic concession protocol 
 

– [Rosenschein & Zlotkin ‘94: Rules of Encounter] 

– Players are not allowed to make offers which have a 
lower utility for their opponent than their last offer 

– The minimum concession per round can be fixed above 0 
=> guarantee to terminate 

– Question: how to make concessions? 
• If I do not know the opponents preferences 

• If there are multiple issues 

– Note: In multi-issue negotiations with unknown 
opponent preferences, it is not always possible to make 
monotonic concessions 

30 
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Time-dependent concession tactics (1) 

))(()( minmaxmin PPtFPtP

• Suppose we have a buyer (the case of the seller is 
symmetrical) which desires to buy a good for an aspiration 
price Pmin and reservation price Pmax (highest he is willing to 
pay); deadline is a time Tmax 

• Price offered at time t will be: 

 
 

• F(t) gives the fraction of the distance left between the first 
(best) offer and the reservation value 
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Time-dependent concession tactics (3) 
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Time 

F 

Tmax 
(deadline) 

1 

Ka 

Linear (β=1) 

Conceder (β>1) 

Boluware (β<1) 

T0 
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Time-dependent concession tactics (4) 

• Hard-headed (β->0) 
– No concessions, sticks to the initial offer  throughout (the 

opponent may concede, though) 

• Linear time-dependent concession (β=1) 
– Concession is linear in the time remaining until the deadline 

• Boulware (β<1) 
– Concedes very slowly; initial offer is maintained until just before 

the deadline 

• Conceder (β>1) 
– Concedes to the reservation value very quickly 

• Tit-for-tat (discussed on next slide) 
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Tit-for-tat (TFT) concession strategy  

 

• The agent detects the concession the opponent makes during the 
previous negotiation round, in terms of increase in its own utility 
function 

• The concession the agent makes in the next round is equal to the 
concession made by the opponent in the previous round,  

• Next offer must fall in the acceptable region (e.g. for price only 
negotiation, above the reservation price of the seller and below that of 
the buyer) 

 

  Uown (bown, t+1) - Uown (bown, t)  ≤  Uown (bother, t) - Uown (bother, t-1)  
 

(The equal sign is sometimes used, though in practice it can be less) 

34 
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Negotiating Agents and Learning 

 
• Negotiating agents in agent systems 

• Frequent negotiations 

• Fixed negotiation strategies could be exploited 
• Smart agents could learn what can be achieved, against various 

types of fixed strategies 
• (we return to this issue in the multi-issue negotiation section) 

• Bounded rationality 
• Incomplete information about opponent agents 

• Adaptivity and learning is necessary for agents 
• For large numbers of negotiations 
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Modelling time pressure: firm deadlines vs. time 
discounting 

• There are two main mechanisms in which agent owners 
can specify time pressure to their agents: 

– Firm deadline (=time until which agreement must be 
reached, otherwise the agent gets disagreement payoff) 

– Time discounting function, i.e. an outcome reached later has 
smaller utility than an outcome reached now 

 

– Note: [Sandholm & Vulkan, ’02]: the game-theoretic 
equilibrium strategy in deadline bargaining is to wait until 
the very last moment to concede 

36 
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Multi-issue (and multi-attribute) negotiations  

37 

References: 

[Gerding, Bragt, La Poutré, ’02] 

[Jonker & Robu, AAMAS ’04] 

Single issue vs. multi-issue negotiation 

• Single issue negotiations 

– Represent zero sum-games: one party’s win is the other 
one’s loss 

– Example: seller and buyer negotiating over a price 

• Multi-issue negotiations 

– Non-zero sum games 

– An agent can make concessions in one or more issues in 
order to extract concessions in other issues preferable 
to him/her 
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Cooperative bargaining theory  

 

• Seminal work: H. Raiffa – Art and science of 
negotiation, 1982 

• FOTE (Fully Open Truthful exchange) assumption: 
both parties reveal their preferences to a central 
“mediator” agent, who computes optimal outcomes  

• MAS research removes the need of a mediator, by 
allowing agents to work with incomplete information 
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Example set-up: sale of a car 

• Four attributes (CD player, Extra speakers, Tow hedge (Drawing 
hook),  Air conditioning) have value labels, and each party assigns 
to them an evaluation.  

• The evaluation of price is described by a linear function (ascending 
or descending) 
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Value labels Buyer Seller 

Good 100 30 

Fairly good 85 65 

Standard 70 80 

Meager 20 65 

None 0 100 
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Example set-up (2) 

• Each attribute is given a preference weight 
coefficient. 

•                            for all items i 

 
• Symmetrical vs. asymmetrical preferences 

iicontract UwU *

41 

 Buyer Seller 

Airco 90 (18%) 15 (3%) 

Drawing hook 90 (18%) 15 (3%) 

CD player 15 (3%) 90 (18%) 

Speakers 15 (3%) 90 (18%) 

Price 300 (59%) - 
 

EXAMPLE TRACE 

BUYER'S INTERFACE 

  
round price  drawing     airco     extra   cd_player  utility   utility    
             hook                  speakers           own bid   others  
  
1     18000  good        good      good    good       1         0.740741   
2     17450  fairly good standard  meager  meager     0.92037   0.829185   
3     18222  fairly good standard  none    standard   0.909481  0.839926   
..9   18583  fairly good standard  none    standard   0.882741  0.867407 

  
SELLLER'S INTERFACE 
  
round price  drawing     airco     extra    cd_player  utility   utility    
             hook                  speakers            own bid   others  
  
1     16900  none        none      none     none       1         0.316667   
2     19306  fairly good standard  none     standard   0.938269  0.595321   
3     19161  fairly good standard  none     standard   0.919679  0.799295  
..9   18790  fairly good standard  none     standard   0.872115  0.845577   

 

42 
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Eficiency in multi-attribute negotiation 

• “Intelligent” trade-offs between issues 
• Buyer wants both GPRS system and leather seats, but he only 

really cares about getting a GPRS system. 

• Dealer prefers to give neither (extra work), but leather seats 
are much more difficult to install 

• Result:  Seller concedes on GPRS and the buyer on the 
quality of the leather 

• How far can you go with such trade-offs? 

• Pareto-optimal contract: A contract is said to be Pareto-
optimal if no further improvement is possible in the utility 
of one agent, without reducing the utility of the other 
agents 

• Pareto frontier: Set of all Pareto-optimal contracts 
43 

“Fairness” in cooperative negotiation 

– Among the points on the Pareto-efficient 
frontier - a few so-called “solution concepts” 

– Utilitarian:  

• Contract combination which maximizes the sum of 
utilities of the agents 

– Egalitarian (Kalai-Smorodinsky): 

• Maximizes the MINIMUM of the two utilities 

– Nash point:  

• Maximizes the PRODUCT of the utility functions of 
both agents 

44 
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Pareto-efficient frontier: continuous case 

45 

- Pareto-efficient frontier 

for a game with 2 players 

-  Nash bargaining 

solution maximizes the 

product of the utilities 

- J. Nash showed this 

agreement simultaneously 

satisfies 4 important 

axioms  

Domination. “Pure” vs. mixed strategies 

– A contract B1 strictly dominates another contract B2 if 
both (or all parties) prefer B1 to B2 

– Pareto-efficient contracts = not strictly dominated by 
any other contracts 

– Pure strategies: Fixed outcomes 
– Mixed strategies: Allocation is the result of a lottery 
– Example:  

• Two people negotiate when to go and see a soccer game 
• Tom slightly prefers to go on Friday, Bob slightly prefers 

Monday 
• Pure strategy: firm agreement on one day 
• Mixed strategy: they toss a coin 
• What is Pareto-efficient to do? 

46 
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   Multi-issue contract space (pure strategies setting) 

47 

 

C1 

C2 

<Airco:good, 

CD:none, P1> 

<Airco:none, 

CD:good, P2> 

Pareto - efficient 
frontier 

1 

1 

N 

BUYER 

SELLER 

K 

Nash point 

Kalai Smorodinsky 
point 

0 

Reachable only as 
mixed strategies 

Guessing model 
• BUYER 
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Drawing hook Airco Extra speakers CD player Price 

Good Good Good Good 18000 

Fairly good Standard Meager Meager 17450 

Fairly good Standard None None 17968 

RWDC(Airco)>RWDC(CD_player) 

Seller uses:  

Good > Fairly good> Standard >  Meager > None 
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Example experimental results 
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BUYER 

SELLER 1 0.9 0.75 0.8 0.85 

1 

0.9 

0.75 

0.8 

0.85 0 G/NG 

1NG 3NG 

2NG 

1-2G 

Pareto-optimal 
frontier 

Equal Proportion of 
Potential line 

Legend: 
G vs NG: Guessing vs. No 
Guessing 
iG: i attributes revealed, Guessing 

Multi-issue negotiation solutions: case of linear utility 
functions 

• Fuzzy logic 

– [Faratin et. al, 2002] 

• Kernel density estimation  

– [Coehoorn & Jennings, 2004] 

• Bayesian methods 

– [Sycara ’98] [Raz & Kraus ’06] 

• Based on ordinal ranking heuristics 

– [Jonker & Robu, 2004] 

• Constraint based methods 

– [Ehtamo & Hamalaianen, ‘01] 

50 



26 

Multi-issue negotiation: solutions for  
non-linear utility functions 

 

• Simulated annealing  
– [Klein et. al. 2002] 

• Evolutionary computing 
– [Lin, ‘04] [Gerding, Bragt, La Poutre, ’02] 

• Utility graphs 
– [Robu, Somefun, La Poutre ’05] 

• Heuristics based ISO-utility curves 
– [Somefun, Gerding, La Poutre, ’04], [Lai, Sycara & Li, ‘06] 

• Auction-based methods 
– [Ito, Klein & Hattori, 2006]  

51 

Negotiation over multiple continuous issues using 
ISO-utility lines 
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References:  

[Gerding, Somefun, La Poutré, ’04] 

[Lai, Li & Sycara, ‘06] 
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Negotiation Strategies for Continuous Items  

• Dealing with multiple items  

– Continuous values for each item 

– Trade-offs between items 

 

• Find negotiation strategy 

– 2 items, say i1 and i2  

– Utility functions for agents A and B: 
        uA(i1, i2) and uB(i1, i2)  
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Negotiation Strategies for Continuous Items  

• Competitive aspect: `tug-of-war’ 

– Concession Strategy on bids  (i1, i2)  

– Determines the utility of the bids uA(i1, i2)  

– See above for 1-item concession strategies on uA(i1, i2)  
• So, now for utility values of 2 items: uA(i1, i2)  

 Cooperative aspect: multi-issue trade-off 

– Find Pareto-efficient outcomes by making trade-offs in (i1, 
i2)  

– Beneficial for both agents (win-win) 

– Pareto-search Strategy on uA(i1, i2) and uB(i1, i2)  

54 
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Example 

Iso-utility curves for given bundle 

All points on one curve same utility: uA(i1, i2) = constant = c 

55        Issue 1 
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Agents:  

A: customer  

B: seller 

56        Issue 1 
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Agents:  

A: customer  

B: seller 

Concession strategies: iso-utility curves move (they approach) 

• “Constant” c is changed (in  uA(i1, i2) = c ) 

 

Example 
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       Issue 1 

Agents:  

A: customer  

B: seller 

Concession strategies: iso-utility curves move (they approach) 

• “Constant” c is changed (in  uA(i1, i2) = c ) 

 

Example 

Pareto-search Strategy  
 

• Find Pareto-efficient point without knowing 

opponent’s curve  
• Approach the Pareto-efficient solutions during 

concession 

 

• Solution: “Orthogonal Strategy” 

– For a given bid Bopp of the opponent,  
determine your counter bid Bnew on your own iso-
utility curve that is closest to Bopp 

– Can be enhanced with Derivative Follower  (not here) 

 
58 
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Orthogonal Strategy 
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Negotiation Strategies for Continuous Items 

 

• Thus: 
Negotiation strategy is decomposed into 
two parts 

– Pareto-search strategies  

• Orthogonal search 

– Concession strategies 

• As before 

– Intertwined / “active in parallel” 

 

 

60 



31 

References: Books 

• Howard Raiffa – The art and science of negotiation, 
Harvard Univ. Press, 1982 

• M.J. Osborne, A. Rubinstein – Bargaining and Markets, 
Academic Press, 1990. 

• J.S. Rosenschein, G. Zlotkin – Rules of encounter, MIT 
Press, 1994. 

• Roger B. Myerson – Game Theory: Analysis of Conflict, 
Harvard University Press, 1997. 

• Sarit Kraus – Strategic Negotiation in Multi-Agent 
Environments, MIT Press, 2001.  

61 

References (1)  

• P. Faratin, C. Sierra, and N. R. Jennings. Negotiation decision functions for autonomous agents. Int. 
Journal of Robotics and Autonomous Systems, 24(3-4):159-182, 1998. 
 

• A. Rubinstein. A bargaining model with incomplete information about time preferences. 
Econometrica, 53, January 1985. 
 

• T. Sandholm and N. Vulkan. Bargaining with deadlines. In AAAI-99, Orlando, FL, 1999 
 

• Winoto P., McCalla G. and Vassileva J. (2004) Non-Monotonic-Offers Bargaining Protocol, Proc of 
Autonomous Agents and Multi-Agent Systems (AAMAS'04), New York 2004 
 

• Yann Chevaleyre, Ulle Endriss, Jerome Lang, and Nicolas Maudet. Negotiating over small bundles of 
resources. In Proc. of the 4th AAMAS, Utrecht, 2005. 
 

•  Somefun, E. Gerding, S.M. Bohté, and J.A. La Poutré, Automated Negotiation and Bundling of 
Information Goods, In: Agent Mediated Electronic Commerce V (AMEC-V), Melbourne, Australia, 
Springer LNAI, 3048, pages 1 - 17, Springer Verlag, 2004. 
 

• Catholijn Jonker and Valentin Robu. Automated multi-attribute negotiation with efficient use of 
incomplete preference information. In 3rd Int. Conf. on Autonomous Agents & Multi Agent Systems 
(AAMAS), New York, pages 1056-1063, 2004 
 
 

62 



32 

References (2)  
 

 
• Guoming Lai, Katia Sycara, and Cuihong Li. A decentralized model for multi-attribute negotiations 

with incomplete information and general utility functions. In Proc. of RRS’06, Hakodate, Japan, 2006. 
 

• R. M. Coehoorn N. R. Jennings. Learning an opponent’s preferences to make effective multi-issue 
negotiation tradeoffs. In Proc. 6th Int Conf. on E-Commerce, Delft, 2004. 
 

• S. van der Putten, V. Robu, H. La Poutré, A. Jorritsma, and M. Gal, Automating Supply Chain 
Negotiations using Autonomous Agents: a Case Study in Transportation Logistics, Proceedings 
AAMAS 2006, Hakodate, Japan, ACM Press, 2006. 

• V. Robu and J. A. La Poutré. Retrieving the structure of utility graphs used in multi-item negotiation 
through collaborative filtering of aggregate buyer preferences. In Proc. of RRS’06, Hakodate, Japan 
 

• V. Robu, D.J.A. Somefun, and J. A. La Poutré. Modeling complex multi-issue negotiations using utility 
graphs. In Proc. of the 4th Int. Conf. on Autonomous Agents & Multi Agent Systems (AAMAS), 
Utrecht, 2005,  
 

• D.J.A. Somefun, E.H. Gerding, and J.A. La Poutré. Efficient methods for automated multi-issue 
negotiation: Negotiating over a two-part tariff. International Journal of Intelligent Systems, 21(1):99-
119, 2006 

 

63 

Complex Negotiations for 

Intractable Problems 

 

S.S. Fatima 

Department of Computer Science 

Loughborough University, UK 

S.S.Fatima@lboro.ac.uk 

mailto:S.S.Fatima@lboro.ac.uk


33 

Overview 

 The overall objective: automate negotiation – develop 

software agents that negotiate on our behalf 

 Focus on scenarios with:  

o multiple issues  

o time constraints (deadline, discount factor) 

o incomplete information 

o competitive agents (game theoretic) 

 These features make negotiation complex – hard to 

automate 

 Hence we will look at some computationally feasible 

methods for overcoming this complexity 

Outline 

 

1. Single issue negotiation 

2. Methods for multi-issue negotiation 

3. Complexity of negotiating multiple issues 

4. Devising computationally feasible solutions 

5. Summary 
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Negotiation 
 

 

 A means for agents to communicate and compromise 
to reach mutually beneficial agreements; the agents 
have different preferences over the possible 
agreements and so must find one that is acceptable to 
all negotiators 
   Agent 1: O1 > O2 > O3          Agent 2: O2 > O3 > O1 

 

 A number of applications require agents to negotiate:  
 data allocation in information servers 

 task allocation  

  resource allocation 

 e-commerce  

Negotiation protocol and strategy 
 

 Protocol: Gives the rules of encounter 

 

 Strategy: An agent’s strategy is a specification of the sequence 
of actions (usually offers or responses) the agent plans to make 
during negotiation – depends on the protocol 

 

 Optimal strategy: An agent’s optimal strategy is one that 
maximizes its individual utility   

Finding the optimal strategy is a key problem for the negotiators 
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Linear 

Boulware 

Conceder 

Time 

Price 

RP 

Trading agents scenario - Buyer strategies  

Deadline 

IP 

IP: Initial price 

RP: Reserve price 

Negotiating the price of trade 

Time dependent strategies 

sellertheForRPIPtFRPtice

buyertheForIPRPtFIPtice

bbbb

aaaa

)())(1()(Pr

)()()(Pr

Fa(t)  and  Fb(t) lie between 0 and 1 

For (t = 0):                          Fa(t) = 0     and    Fb(t) = 0 

 

For (t = Deadline):            Fa(t) = 1     and      Fb(t) = 1 
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Time 

Price 

RPa 

Time dependent strategies 

Deadline 

IPa 

IPb 

RPb 

O1 

O2 

O3 

a: Buyer  

b: Seller 

O1: Agreement if both agents use Conceder 

O2: Agreement if both agents use Linear 

O3: Agreement if both agents use Boulware 

Zone of  

Agreement 

OR 

Surplus 

Single issue negotiation 

 Agents a and b negotiate over a pie of size 1 

 

 Deadline: n    and    Discount factor: δ 

 

 Utility:      U(x, t) = x δt-1          if  t ≤ n 

                                    0                otherwise 

 

 The agents negotiate using Rubinstein’s alternating offer’s 
protocol 



37 

Alternating offers protocol 

        Time            Offer 

             1            a        b (accept/reject)                                  

             2            b        a  (accept/reject) 

        - 

   - 

             n 

How much should an agent offer in the first time period? 

 
Let n=1 and a be the first mover  

Optimal Offers 

Agent a’s optimal offer: 

 

Propose to keep the whole pie; agent b  will accept this 
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Optimal strategies for n = 2 

δ = 1/4                   first mover: a 

Offer: (x, y)            x: a’s share;        y: b’s share 

Optimal offers obtained using backward induction 

     

Time Size of pie Offering 

agent 

Offer 

1 1 a → b (3/4, 1/4) 

2 1/4 b → a (0, 1/4) 

The offer (3/4, 1/4) forms a Nash equilibrium 

Agreement 

Effect of discount factor and deadline on the 

equilibrium outcome 
 

 What happens to first mover’s share as δ increases? 

 

 What happens to second mover’s share as δ increases? 

 

 As deadline increases, what happens to first mover’s 

share? 

 

 Likewise for second mover? 
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Effect of δ and deadline on the agents’ shares 

Multiple issues 

 Set of issues:  S = {1, 2, …, m}. Each issue is a pie of size 1 

 

 The issues are divisible 

 

 Deadline: n (for all the issues) 

 

 Discount factor: δc  for issue c 

 

 Utility:      U(x, t) = ∑c U(xc, t) 
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Multi-issue procedures 
 

 Package deal procedure: The issues are bundled and 

discussed together as a package 

 

 Simultaneous procedure: The issues are negotiated in 

parallel but independently of each other 

 

  Sequential procedure: The issues are negotiated 

sequentially one after another 

 

Package deal procedure 

   Issues negotiated using alternating offer’s protocol 
 
 
   An offer specifies a division for each of the m issue 
 
 
   The agents are allowed to accept/reject a complete offer 
 
 
  The agents may have different preferences over the issues 
 
 
   The agents can make tradeoffs across the issues to maximize  
     their utility – this leads to Pareto optimal outcome 
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81 

Utility for two issues 

Ua = 2X + Y 
Ub = X + 2Y 

82 

Making tradeoffs 

Ub = 2 

 

What is a’s utility for Ub = 2 
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Example for two issues 

DEADLINE: n = 2      
 
DISCOUNT FACTORS:  δ1= δ2 = 1/2  
 
UTILITIES:  Ua = x1 + 2x2;        U

b = 2y1 + y2 

Time Size of pie Offering 

agent 

Package Offer 

1 1, 1 a → b [(1/4,  3/4); (1, 0)] 

OR 

[(3/4, 1/4); (0, 1)] 

2 1/2, 1/2 b → a [(0, 1/2); (0, 1/2)] 

Ub = 1.5 

Agreement 

The outcome is not symmetric 

Nash equilibrium  strategies  

For t = n 

The offering agent takes 100 percent of all the issues 

The receiving agent accepts 

 

For t < n (for agent a): 

OFFER [x, y] 

 
s.t. Ub(y, t) = EQUB(t+1) 

If more then one such [x, y] 

perform trade-offs across issues to 

find best offer 

RECEIVE [x, y] 

 
If Ua(x, t) ≥ EQUA(t+1) ACCEPT 

else REJECT 

EQUA(t+1) is a’s equilibrium utility for t+1  

EQUB(t+1) is b’s equilibrium utility for t+1 
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Making trade-offs – divisible issues 
 
Agent a’s trade-off problem at time t:  
 
TR: Find a package [x, y] to  
 
 
                         m  

Maximize        ∑ k
a
c xc 

                                    
c=1 

                                   
m 

Subject to       ∑ kb
c yc ≥ EQUB(t+1)             0 ≤ xc   ≤  1; 0 ≤ yc   ≤  1 

                                  
c=1 

 

This is the fractional knapsack problem 

Fractional knapsack problem 
 

 A thief robbing a store finds m items 
 The ith item is worth vi dollars and weighs wi pounds 
 He wants to take as valuable a load as possible but he can carry at most W 

pounds in the knapsack 
 He can take fractions of items 

 Which items should he take?                       
     

                             m 
Maximize            ∑    vc xc 
                            c=1 
 
                            m 
 subject to           ∑    wc xc ≤ W             0  ≤  xc   ≤  1 
                           c=1 
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Greedy strategy 

 A greedy algorithm obtains an optimal solution to a 

problem by making a sequence of choices 

 

 For each decision point in the algorithm, the choice 

that seems best at the moment is chosen (future 

consequences not considered) 

 

 This heuristic strategy does not always produce an 

optimal solution, but sometimes it does 

Greedy strategy 1 

Select the items in the order of greatest value 

Example: 

$220 

items 

30 

20 
10 

1 2 

3 

$60 $100 $120 

50 

30 

20 

knapsack 
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Greedy strategy 2 

Select the items in the order of greatest value per unit 

weight – this is the optimal strategy 

items 

30 

20 
10 

1 2 

3 

$60 $100 $120 

50 

10 

20 

knapsack 

20/30 

$240 

Making trade-offs – divisible issues 

Agent a’s perspective (time t) 

 

 

     Agent a considers the m issues in the increasing order of ka/kb 

and assigns to b the maximum possible share for each of 

them until b’s cumulative utility equals EQUB(t+1) 
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Equilibrium strategies 
 

For t = n 

The offering agent takes 100 percent of all the issues 

The receiving agent accepts 

 

 

For t < n (for agent a) 

OFFER [x, y] 

 
s.t. Ub(y, t) = EQUB(t+1) 

If more then one such [x, y] 

perform trade-offs across issues to find 

best offer 

RECEIVE [x, y] 

 
If Ua(x, t) ≥ EQUA(t+1) ACCEPT 

else REJECT 

Equilibrium solution 

   An agreement on all the m issues occurs in the first time period 
 
   Time to compute the equilibrium offer for the first time period is  
      O(mn) 
 
   The equilibrium solution is Pareto-optimal (an outcome is Pareto  
     optimal if it is impossible to improve the utility of both agents  
      simultaneously) 
 
   The equilibrium solution is not unique, it is not symmetric 
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Making trade-offs – indivisible issues 

Agent a’s trade-off problem at time t is to find a package [x, y] that 

For indivisible issues, this is the integer knapsack problem 

 

10:;10:1..
1

1

oryorxtEQyktS

xkMaximize

ccUBc

m

c

b

c

m

c

c

a

c

Dynamic programming 

 Integer knapsack problem cannot be solved using the greedy 

strategy (previous example) 

 Integer knapsack problem has optimal sub-structure property 
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Complexity and approximations 

 IKP  is NP-hard 

 

 The problem of finding the optimal offers for indivisible issues is 

also NP hard 

 

 Hence the need to devise approximation algorithms 

 

Approximation algorithms are computationally efficient 

 

 They give solutions that are close to the optimum 

 

Performance guarantees 

Quality of approximation is measured in terms of:  

 

  Absolute performance guarantee 

 

  Relative performance guarantee 
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Absolute performance guarantee 

 Given an optimization problem P, for any instance x and any 

approximate solution y of x, the absolute error of y with respect 

to x is defined as: 

      D(x,y) = |v*(x) - v(x,y)|    where v*(x) is the optimal solution 

 

 Given an optimization problem P, and an approximation 

algorithm A for P, we say that A is an absolute approximation 

algorithm if there exists a constant k such that, for every 

instance x of P, D(x,A(x)) ≤ k 

Relative performance 

 

 The quality of an approximation algorithm is measured in terms 

of the ratio of the approximate and optimal solutions 

 
 Given an optimization problem P, for any instance x and any 

approximate solution y of x, the performance ratio of y with 

respect to x is defined as 

          R(x,y) = max(v(x,y)/v*(x), v*(x)/v(x,y)) 

 

 The ratio R(x,y) is at least one 
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Relative performance guarantee 

 

 

 Given an optimization problem P, and an approximation 

algorithm A for P, we say that A is an r-approximation algorithm 

for P if given any input instance x of P, R(x,A(x)) ≤ r  

Polynomial time approximation schemes 

 

 

 An algorithm A is said to be a polynomial time 

approximation scheme (PTAS) for a problem P if, for any 

instance x of P and any rational value r > 1, A when 

applied to input (x, r) returns an r-approximate solution 

of x in time polynomial in |x| 
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Fully polynomial time  

approximation schemes 

 

 

 An algorithm A is said to be a fully polynomial time 

approximation scheme (FPTAS) for a problem P if, for any 

instance x of P and any rational value r > 1, A when applied 

to input (x,r) returns an r-approximate solution of x in time 

polynomial both in |x| and in 1/r 

Approximate solution for knapsack problem  

 
There is an FPTAS for the integer knapsack problem 

 
Time complexity: O(m/ε2)  

 

z: approximate solution        z*: optimal solution 

 

Relative error of approximation 

                      (z - z*) / z* ≤ ε 
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Equilibrium for indivisible issues 

 There is an ε-approximate Nash equilibrium  

 

 A strategy profile is said to be an ε-Nash equilibrium if it is 

not possible for any player to gain more than ε in payoff by 

unilaterally deviating from his strategy  

 

 Every Nash equilibrium is equivalent to a ε-equilibrium 

where ε = 0.  

Approximate equilibrium solution 

   An agreement on all the m issues occurs in the first time 
period 
 
   The equilibrium solution is Pareto-optimal (in approximation) 
 
   The equilibrium solution is not unique, it is not symmetric  
 
   Time to compute the equilibrium offer for the first time period 
is O(nm/ε2)  
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Key points 

 Single issue:  

 Time to compute equilibrium is O(n) 

 The equilibrium is not unique, it is not symmetric 

 Multiple divisible issues: (exact solution) 

 Time to compute equilibrium for t=1 is O(mn) 

 The equilibrium is Pareto optimal, it is not unique, it is not 

symmetric 

 Multiple indivisible issues: (approx. solution) 

 There is an FPTAS to compute approximate equilibrium 

 The equilibrium is Pareto optimal (in approximation), it is not 

unique, it is not symmetric 

Simultaneous procedure 

 Equilibrium for each individual issue is the same as that for 

single issue negotiation 

 

 Computationally easy: equilibrium can be computed in 

polynomial time – O(mn) 

 

 Outcome may not be Pareto optimal (no tradeoffs) 

 

 Additional question arises: choice of first mover for each 

individual issue  
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Sequential procedure 
 

 Equilibrium for each individual issue is the same as that for 
single issue negotiation 

 

 Computationally easy: equilibrium can be computed in 
polynomial time – O(mn) 

 

 Outcome may not be Pareto optimal (no tradeoffs) 

 

 Is slower than the PDP and the simultaneous procedures since 
only one issue is negotiated at a time (m time periods) 

 

 The equilibrium outcome depends on the order in which the 
issues are negotiated – this ordering is called agenda 

Negotiation agenda 
 The agents may have different preferences over the possible 

agendas 

 

 The agents must therefore find a way of settling the agenda 

before they negotiate the issues 

 

 Possible ways of deciding the agenda: 

 

 Exogeneously: The agenda is decided before the agents negotiate the 

issues, the agenda is part of protocol; the issues are then negotiated as per 

the agenda 

 Endogeneously: The agents decide what issue they will negotiate next 

during the process of negotiation – this is useful when set of issues is not 

known in advance 
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Sequential procedure 
 

Some additional questions arise:  

 

 Choice of first mover for each issue 

 

 Choice of the order (agenda) in which the issues will be   

negotiated 

 

 Choice of deciding the agenda before or during negotiation 

Summary - I 

 

For the PDP: 
 Multi-issue negotiation for divisible issues is computationally easy 

 

 Multi-issue negotiation for indivisible issues is NP-hard 

 

 For indivisible issues, there is an ε-approximate Nash equilibrium 
(computable in polynomial time) with  

 only one copy of each issue 

 

 The outcome for the PDP is Pareto optimal, it is not unique, it is not 
symmetric 

 

 An agreement on all the issues occurs in the first time period 
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Summary - II 
 

For the simultaneous procedure: 
 For divisible and indivisible issues the equilibrium is computatable in 

polynomial time 

 An agreement on all the issues occurs in the first time period 

 The outcome is not Pareto optimal, it is not unique, it is not symmetric 

 Additional issue: deciding the first mover for each individual issue 

 

For the sequential procedure: 
 For divisible and indivisible issues the equilibrium is computatable in 

polynomial time 

 An agreement on issues i occurs in time period i 

 The outcome is not Pareto optimal, it is not unique, it is not symmetric 

 Negotiation takes longer than the PDP and the simultaneous procedures 

 Additional factors: deciding the first mover for each individual issue, and 
deciding the negotiation agenda 

References  

1. O.H. Ibarra and C.E. Kim, Fast approximation algorithms for the knapsack and 
sum of subsets problems, Jnl of ACM 22: 463-468, 1975.  

2. H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems, Springer, 2004 

3. A. Marchetti-Spaccamela and C. Vercellis, Stochastic online knapsack problems, 
Mathematical Programming, 68: 73-104, 1995.  

4. M.J. Osborne and A. Rubinstein, A course in game theory, The MIT press, 1994.  

5. J.S. Rosenschein and G. Zlotkin, Rules of encounter, The MIT press, 1994.  

6. S. Kraus, Strategic negotiation in multiagent environments, The MIT press, 2001.  

7. S.S. Fatima, M. Wooldridge, and N.R. Jennings, Multi-issue negotiation with 
deadlines, Jnl of AI Research, 21: 381-471, 2006.  

8. S.S. Fatima, M. Wooldridge, and N.R. Jennings, Approximate and online multi-
issue negotiation, In Proceedings of AAMAS-07, 947-954, 2007.  

9. R. Keeney and H. Riffa, Decisions with multiple objectives: Preferences and value 
trade-offs, John Wiley, 1976.  

10. M.J. Osborne and A. Rubinstein, Bargaining and Markets, Academic Press, 1990. 

H. Raiffa, The Art and Science of Negotiation, Harvard University Press, 1982. 

 



57 

Complex Automated Negotiation 
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• Takayuki Ito 
• ito.takayuki@nitech.ac.jp 

 

• School of Techno-Business Administration,  
Nagoya Institute of Technology  
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Automated Negotiation 
 
 

• Work to date on negotiation protocols has 
addressed mainly simple contracts 

– A single issue (e.g. price) 

– OR several independent issues 

• I want the bike for as cheap as possible 

• I also want the book for as cheap as possible 

• .. etc … 

• Basically simple utility functions assume “independence” among issue 

– Multi-attributed Utility Theory  

• Keeney and Raiffa, “Decisions with Multiple Objective”. They assume 
independency among issues. 

mailto:ito.takayuki@nitech.ac.jp
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Complex contracts 

 
• Complex contracts include dependencies among issues - 

the choice for one issue impacts the value of the choices 
made for other issues 

– The value of this stereo depends on the speakers I 
buy with it 

• Complex contracts are ubiquitous 

– Products composed from multiple parts 
–   Operations composed from multiple missions 
–   Supply chains with multiple participants 
–   … 

•   

Standard techniques (e.g. proposal exchange)  
work fine for simple contracts 

In standard techniques, basically, agents are exchanging their 

proposals so that they reduce the distance between proposals 

while minimizing their utility decrement. 



59 

Proposal exchange - complex contracts 

Simple exchanging proposals do not work well 

Simple contracts have linear utilities 

In general,  utility is 
represented by a simple 
weighted sum of utilities 
for each individual issue in 
agreement 

Conceding as slowly as 
possible towards the 
middle produces optimal 
outcomes 
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Complex contracts have “bumpy” utilities 
 U

(A
2

) 

Contracts  

 U
(A

1
) 

optimum 

optimum selected best 

Utility(agreement) is a 

complex (not just 

additive) function of 

the selections for each 

issue  

-> multi-optima utility 

functions 

Conceding towards the 

middle can easily result 

in lose-lose outcomes 

Nash Bargaining solution 

Easy to achieve the Nash bargaining solution in the 

linear utility case 
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Difficult to achieve the Nash bargaining solution in 

the non-linear utility case 

Sparseness makes difficult to find the Nash solution 
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complex v.s. linear 

• Linear  

– Simple exchanging protocol work well  

– It is easy to achieve the Nash bargaining solution 

• Complex 

– Simple exchanging protocol can not achieve 
better agreements 

– Sometime it fails to achieve the Nash bargaining 
solution 

- Non-linear utility space model

- m issues with the domain of integers [0, X]

- Issues are common for agents.

- A contract is a vector of issue values s =(s1,...,sm).

- Agent’s utility function

- The function is represented 

in terms of constraints.

- A constraint represents an 

acceptable region (interdependency)

and its value (utility).

Automated Negotiation Mechanism
based on Complex Non-linear  Utilities

[Ito, IJCAI07]

Color

Type

Car?
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Takayuki Ito (ito.takayuki@nitech.ac.jp) 

Negotiation with Non-linear Utilities 

•The utility is a summation of satisfied 
contracts’ values 

• Bumpy non-linear utility space 

Existing protocols assuming linear utility functions are not effective. 

How to obtain a solution with high social welfare for non-linear 

utility function ? 

Many constraints 

are satisfied 
A few/no constraints 

are satisfied 

Color 
Type 

Car? 

Takayuki Ito (ito.takayuki@nitech.ac.jp) 

Bidding-based Negotiation Protocol  
 

• Sampling -> Bid-generation -> Winner 
determination 

• An agent submits bids to an mediator for 
high individual utility.   

• An agent samples its utility 

space to find high-utility 

region.  

• Trade-off between high-

utility and the limit of # of 

samples. 

mailto:ito.takayuki@nitech.ac.jp
mailto:ito.takayuki@nitech.ac.jp
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• The mediator identifies the combinations of bids as 
the final contract.

• The final contract is a consistent bids with the 
highest social welfare.

• Only one bid from each agent is included.

Winner Determination

Agent 1

Agent 2

1. Find mutually consistent bids

Specifying overlapping contract region

2. Select the best contracts

Comparing the summed bid values

The final

contract

Experiments 
 

 

• Setting 

• Constraints satisfying many issues could have larger weights. 

• The maximum value for a constraint: 100 x # of issues 
e.g., the possible value for a binary constraint is 200. 

• Agents have the same issues and domain for each issue value. 

• Domain for issue value is [0,9] 

• Approximate search-based winner determination 

• The final contract is searched by the simulated  

annealing. 
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Experiments 
 

• Independent Hill Climbing / Bidding-based method for non-linear 
utility function 

• HC mediator tends to converge to a local optimum.  

• AR mediator has more chances to find better contract because 
agents can generate bids covering multiple optima. 
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Experiments 
 

Independent Hill Climbing / Bidding-based method for non-linear 
utility function 

HC mediator can quickly obtain the final contract.   

AR mediator takes more time, but the final contract is 
calculated within a practical time. 

Scalability 

The impact of the scaling-up of the problem space 

90%+ optimality for up to 8 issues 
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Optimality v.s. Sampling Rate 

Sampling Rates v.s. Agreement 

• Reason:  
–When there are many 

sampling points, each agent 
has a better chance of finding 
good local optima in its utility 
space. 

–However, the num. of bids is 
limited for computation time. 

–This increases a risk of not 
finding an overlap between 
the bids 

 

• The Failure rate, % of negotiations that do not lead to an agreement, 

is higher when there are more sampling points 
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Discussion 
• The number of bids is ... 
• The winner determination computation 

grows exponentially as (# of bids per 
agent)# of agents 

• If we use an exhaustive search method (with 
branch cutting), 
the problem size is limited to the small one. 

• The trade-off between the computation 
time and the optimality  

# of 

issues 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 

# of 

bids 
54 200 461 758 1074 1341 1636 1746 1972 2086 2238 2326 2491 2648 

Extensions 
  

 

• Grouping Issues 

 

 

• Adjusting Thresholds 

Hiromitsu Hattori, Mark Klein, and Takayuki Ito, “Using Iterative Narrowing to 

Enable Multi-Party Negotiations with Multiple Interdependent Issues,” in 

Proceedings of the 6th International Joint Conference on Autonomous Agents and 

Multiagent Systems (AAMAS-2007), 2007, pp. 1043-1045. 

Fujita, Ito, Klein, “The Effect of Grouping Issues in Multiple Interdependent 

Issues Negotiation based on Cone-Constraints”, ACAN 2010.  

Katsuhide Fujita, Takayuki Ito, Mark Klein, “A Preliminary result on a representative-

based multi-round protocol for multi-issue negotiations”, The Seventh International 

Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS2008), 

pp. 1573-1576,2008. 
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Other approaches  
 

• Secure Centralized Simulated Annealing  
 
 
 
 
 

• Graph Representation of Constraints Block 

• Katsuhide Fujita, Takayuki Ito, and Mark Klein, "A Secure and Fair Protocol that 

Addresses Weaknesses of the Nash Bargaining Solution in Nonlinear Negotiation", 

Group Decision and Negotiation Journal, 2010 (to appear).Katsuhide Fujita, Takayuki 

Ito,and Mark Klein, "Secure and Efficient Protocols for Multiple Interdependent Issues 

Negotiation," Journal of Intelligent and Fuzzy Systems, 2009 

• Marsa -Maestre, I., Lopez - Carmona, M. A., Velasco, J. R., Ito, T., Fujita, K., and 

Klein, M.: Balancing Utility and Deal Probability for Negotiations in Highly Nonlinear 

Utility Spaces, in IJCAI-09, pp.214-219(2009) 

Iterative narrowing possible contract space 

Takayuki Ito#*           

 

Collaborative work with 

Mark Klain*, Hiromitsu Hattori+, and Katsuhide Fujita# 
 

#Nagoya Institute of  Technology, JAPAN 

 

*Sloan School of Management, 

Massachusetts Institute of  Technology, USA 

 

+Kyoto University, JAPAN 
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Problem 

The bid limit for each agent becomes 
severe as the number of agents are 
increased. 

The winner determination computation grows 
exponentially as (# of bids per agent) # of agents, 
so... 

I set the limit of the # of bids per agents to 
64000001/2 

e.g. the bid limit is 5 for 10 agents case. 

The region covered by a high-utility bid 
tends to be small. 
➡The failure rate is getting high! 

Approach 

Iterative narrowing of the possible 
contract space. 

Multi-round bidding and deal identification 
to gradually make the contract space smaller. 

Cluster Bidding 

Widest-Constraint Bidding 

Peak Bidding 
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Cluster Bidding (1)

Extraction of all the promising regions in each utility space

The region of a cluster bid consists of the regions of several bids.

The cluster-bids cover all promising regions while cutting-out “no-interest”  

regions.

The true topology of the utility function is still NO T unveiled.

Issue1

Is
su

e2

Issue1

Is
su

e2

Clust er ing
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Experiments: setting 

 
Constraints satisfying many issues could have 
larger weights. 

The maximum value for a constraint: 100 x # of issues 
e.g., the possible value for a binary constraint is 200. 

Agents have the same issues and domain for each 
issue value. 

Domain for issue value is [0,9] 

Utility functions consists of 50 10-dimensional 
constraints. 

Constraints are grouped into clusters 
10 clusters per each agent’s utility function 
5 constraints per cluster 

Experiments: optimality 

The optimality WITHOUT the clustering drops off rapidly as the 
agent utility becomes more correlated. 

With many overlaps, agents must bid on a few of overlaps. 

The optimality WITH the clustering hovers about 90% except for 
the toughest problems. 

WITHOUT 
Clustering 

WITH 
Clustering 


