
1

Agent-Oriented
Software Engineering

Franco Zambonelli
April 2010

2

Outline

  Part 1: What is Agent-Oriented Software
Engineering (AOSE)
  Why it is important
  Key concepts.

  Part 2: Agent-methodologies
  Key Concepts
  The Gaia Methodology
  Case Study

  Part 3: Implementing agents
  Intra-agent vs. inter-agent issues
  Multiagent infrastructures

  Part 4: Conclusions and Open Research
directions.

3

Part 1

  What is Agent-Oriented Software
Engineering

4

What is Software Engineering

  Software is pervasive and critical:
  It cannot be built without a disciplined,

engineered, approach
  There is a need to model and engineer both:

  The development process:
  Controllable, well documented, and reproducible

ways of producing software;
  The software:

  Well-defined quality level (e.g., % of errors and
performances);

  Enabling reuse and maintenance.
  Requires:

  Methodologies  Abstractions, and tools.

5

Software Engineering Abstractions

  Software deals with “abstract” entities, having
a real-world counterpart:

  Numbers, dates, names, persons, documents ...

  In what terms should we model them in
software?

  Data, functions, objects, agents …
  I.e., what are the ABSTRACTIONS that we have to

use to model software?

  May depend on the available technologies!
  Use OO abstractions for OO programming envs.;
  Not necessarily: use OO abstractions because they

are better, even for COBOL programming envs.

6

Methodologies
  A methodology for software development:

  Is intended to give discipline to software
development.

  Defines the abstractions to use to model software:
  Data-oriented methodologies, object-oriented

ones …
  Define the MINDSET of the methodology.

  Disciplines the software process:
  What to produce and when;
  Which artifacts to produce.

7

The Classical “Cascade” Process
  The phases of software development:

  Independent of programming paradigm;
  Methodologies are typically organized around this

classical process.
  Inputs, outputs, internal activities of “phases”

8

Tools
  Notation tools:

  To represent the outcomes of the software
development phases:
  Diagrams, equations, figures …

  Formal models:
  To prove properties of software prior to

development
  Lambda and pi calculus, UNITY, Petri-nets, Z ….

  CASE (Computer Aided Software
Engineering) tools:
  Based on notations and models, to facilitate

activities:
  Simulators, rapid prototyping, code generators.

9

Example: Object-oriented
Software Engineering (OOSE)

  Abstractions:
  Objects, classes, inheritance, services.

  Methodologies:
  Object-oriented analysis and design, RUP, OPEN,

etc..;
  Centered around the object-oriented abstractions.

  Tools (Modeling Techniques):
  UML (standard), E-R, class lattices, finite state

automata, visual languages …

10

Why Agent-Oriented Software
Engineering?

  Software engineering is necessary to
discipline:
  Software systems and software processes;
  Any approach relies on a set of abstractions and

on related methodologies and tools
  Agent-based computing:

  Introduces novel abstractions
  Requires clarifying the set of necessary

abstractions
  Requires adapting methodologies and producing

new tools
  Novel, specific agent-oriented software

engineering approaches are needed!

11

What are Agents?
  There has been some debate

  On what an agent is, and what could be
appropriately called an agent

  Two main viewpoints (centered on different
perspectives on autonomy):
  The (strong) Artificial Intelligence viewpoint:

  An agent must be, proactive, intelligent, and it
must converse instead of doing client-server
computing

  The (weak) Software Engineering Viewpoint
  An agent is a software component with internal

(either reactive or proactive) threads of
execution, and that can be engaged in complex
and stateful interactions protocols

12

What are Multiagent Systems?
  Again….

  The (strong) artificial intelligence viewpoint
  A multiagent system is a society of individuals (AI

software agents) that interact by exchanging
knowledge and by negotiating with each other to
achieve either their own interest or some global
goal

  The (weak) software engineering viewpoint
  A multiagent system is a software systems made

up of multiple independent and encapsulated loci
of control (i.e., the agents) interacting with each
other in the context of a specific application
viewpoint….

13

The SE Viewpoint on Agent-
oriented Computing

  We commit to it because:
  It focuses on the characteristics of agents that

have impact on software development
  Concurrency, interaction, multiple loci of control
  Intelligence can be seen as a peculiar form of

control independence; conversations as a peculiar
form of interaction

  It is much more general:
  Does not exclude the strong AI viewpoint
  Several software systems, even if never

conceived as agents-based one, can be indeed
characterised in terms of weak multi-agent
systems

  Let’s better characterize the SE perspective
on agents…

14

SE Implications of Agent
Characteristics

  Autonomy
  Control encapsulation as a dimension of modularity
  Conceptually simpler to tackle than a single (or multiple

inter-dependent) locus of control
  Situatedness

  Clear separation of concerns between:
  the active computational parts of the system (the agents)
  the resources of the environment

  Sociality
  Not a single characterising protocol of interaction (e.g.,

client-server)
  Interaction protocols as an additional SE dimension

  Openness
  Controlling self-interested agents, malicious behaviors, and

badly programmed agents
  Dynamic re-organization of software architecture

  Mobility and Locality
  Additional dimension of autonomous behavior
  Improve locality in interactions

15

MAS vs. OOSE Characterisation

16

Agent-Oriented Abstractions

  The development of a multiagent system should
fruitfully exploit abstractions coherent with the
above characterization:
  Agents, autonomous entities, independent loci of

control, situated in an environment, interacting with
each other

  Environment, the world of resources agents perceive
  Interaction protocols, as the acts of interactions

between agents
  In addition, there may be the need of

abstracting:
  The local context where an agent lives (e.g., a sub-

organization of agents) to handle mobility & opennes
  Such abstractions translates into concrete

entities of the software system

17

Agent-Oriented Methodologies
  There is need for SE methodologies

  Centered around specific agent-oriented abstractions
  E.g., Agents, environments, interaction protocols

  The adoption of OO methodologies would produce
mismatches
  Classes, objects, client-servers: little to do with

agents!
  Each methodology may introduce further

abstractions
  Around which to model software and to organize the

software process
  E.g., roles, organizations, responsibilities, beliefs,

desires and intentions…
  Not directly translating into concrete entities of the

software system
  E.g. the concept of role is an aspect of an agent, not

an agent

18

Agent-Oriented Tools
  SE requires tools to

  represent software
 E.g., interaction diagrams, E-R diagrams,

etc.
  verify properties

 E.g., petri nets, formal notations, etc.

  AOSE requires
  Specific agent-oriented tools

 E.g., UML per se is not suitable to model
agent systems and their interactions (object-
oriented abstractions not agent-oriented
ones)

19

Why Agents and Multiagent
Systems?

  Other lectures may have already outlined
the advantages of (intelligent) agents and of
multiagent systems, and their possible
applications
  Autonomy for delegation (do work on our behalf)
  Monitor our environments
  More efficient interaction and resource

management
  Here, we state that

  Agent-based computing, and the abstractions
it uses, represent a new and general-purpose
software engineering paradigm!

20

There is much more to agent-
oriented software engineering

  AOSE is not only for “agent systems.”
  Most of today’s software systems have

characteristics that are very similar to those of
agents and multiagent systems

  The agent abstractions, the methodologies, and
the tools of AOSE suit such software systems

  AOSE is suitable for a wide class of scenarios
and applications!
  Agents’ “artificial Intelligence” features may be

important but are not central
  But of course…

  AOSE may sometimes be too “high-level” for
simple complex systems…

21

Agents and Multiagent Systems
are (Virtually) Everywhere!

  Examples of components that can be
modelled (and observed) in terms of
agents:
  Autonomous network processes;
  Computing-based sensors;
  PDAs;
  Robots.

  Example of software systems that can be
modelled as multiagent systems:
  Internet applications;
  P2P systems;
  Sensor networks;
  Pervasive computing systems.

22

Summarizing

  A software engineering paradigm defines:
  The mindset, the set of abstractions to be used in

software development and, consequently,
  Methodologies and tools
  The range of applicability

  Agent-oriented software engineering defines
  Abstractions of agents, environment, interaction

protocols, context
  Of course, also specific methodologies and tools

(in the following of the tutorial)
  Appears to be applicable to a very wide rage of

distributed computing applications….

23

Part 2

  Agent-oriented Methodologies
  The Gaia Methodology

24

What is a methodology ?

1: a body of methods, rules, and postulates employed
by a discipline: a particular procedure or set of
procedures

2 : the analysis of the principles or procedures of
inquiry in a particular field
 (Merriam-Webster)

To evaluate a methodology, we need to recall what a
methodology is:

• But when referring to software:
• A methodology is the set of guidelines for
covering the whole lifecycle of system
development both technically and
managerially.

25

Agent-oriented Methodologies

  They have the goal of
  Guiding in the process of developing a multiagent systems

  Starting from collection of requirements, to analisys, to design,
and possibly to implementation

  An agent-oriented methodology defines the abstractions to
use to model software:
  Typically, agents, environments, protocols..
  Plus additional methodology-specific abstractions

  And disciplines the software process:
  What models and artifacts to produce and when

  Model: an abstract representation of some aspect of interest of the
software

  Artifact: documents describing the characteristic of the software

26

Agent-oriented Methodologies

  A Variety of Methodology exists and have been
proposed so far
  Gaia (Zambonelli, Jennings, Wooldridge)

  Prometeus (Winikoff and Pagdam)

  SODA (Omicini)

  ADELFE (Gleizes)

  Etc.

  Exploiting abstractions that made them more suited to
specific scenarios or to others..

  We focus on Gaia because is the reference one (i.e.,
the one any new proposal compares to) and the more
general one
  Ok, I am not an impartial judge…

27

The Gaia Methodology

  It is “THE” AOSE Methodology
  Firstly proposed by Jennings and Wooldridge in

1999
  Extended and modified by Zambonelli in 2000
  Final Stable Version in 2003 by Zambonelli,

Jennings, Wooldridge
  Many other researchers are working towards

further extensions…
  Key Goals

  Starting from the requirements (what one wants
a software system to do)

  Guide developers to a well-defined design for
the multiagent system

  The programmers can easily implement
  Able to model and deal with the characteristics

of complex and open multiagent systems

28

Key Characteristics of Gaia

  Exploits organizational abstractions
  Conceive a multiagent systems as an

organization of individual, each of which
playing specific roles in that organization

  And interacting accordingly to its role

  Introduces a clear set of abstractions
  Roles, organizational rules, organizational

structures
  Useful to understand and model complex and

open multiagent systems

  Abstract from implementation issues

29

Structure of
Gaia Process

30

A Case Study:
Distributed Project Review

  The ministry for research publish a call for funding
research
  Scientists must “submit” a research proposal, e.g.,

in the form of a scientific article (paper)
  A number of scientists (called reviewers or

referees”) review the papers and give marks
  It has to complete a document called “review form”
  To ensure fairness, the reviewers must be

anonymous, expert, and must be willing to do the
review,

  Also, each project should receive a minimum
number of review from different scientists

  Eventually, all accepted project/papers will sign a
contract, will receive the funds, and will publish
the results on a book

31

The Case Study: Why Agents?

  It is a typical case of distributed workflow
management
  There are actions to do on common documents
  According to specific rules

  Each of the human actors involved in the
process
  Could be supported by a personal agents
  Helping him to submit documents, filling in,

respect deadlines, etc.

  Let’s see how we could develop this using
the Gaia methodology..

32

Gaia Analysis (1)

  Once we know what the problem to solve is
  First: Sub-organizations

  See if it can easily conceived as a set of loosely
interacting problems

  To be devoted to different sub-organization
  And let’s focus on the different sub-organizations
  “Divide et impera”

  Second: Environment
  Analyze the operational environment
  See how it can be modeled in terms of an agent

environment
  Resources to be accessed and how
  So as to obtain an “environmental” model

33

Case Study Analisys (1)
  First: Sub-organizations

  There are clearly different organizations in
time
  The submission of paper,
  The review of paper
  The Contractual phase for accepted ones

  Second: Environment
  The environment is clearly a computational

environment of digital resources
  Filled in with papers and review forms

  And possible with “user profiles” describing
the attitudes, expertises, and possibly the
conflicts of interest of scientists

34

Gaia Analysis (2)

  Third: Roles
  See what “roles” must be played in the organization
  A role defines a “responsibility” center in the

organization, with a set of expected behaviors
  So that its goals can be achieved
  Defines the attributes and the responsibility of each

role, reasoning in terms of “sub-goals”
  So as to define the “role model”, i.e., the list

specifying the characteristics of the various roles
  Fourth: Protocols

  See how roles must interact with each other so as to
fulfill expectations

  Analyze these interaction protocols
  So as to define an “interaction model”, i.e., the list

specifying the characteristics of the various protocols

35

Case Study Analysis (2)

  Third: Roles
  There are clearly such roles such as

  “chair” (who received submissions and control the
review process)

  “author” (who send submissions)
  “reviewer” (who receive papers to review and send

back review forms)
  Each with different permissions related to the

environment (e.g., authors cannot access review
forms) and with different responsibilities (reviewers
must fill in the review form in due time)

  Fourth: Protocols
  Protocols can be easily identified

  “submit paper FROM author TO chair”
  “send paper to review FROM chair TO”
  Etc.

36

 Gaia Analysis (3)

  Fifth: Organizational Rules
  Analyze what “global” rules exists in the system

that should rule all the interactions and the
behavior between roles

  These defines sorts of “social rules” or “laws” to be
enacted in the organization

  The list of all identified rules, that we call
“organizational rules”, define the last model of the
analysis

37

Case Study Analysis (3)

  Fifth: Organizational Rules
  The process should clearly occur according to some

rules ensuring fairness of the process
  An author should not also act as reviewer for his

own projects, or for those of his “friends”
  A reviewer should not give two review for the same

project
  Each project should receive the same minimal

number of review
  And other you may think of…

38

Gaia Analysys:
Graphical Representation of Models

  Environment

  Roles

  Interactions

  Organizational Rules

39

From Analysis to Design

  Once all the analysis model are in place
  We can start reasoning at how organizing them into a

concrete architecture
  An “agent architecture” in Gaia is

  A full specification of the structure of the
organization

  With full specifications on all the roles involved
  With full specification on all interaction involved

  It is important to note that in Gaia
  Role and Interaction models are “preliminar”
  They cannot be completed without choosing the final

structure of the organization
  Defining all patterns of interactions
  Introducing further “organizational” roles
  Arranging the structure so that the organizational

rules are properly enacted

40

From Analysis to Design
in the Case Study

  The final organizational of the review
process may imply
  Multi-level hierarchies to select papers (if there

are a lot of submissions the “chair” must be
supported by “co-chairs”)

  A Negotiation process to select reviewers (it is a
difficult process, and agent could help in that to
march papers with appropriate reviewers)

  A structure that avoid cheating (where an
authors is somehow allowed to act as reviewer
of its own project)

  Then, it is clear that the analysis could not
have determines the final structure and a
definitive listing of roles and protocols

41

Gaia Architecture Design (1)

  Aimed at determining the final
architecture of the system

  The architecture, i.e., the organizational
structure consists in
  The topology of interaction of all roles

involved
  Hierarchies, Collectives, Multilevel…
  Which roles interact with which

  The “control regime” of interactions
  What type of interactions? Why?
  Control interactions, Work partitioning, work

specialization, negotiations, open markets,
etc.

42

Case Study: Possible Organizational
Structures

43

Gaia Architecture Design (2)

  What “forces” determines/influence the
organizational structure?

  Simplicity
  Simple structures are always preferable

  The Real-World organization
  Trying to mimic the real-world organization minimizes

conceptual complexity
  Complexity of the problem

  Calls for distributed structures, with many
components involved

  The need to enact organizational rules with small
effort
  Calls for exploiting negotiations as much as possible,
  Also to deal with open systems,

44

Choosing the Organizational Structure

45

Gaia Architecture Design (3)

  It is important to note that in the definition
of the organizational structure
  This can be composed from a set of known

“organizational patterns”
  So that previous experiences can be re-used

  Once the organizational structure is
decided
  Complete the role model
  Additional roles may have been introduced due

to the specific structure chosen
  Complete the interaction model

  To account for all interactions between all roles
in a detailed way

46

Gaia Detailed Design
  Devoted to transform “roles” and “interaction

protocols” into more concrete components, easy to
be implemented

  Roles becomes agents
  With internal knowledge, a context, internal activities,

and services to be provided
  Sometimes, it is possibly thinking at compacting the

execution of several roles into a single agent
  Clearly, we can define “agent classes” and see what

and how many instances for these classes must be
created

  Interaction protocols becomes sequence of
messages
  To be exchanged between specific agents
  Having specific content and ontologies

  And the final specifications go to the programmers…

47

About Gaia Notations

  Gaia adopt a custom notation for its
models
  However, Gaia does not prescribe this
  Any other graphical or textual notations (e.g.

UML or whatever) can be used or can
complement the Gaia one

48

Part 3:

  Implementation Issues and Multiagent
Infrastructures

49

Issues in Implementing
Agents and Multiagent Systems

  How can we move from agent-based design
to concrete agent code?

  Methodologies should abstract from:
  Internal agent architecture
  Communication architecture
  Implementation tools

  However, depending on tools the effort from
design to implementation changes:
  It depends on how much abstractions are close to

the abstractions of agent-oriented design
  The methodology could strongly invite to exploit a

specific infrastructure

50

Intra-agent Issues:
Implementing Agents

  We have two main categories of tools to
implement agents:
  Object-oriented tools: are very much related to

the object-oriented approach, e.g., Aglet;
  BDI toolkits: are based on the BDI model (e.g.,

Jade).
  The choice of the tool to adopt is hard and

there is no general answer:
  Performances;
  Maintenance;
  … and many other issues.

  We have already discussed about Aglets and
JADE agent implementation models, so we
skip them now…

51

Inter-agent Issues:
Implementing Multiagent Systems

  Inter-agent implementation aspects are
orthogonal to intra-agent ones
  Given a set of agents

  With internal architecture
  With specified interaction patterns

  How can we glue them together?
  Letting agents know each other

  How to enable interactions?
  Promoting spontaneous interoperability

  How to rule interactions?
  Preventing malicious or self-interested

behaviours?

52

Multiagent Infrastructures
  Enabling and ruling interactions is mostly a

matter of the infrastructure
  The “middleware” layer supporting

communication and coordination activities
  Not simply a passive layer
  But a layer of communication and coordination

middleware “services”
  Actively supporting the execution of interaction

protocols
  Providing for helping agents move in unknown

worlds
  Providing for proactively controlling, and possibly

influencing interactions

53

Communication vs. Coordination
Infrastructures

  Communication Infrastructures
  Middleware layer mainly devoted to provide

communication facilities
  Routing messages, facilitators, etc.
  FIPA defines a communication infrastructure

  Communication enabling

  Coordination Infrastructure
  Middleware layer mainly devoted to orchestrate

interactions
  Synchronization, and constraints on interactions
  MARS and Tucson are coordination infrastructures

  Activities ruling

54

Communication Infrastructure
  Agent in a MAS have to interact with each

other, requiring
  Finding other agents

  Directory services in the infrastructure keep track
of which agents are around, and what are their
characteristics (e.g., services provided)

  Re-routing message
  Facilitator agents (parts of the infrastructure) can

  receive messages to be delivered to agents with
specific characteristics, and re-route them

  Control on ACL protocols
  The execution of a single protocol can be

controlled in terms of a finite state machine

55

FIPA Specifications
for Communication Infrastructures

  The Foundation for Intelligent Physical Agents
  Specifies STANDARDS for multiagent infrastructures

  to interoperate and be managed
  Formally specified ACL

  Specifies encoding, semantics, and pragmatics of messages
  Includes: mobility, security, ontology, Human-Agent

comm.
  FIPA reference architecture (see below)

Message Transport System

Agent
Management

System

Directory
Facilitator

(yellow pages,
Naming service)

Agent Platform

Agent life-cycle

Agent1

Other Agents
Speaks IIOP

Yellow
Pages Supervisory

control
Authentication

of agents
Registration of

agents

Agentn

56

JADE (Java Agent DEvelopment
Framework)

  JADE – A FIPA-compliant Agent Framework
  http://sharon.cselt.it/projects/jade/

  Is a software framework
  simplifies the implementation of multi-agent systems
  Attempts to be very efficient
  Fully implemented in Java and fully distributed under

LGPL
  Mostly oriented to AGENT COMMUNICATIONS (via ACL)

  Definitely the most used systems
  AND IT IS ITALIAN!!!
  Developed by UNIPR and TELECOM-IT

57

JADE continued

  Is the middleware for MAS (Multi-Agent Systems)
  Target users: agent programmers for MAS
  Agent services

  life-cycle (to handle creation and death of agents),
yellow-pages (naming service), message transport
(to have different platforms interoperate)

  Agent Communication Languages
  Support for Speech Act and Negotiation protocols
  Support for Shared Ontologies

  Tools to support debugging phase
  remote monitoring agent, dummy agent, sniffer

agent
  Designed to support scalability

  (from debugging to deployment)
  from small scale to large scale

58

Network protocol stack using RMI or IIOP
JRE 1.2 JRE 1.2 JRE 1.2

Jade Main-container Jade Agent Container Jade Agent Container

Jade distributed Agent Platform

D
F

A
ge

nt

A
M

S
A

ge
nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

Host 1 Host 2 Host 3

Distributed architecture of a
JADE Agent Platform

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

59

JADE Agent Platform - GUI

  Remote Agent Management
  Remote Monitoring Agent
  Management Agent
  White pages GUI – to find agents
  Agent life cycle handling allowing

start, stop, pause, migrate, etc.
  Create and start agents on remote

host
  Assumes container already

registered
  Naturally uses ACL for

communication

60

JADE Communication Sub-system
  Every agent has a private queue of ACL messages

created and filled by the JADE communication sub-
system

  Designed as a chameleon to achieve the lowest cost
for message passing
  The mechanism is selected according to the situation
  The overheads depend on the receiver’s location and

the cache status

  If you send a message to another agent and the sub-
system can’t find target, then it sends it to the AMS
to handle

  Graphics tools to analyse agent communications

61

JADE Interaction Protocols

  Interaction protocols are
the FIPA way to manage
interactions.

  JADE provides support
for FIPA generic
interaction protocols,
e.g.:
  FIPA Contract net;
  FIPA English and Dutch

auctions.
  JADE implements

interaction protocols as
FSM behaviors.

  Graphics Tools to
Analyse Protocols

62

Software Engineering with
Communication Infrastructures

  All application problems are to be identified
and designed in terms of
  Internal agent behaviors and inter-agent

interaction protocols
  These include, from the intra-agent engineering

viewpoint:
  Controlling the global interactions
  Controlling self-interested behaviours

  Advantages:
  All in the system is an agents
  The engineering of the system does not imply the

engineering of the infrastructure
  A standard has already emerged (FIPA)

  Drawbacks:
  The design is hardly re-tunable
  Global problems spread into internal agents’ code

63

Coordination Infrastructures
  The infrastructure is more than a support to

communication
  Other than enabling interactions…
  It can embed the “laws” to which interaction must

obey
 E.g., to specify which agents can execute

which protocols and when
 E.g., Gaia organizational rules

  It can control the adherence of the MAS behavior
to the laws
 E.g., to prevent malicious behaviors

  Such laws can be re-configured depending on the
application problem
 E.g., English vs. Vickery auctions have

different rules

64

The MARS Coordination Infrastructure
  Mobile Agent Reactive Spaces

  Developed at the University of Modena e Reggio Emilia
  Ported on different agent systems (Aglets, Java2Go,

SOMA, JADE)
  Strictly related to TUCSON

  One shared data space on each node
  “Tuple spaces”

  Attributed-based access to local
resources

  Programmable tuple spaces
  Based on the original idea of

programmable coordination media
(Omicini & Denti 98)

  A “meta-level” can control and
monitor all agent interactions

65

MARS Features
  Mobile agents roam the

Internet
  On each node, they connect

to a local tuple space

  They can access it to retrieve/
put data
  Data can be accessed via

attributes
  Mediated interactions between

agents via the local tuple
space

  Coordination and various
interactions protocols as
sequences of accesses to the
tuple space

  Access to local resources
  appears to agents as access

to data in the tuple space

66

Programmable Coordination in MARS

  The Tuple space of MARS is fully
programmable
  It can control and influence all

interactions
  The data space can embed the

coordination laws
  Ruling, other than enabling, interactions

  Global control on the behavior of the
MAS can be enacted
  Interaction actions can be influenced

and constrained
  Control of self-interested behavior and

errors
  Ease of maintenance

  To change the behavior of the MAS, no
need of changing agents, only
coordination laws

  e.g., from English to Vickery auction

67

Example of Coordination
Infrastructures: Fishmarket

  Each agents in a MAS
  Is dynamically attached a controller module
  In charge of controlling its external actions

(i.e., protocol execution)

  Inspired by real-world
fish market auctions
 Fishers participate in

auctions by implicitly
respecting local rules

 There is an implicit
(institutional) control

68

Software Engineering with
Coordination Infrastructure (1)

  Clear separation of concerns
  Intra-agent goals
  Global MAS goals and global rules of the

organizations
  Such separation of concerns has to reflect in

analysis and design
  Example: the Gaia methodology version 2

  Explicitly tuned to open MAS
  Implicitly assuming the presence of a coordination

infrastructure
  Identification of global organizational rules as a

primary abstraction in the software process

69

Software Engineering with
Coordination Infrastructure (2)

  Advantages
  Separation of concerns reduces complexity in

analysis and design
  Inter-agent issues separated from intra-agent ones

  Design for adaptivity perspective
  Agents and rules can change independently

  Intelligence in the infrastructure
  A trend in the scenario of distributed computing

  Drawbacks
  Implement both agents and infrastructural

programs
  Agents are no longer the only active components of

the systems
  No longer homogeneous

  Lack of standardization

70

Institutions

  May basic researches in the area of MAS
recognize that:
  Agents do not live and interact in a virgin world

  Agents live in a society, and as that they have to
respect the rules of a society

  Agents live in an organization, which can
effectively executed only in respect of
organizational patterns of interactions

  In general: Multiagent systems represent
institutions
  Where agents must conform to a set of expected

behavior in their interactions
  Such an approach requires the introduction of a

conceptual coordination infrastructure during
analysis and design (as in Gaia v. 2)

71

Part 4

  Conclusions and Open Issues

72

Open Issues in AOSE

  Engineering MAS for Mobility & Ubiquity
  What models and methodologies? What

infrastructures?
  Emergent Behavior: Dynamic systems &

Complexity
  Relations between MAS and complex systems
  Exploiting emergence behavior in MAS

  MAS as Social Systems
  Relations with social networks and social

organizations
  Self-organization
  Performance models

  Performance models for MAS
  How to “measure” a MAS
  In terms of complexity and efficiency?

73

Conclusions

  In our humble opinion, agents will become the
dominant paradigm in software engineering
  AOSE abstractions and methodologies apply to a wide

range of scenarios
  Several assessed research works already exist

  Modeling work
  Methodologies
  Implementation Tools

  Still, there are a number of fascinating and
largely unexplored open research directions…
  Ubiquity, self-organization, performance….

