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1 Grammar

We add two new one-place sentential connectives to the language of propositional logic: ‘�’ and ‘♦’.
Grammatically these behave just like ¬: if φ is a formula, then [�φ\ and [♦φ\ are formulas.

You can read ‘�’ as “necessarily” and ‘♦’ as “possibly.” But modal logics, like other formal
systems, can have many applications. Depending on the application, they might have many different
meanings, for example:

� ♦
it is logically necessary that it is logically possible that

it could not have failed to happen that it might have happened that
it must be the case that it might be the case that

it is now settled that it is still possible that
it is obligatory that it is permitted that

it is provable that it is not refutable that
A believes that

Sometimes the letters ‘L’ and ‘M ’ are used instead of ‘�’ and ‘♦’. Sometimes an operator for
contingency is defined: �φ =def (♦φ∧♦¬φ).

2 Semantics

2.1 Models

Our models for classical propositional logic were just assignments of truth values to the proposi-
tional constants—what is represented by the rows of a truth table. Models for modal logic must be
more complex. A model consists of a frame and a valuation. A frame is a set of worlds, with one
among them designated the “actual world,” and an accessibility relation defined on those worlds.
A valuation is a function that maps a propositional constant and a world to a truth value. More
precisely:

A model for modal propositional logic is a quadruple 〈W,R,@, V〉, whereW is a nonempty
set of objects (the “worlds”), R is a relation defined on W , @ is a member of W , and V
is a function that assigns a truth value to each pair of a propositional constant and a
world. The triple consisting of W , R, and @ is sometimes called a frame.

∗I am indebted in my presentation to G. E. Hughes and M. J. Cresswell, A New Introduction to Modal Logic (London:
Routledge, 1996) and to to Rod Girle, Modal Logics and Philosophy (Montreal: McGill-Queen’s, 2000).
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In many standard applications of modal logic, you can think of the worlds as “possible worlds”—
ways things could be. You can think of the valuation function as telling us which propositions
would be true in which possible worlds, that is, which would be true if things were a certain way.
The “actual world” @ represents the way things actually are (according to the model).

You can think of the accessibility relation as embodying a notion of relative possibility. The
worlds that are “accessible” from a given world are those that are possible relative to it. If this is too
abstract, you can join Hughes and Cresswel in thinking of the worlds as seats, and the accessibility
relation as the relation that holds between two seats if someone sitting in the first can see the
person sitting in the second.

There are a lot of controversies about how we should think of possible worlds, metaphysically
speaking: whether we should think of them as concrete worlds or as abstract models or sets of
sentences, for example. For the most part, we can ignore these controversies when we’re just doing
logic.

2.2 Truth in a model for modal formulas

We define truth in a model for modal formulas in terms of quantification over worlds. Possibility is
understood as truth in some accessible world, and necessity as truth in all accessible worlds. Here
‘îwM φ’ means ‘φ is true in modelM at world w’. All the action is in the last two clauses:

• If φ is a propositional constant, îw〈W,R,@,V〉 φ iff V(φ,w) = True.

• îw〈W,R,@,V〉 [¬φ\ iff ùw〈W,R,@,V〉 φ.

• îw〈W,R,@,V〉 [φ∧ψ\ iff îw〈W,R,@,V〉 φ and îw〈W,R,@,V〉 ψ.

• îw〈W,R,@,V〉 [♦φ\ iff for some w′ ∈ W such that Rww′, îw′〈W,R,@,V〉 φ.

• îw〈W,R,@,V〉 [�φ\ iff for every w′ ∈ W such that Rww′, îw′〈W,R,@,V〉 φ.

So far we have defined truth in a model at a world. We can define (plain) truth in a model in
terms of this as follows:

A formula φ is true in a model 〈W,R,@, V〉 if î@
〈W,R,@,V〉 φ.

That is, a formula is true at a model if it is true at the model’s “actual world.”
We can now define the logical properties as usual in terms of truth at a model. A sentence is

logically true if it is true in all models; an argument is valid if the conclusion is true in every model
in which all the premises are true; and so on.

2.3 The modal logic K

If we define the logical properties this way and make no further restrictions on what counts as a
model, we get the modal logic K. K is the weakest of the modal logics we’ll look at, and everything
that is valid in K is valid in all the others.

Here are some formulas that are logically true in K:

(1) �(P ∧Q) ⊃ (�P ∧�Q)

(2) (�P ∧�Q) ⊃ �(P ∧Q)
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(3) ¬�P ≡ ♦¬P

(4) �¬P ≡ ¬♦P

Can you see why they are true in all models? Think about (1) and (2) this way: if ‘P ∧Q’ is true
in all accessible worlds, then it must be that P is true in all those worlds, and Q is true in all those
worlds. The converse also holds: if P is true in all accessible worlds, and so is Q, then ‘P ∧Q’ is true
in all accessible worlds.

Do you see the resemblance between (3) and (4) and the quantifier-negation equivalences? What
explains this resemblance?

Here is a formula that is not logically true in K:

(5) �P ⊃ P

Can you see why not? Here is an invalidating model:

@ w 2
V @ w2

P False True

Here P is false in @, even though it is true at every world accessible from @.

Exercise:

2.3.1 Find a K-model in which ‘�P ⊃ ♦P ’ is false.

2.4 The modal logic D

If you add ‘�φ ⊃ ♦φ’ as an axiom schema to K, you get a stronger logic D. (Stronger in the sense
that it has more logical truths and more valid arguments.)

Since D is stronger than K, there must be K-models that are not D-models. (This makes it easier
to find counterexamples in K.) In fact, D-models are K-models that meet an additional restriction:
the accessibility relation must be serial. A relation R on W is serial iff ∀w ∈ W∃w′ ∈ WRww′.
What this means, intuitively, is that there are no “dead ends”—no worlds that can’t “see” any worlds
(including themselves).

With dead ends ruled out, ‘�P ⊃ ♦P ’ no longer has counterexamples.
Note that on the deontic interpretation of the modal operators, where ‘�’ means “it is obligatory

that” and ‘♦’ means “it is permissible that,” ‘�φ ⊃ ♦φ’ is essentially the principle “ought implies
can.” So D is a good logic for this interpretation. Note that in a deontic logic, we don’t want
‘�φ ⊃ φ’, since often what ought to be the case isn’t the case.

2.5 The modal logic T

If you add ‘�φ ⊃ φ’ as an axiom schema to D, you get a stronger logic T.
A T-model is a K-model whose accessibility relation is reflexive. A relation R on W is reflexive iff

∀w ∈ WRww. That is, every world can see itself.
Since every reflexive accessibility relation is serial, every T-model is a D-model. The converse

does not hold: there are D-models that are not T-models. Hence, every logical truth of D is a logical
truth of T, but there are logical truths of T that are not logical truths of D.
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Exercise:

2.5.1 Find a T-model in which ‘�P ⊃ ��P ’ is false.

2.5.2 Describe a D-model that is not a T-model.

2.6 The modal logic S4

If you add ‘�φ ⊃ ��φ’ as an axiom schema to T, you get a stronger logic S4.
An S4-model is a K-model whose accessibility relation is reflexive and transitive. A relation R on

W is transitive iff ∀w0,w1,w2 ∈ W((Rw0w1 ∧ Rw1w2) ⊃ Rw0w2).
Theorems of S4 include ‘♦♦P ⊃ ♦P ’ and ‘♦�♦P ⊃ ♦P ’.

Exercise:

2.6.1 Find an S4-model in which ‘♦P ⊃ �♦P ’ is false.

2.6.2 Find an S4-model in which ‘♦�P ⊃ P ’ is false.

2.7 The modal logic B

If you add ‘φ ⊃ �♦φ’ as an axiom schema to T, you get a stronger logic B. (Note that neither B nor
S4 is stronger than the other; there are logical truths of B that are not logical truths of S4, and vice
versa.)

A B-model is a K-model whose accessibility relation is reflexive and symmetric. A relation R on
W is symmetric iff ∀w,w′ ∈ W(Rww′ ≡ Rw′w).

Exercise:

2.7.1 Find an B-model in which ‘♦P ⊃ �♦P ’ is false.

2.8 The modal logic S5

If you add ‘♦φ ⊃ �♦φ’ as an axiom schema to T, you get a stronger logic S5. S5 is stronger than
both S4 and B.

An S5-model is a K-model whose accessibility relation is reflexive, symmetric, and transitive.
That is, it is an equivalence relation.

It is easy to see that if a formula can be falsified by an S5-model, it can be falsified by a universal
S5-model—one in which every world is accessible from every other. So we get the same logic if
we think of our models as just sets of possible worlds. Because the accessibility relation is an
equivalence relation, we can more or less forget about it, and talk of necessity as truth in all possible
worlds. S5 is the most common modal logic used by philosophers.
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Logic Restrictions on accessibility relation Characteristic axiom

K — —
D serial �φ ⊃ ♦φ
T reflexive �φ ⊃ φ
S4 reflexive, transitive �φ ⊃ ��φ
B reflexive, symmetric φ ⊃ �♦φ
S5 reflexive, symmetric, transitive ♦φ ⊃ �♦φ

K

D

+ser ia l

T

+ref lexive

S 4

+ t r ans i t i ve

B

+symmet r i c

S 5

+symmet r i c + t r ans i t i ve

Figure 1: Summary of the main systems of propositional modal logic.

Exercise:

2.8.1 Find an S5-model in which ‘♦P ⊃ �P ’ is false.

2.9 Summary

The relationships between these six modal systems are summarized in Fig. 1.

3 Proofs

By supplementing our existing proof system for propositional logic with a few rules for the modal
operators, we can get new proof systems for T, S4, and S5.

For all these systems, we’ll need some modal-negation equivalences. These are replacement
rules, so they can go in either direction and work even in subformulas (just like the parallel quantifier-
negation equivalences):
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Modal-negation equivalences (MNE)
¬♦φ ⇐⇒ �¬φ
¬�φ ⇐⇒ ♦¬φ

We’ll also need rules for � Elim and ♦ Intr:

�φ
φ

� Elim
φ
♦φ

♦ Intro

Finally, we need some way of introducing a ‘�’. Obviously we can’t have the converse of � Elim,
since that would let us prove every instance of [φ ≡ �φ\, and our modal logic would be trivialized.
We don’t want to argue: “Fido is lying down; so, it is necessary that Fido be lying down.”

The trick is to allow � to be introduced only through a special kind of subproof. We will mark
these subproofs with a small box to the left of the subproof line. (Some texts suggest putting a
double line across the top of the subproof, or a box around the whole thing, to indicate that it is
“sealed off” from the outside context, and you may want to do that.) If you have a modal subproof
that ends with a formula φ, you can close off the subproof and write �φ on the next line, with
justification “� Intro.”

1 �
...

2
...

3 φ

4 �φ � Intro 1–3

(6)

What is special about modal subproofs is that there are strict restrictions on the use of premises
from outside the subproofs. In a subproof for conditional proof, it is just fine to appeal to premises
from outside—for example,

1 P

2 Q

3 P ∧Q ∧ Intro 1, 2

4 Q ⊃ (P ∧Q) ⊃ Intro 2–3

(7)

In our modal subproofs, by contrast, this won’t be allowed:

1 P

2 �
...

3 Q

4 P ∧Q ∧ Intro 1, 3 ⇐ ILLEGAL!

5 �(P ∧Q) � Intro 2–4

(8)

Here’s a way to think about the difference between regular and modal subproofs. Regular sub-
proofs allow things to enter freely, but exit only according to strict rules. Modal subproofs impose
restrictions both on entry and on exit.
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The entry restrictions are given by the modal reiteration rule. These are the only rules that allow
you to use premises outside the subproof. Other rules may be used only on premises within the
modal subproof. The modal reiteration rule(s) available depend on the modal logic (in fact, this rule
is the only one that changes between different systems):

Modal reiteration rules

�φ
φ

Modal reit T
�φ
�φ

Modal reit S4
♦φ
♦φ

Modal reit S5

Note: in S5, you may use any of these rules. In S4, you may use the S4 or T rules. In T, you may
only use the T rule.

A modal subproof may be started at any time, provided these entry restrictions are obeyed.
There is no separate “hyp” or “flagging” step.

Here’s an example of a proof in T of ‘(�P ∧�Q) ⊃ �(P ∧Q)’:

1 �P ∧�Q

2 �P Taut Con, 1

3 �Q Taut Con, 1

4 � P Modal Reit T, 2

5 Q Modal Reit T, 3

6 P ∧Q Taut Con, 4, 5

7 �(P ∧Q) � Intro, 4–6

8 (�P ∧�Q) ⊃ �(P ∧Q) ⊃ Intro, 1–7

(9)

Here’s a proof in S4 of ‘(�P ∨�Q) ⊃ �(P ∨�Q)’:

1 �P ∨�Q

2 �P

3 � P Modal Reit T, 2

4 P ∨�Q ∨ Intro, 3

5 �(P ∨�Q) � Intro, 3–4

6 �Q

7 � �Q Modal Reit S4, 6

8 P ∨�Q ∨ Intro, 7

9 �(P ∨�Q) � Intro, 7–8

10 �(P ∨�Q) ∨ Elim, 1, 2–5, 6–9

11 (�P ∨�Q) ⊃ �(P ∨�Q) ⊃ Intro, 1–10

(10)
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Exercises:

3.1 Use a deduction to show that the following argument is valid in T:
�(A ⊃ B),�(B ⊃ C),�(C ⊃ D),¬♦D, / ∴ ¬♦A.

3.2 Give deductions for the following in S5:

(a) ♦♦P ⊃ ♦P

(b) ♦(P ∨Q) ≡ (♦P ∨♦Q)

3.3 For each of the following formulas, determine whether it is a logical truth of
T, S4, and/or S5. Give countermodels when a formula is not a logical truth
of a system, deductions when it is. (Check each formula against all three
systems.)

(a) �(P ⊃ �♦P)

(b) ��P ∨�¬�P
(c) ♦(P ∨Q) ⊃ ♦P

(d) ♦�P ⊃ �P

(e) ♦�♦P ⊃ ♦P

3.4 Extra credit: We have given you proof systems for T, S4, and S5. Can you
come up with systems that make sense for D and B?
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