
Answer Set Programming:
an Introduction

Stefania Costantini

Dipartimento di Informatica
Universita’ degli Studi di L’Aquila

via Vetoio Loc. Coppito, I-67100 L’Aquila (Italy)
stefcost@di.univaq.it

Example: 3-coloring in Logic Programming

Problem: assigning colors red/blue/green to vertices of a
graph, so as no adjacent vertices have the same color.

Logic programming representation of the graph:

node(0..3).

col(red).
col(blue).
col(green).

edge(0, 1).
edge(1, 2).
edge(2, 0).
edge(1, 3).
edge(2, 3).

. . . Inference Engine . . .

Expected solutions:

{color(0, red), color(1, blue), color(2, green), color(3, red)}
{color(0, red), color(1, green), color(2, blue), color(3, red)}
{color(0, blue), color(1, red), color(2, green), color(3, blue)}
{color(0, blue), color(1, green), color(2, red), color(3, blue)}
{color(0, green), color(1, blue), color(2, red), color(3, green)}
{color(0, green), color(1, red), color(2, blue), color(3, green)}

3-coloring in Prolog

graph coloring(G,L) : −gr col(G, [], L).

gr col([], L, L) : −!.
gr col([N |R], P, L) : −vertex color(N,C, P), gr col(R, [color(N,C)|P], L).

vertex color(N, C, P) : −col(C), ok color(N, C, P).
neighbourhood(N, B, L) : −(edge(N,N1); edge(N1, N)),
member(N1, B), !,
neighbourhood(N, [N1|B], L).
neighbourhood(, L, L).

ok color(N,C, P) : −neighbourhood(N, [], L), check color(L,C, P).

check color([], ,) : −!.
check color([N1|B], C, P) : − \+member(color(N1, C), P), !,
check color(B, C, P).

member(E, [E|X]) : −!.
member(E, [|X]) : −member(E, X).

?− consult[3col.pro]
?− graph coloring([0, 1, 2, 3], L).
L = [color(0, red), color(1, blue), color(green), color(3, red)];
L = [color(0, red), color(1, green), color(blue), color(3, red)]
. . .

3-coloring in Answer Set Programming

color(X, red)|color(X, blue)|color(X, green) : −node(X).

: −edge(X,Y), col(C), color(X, C), color(Y, C).

hide node(X).
hide edge(X,Y).
hide col(C).

Using the SMODELS inference engine we obtain:

lparse < 3col.txt | smodels 0

Answer1
{color(0, red), color(1, blue), color(green), color(3, red)}
Answer2
{color(0, red), color(1, green), color(blue), color(3, red)}
. . .

Horn Logic Programming

Unification + SLD-Resolution

Least (Herbrand) model semantics

Function symbols and recursive definitions
(infinite Herbrand Universe)

Expressivity: Church-Turing computability

DATALOG: no function symbols
(finite Herbrand Universe, finite program grounding)

Expressivity: proper subset of P

Negation in Logic Programming

Negation operator not (\+)
Negation As (finite) Failure

based on Closed World Assumption

Unique least model no longer guaranteed

a ← not b.
b ← not a.

Classical models {a} and {b}.

First group of semantic proposals:
keep a single intended model

By narrowing class of programs:
perfect model (stratification) (Apt, Blair & Walker)

By weakening semantics:
well-founded model 〈T ; F 〉 (Van Gelder, Ross & Schlipf)

Second group of semantic proposal:
collection of intended models:

• supported models (Clark)

• stable models (Gelfond & Lifschitz)

Stable Model Semantics (Answer Sets Semantics)

Nice formal features:
related to well-founded semantics, and default logic

Difficult to reconcile with query-based logic programming
(skeptical semantics? unique stable model? Too complex!)

Solution: new logic programming paradigm

• SLP: Stable Logic Programming
(Marek & Truszczynski)

• ASP: Answer Set Programming (Gelfond & Lifschitz)

for for DATALOG plus negation (no function symbols, or
limited use)

Solutions are represented by stable models (answer sets),
and not by answer substitutions in response to a query.

Inference engine: answer set solvers
SMODELS, Dlv, DeRes, CCalc

Complexity: existence of a stable model NP-complete

Expressivity:

• all decision problems in NP and

• all search problems whose associated decision problems
are in NP (claim!)

Answer Set/Stable model semantics

p :−not p.

Classical model {p} NOT STABLE

a :−not b.
b :−not a.

Classical models {a}, {b} STABLE

p :−not p, not a.

a :−not b.
b :−not a.

Classical models
{b, p} NOT STABLE
{a} STABLE

p :−not p.

p :−not a.
a :−not b.

b :−not a.
Classical models

{b, p} STABLE
{a, p} NOT STABLE

Answer set semantics

Constraints

:−v, w, z.

rephrased as

p :−not p, v, w, z.

Disjunction

v|w|z.
rephrased as

v :−notw, not z.

w :−not v, not z.
z :−not v, notw.

Choice (XOR)

v + w + z.
rephrased as

v|w|z.
:−w, z.

:−v, z.

:−v, w.

Answer set semantics

Classical Negation ¬p

−p :−q, r.

rephrased as

p′ :−q, r.

:−p, p′

Example

mushroom(boletus edulis).
mushroom(amanita phalloides).

eat(M) :−mushroom(M),−poisonous(M).

not poisonous would be hazardous!

discard(M) :−mushroom(M), poisonous(M).

poisonous(M) :−not − poisonous(M).
−poisonous(boletus edilis).

Drawbacks of stable model semantics

Fix-point definition:
interpretation S is a stable model iff S = Γ(S)

No Relevance :
for atom A, REL RUL(A) may have stable models where
A is true/false, while the overall program does not.

Example :
p :−not p, not a.

q :−not q, not b.

a :−b.
b :−a.

REL RUL(a) = {a :−b. b :−a.}
with stable models {a} and {b}.

Overall program: no stable models.

P1 with stable models, P2 with stable models
P1 ∪ P2 may not have stable models.

Answer Set Programming: deals with Uncertainty

new(n1).
new(n2).
source(n1, a1).
association(a1).
source(n2, government).

economical(N) : −new(N), source(N, A),
economical association(A).

cultural(N) : −new(N), source(N, A), cultural association(A).
political(N) : −new(N), source(N, government).

cultural association(A) : −association(A),
not economical association(A).

economical association(A) : −association(A),
not cultural association(A).

economical(N) : −new(N), not cultural(N).
cultural(N) : −new(N), not political(N), not economical(N).
political(N) : −new(N), not cultural(N).

Answer Set Programming: deals with Uncertainty

Prolog:

?− economical(n1).
?− political(n1).
?− cultural(n1)

infinite loop!

?− economical(n2).
?− cultural(n1)

infinite loop!

?− political(n2). yes

Well-Founded Semantics:
truth value undefined instead of infinite loop

Answer Set Solver (SMODELS):
Answer1
{political(n2), economical(n2), cultural(n1), cultural association(a1)}
Answer2
{political(n2), economical(n2), political(n1), political association(a1)}

Each Answer Set makes a different (consistent) hypothesis
on association a1 (political/cultural).

Answer Set Programming and Intelligent Agents

Planning oriented Agents: cycle observe-think-act

• observe: collect new facts;

• think: answer set programming for making a plan;

• act: execute the plan.

Reactive/proactive agents: cycle event-condition-action

• event: come asynchronously form the outside, or from
the inside;

• condition: internal inference process, possibly involv-
ing answer set programming for checking constraints,
resolving uncertainty, making a plan;

• action: possibly affect the environment.

