

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 165 – 185, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using the KGP Model of Agency to Design Applications

Fariba Sadri

Department of Computing,
Imperial College London,

180 Queen’s gate, London SW7 2BZ, UK
fs@doc.ic.ac.uk

Abstract. This paper is a tutorial describing the main features of the KGP
(Knowledge-Goals-Plan) model of agency and giving user guidance on how the
model can be used to develop applications. The KGP model is based on
computational logic. It consists of an abstract component, a computational
component and an implementation. This paper concentrates on the abstract
component, which consists of formal specifications of a number of different
modules, including the knowledge bases, capabilities, transitions and control.
For each of these we summarise what is provided by the model, and through the
platform implementing the model, and what is left to the users to specify
according to the requirements of the applications for which they wish to use the
KGP model to design agents.

1 Introduction

1.1 The Model

The KGP (Knowledge-Goals-Plan) model of agency has been developed within
the EU SOCS (Societies of Computational Entities) project in a collaborative
effort involving Imperial College, City University, and the universities of
Cyprus, Pisa, Bologna, and Ferrara. Information about the project can be found at
http://lia.deis.unibo.it/research/socs/.

The model is general purpose and highly modular. All of its components, including
its control component, are based on computational logic, and more concretely on
abductive logic programming [8] and logic programming with priorities [3], both with
extensions that deal with temporal constraints.

The model includes:

• an abstract model (declarative semantics): providing formal specifications, in
computational logic, for all the components,

• a computational model (operational semantics): providing a computational
counterpart for all the formal components of the abstract model, and

• a prototype implementation (PROSOCS) in Prolog, Java and JXTA [19].

The computational model exploits the modularity of the abstract model and has
been proved correct with respect to it. It consists of:

166 F. Sadri

• a proof procedure, CIFF [4,5,6], that combines abduction and constraint logic
programming, for the components of the model that are based on abductive logic
programming, and

• a proof procedure, Gorgias [7], that combines argumentation and constraints, for
the components of the model that are based on logic programming with priorities.

In this paper we concentrate on the abstract model.
The KGP model has been designed to cater for the needs of a global computing

setting. To this end it provides heterogeneity, allowing agents to be designed such that
they differ from each other in their knowledge and behaviour. It also incorporates
features that allow agents to function in dynamic open environments, adapt to changes
in the environment and interact with other agents.

The model integrates various aspects of agency, including:

• Reasoning: for example for planning and proactivity
• Reactivity: for example allowing agents to react to changes they perceive in their

environment by performing actions, including sending communications to other
agents

• Goal introduction: allowing agents to alter their goals according to their
circumnstances

• Declarative control: providing dynamic control of the operations of the agent
• (some) Belief revision: for example allowing agents to modify their beliefs in the

light of their observations
• Interaction: for example allowing agents to negotiate with one another for

resources.

The model and its prototype implementation have been used in applications in
combinatorial auctions and negotiation for resources. The formal basis of the model
facilitates formal specification and verification of properties. Such properties have
been studied and are reported in [1].

A detailed description of the KGP model and its comparison with other models can
be found in [9,10], a summary in [2, 11], and details of its implementation in [18].
Details of some components of the model can be found in [14] for the planning
component, in [12] for the control component, and in [4, 5, 6] and [7] for the proof
procedures. Extensions of the model than incorporate normative concepts can be
found in [16, 17].

1.2 Examples

The following examples can help provide a quick and informal introduction to some
of the main features of the KGP model.

KGP agents have individual states that are updated as they observe their
environment and interact with other agents. They decide dynamically what goals to
set themselves depending on their own individual preferences and what they know
about their environments.

At any particular time the agent may consider a number of potential goals, for
example:

 Using the KGP Model of Agency to Design Applications 167

At the moment my goals could be:

 Write a paper

 Book my travel

 Attend to the garden

 Make dinner

 Repair the roof

Then depending on its knowledge of the environment, its temporal constraints (e.g.
deadline for the paper) and its preferences it can decide which of the possible goals to
set itself at that particular time. For example it may decide that the two goals of
writing a paper and booking travel should be given highest priority.

 I am going to:

Write a paper and
Book my travel

It may then proceed with the task of achieving its chosen goals. Concurrently with
planning how to achieve its goals and executing actions, the agent observes its
environment and records information and communications it receives from the
environment and from other agents. For example it may observe that it is raining and
that water is pouring in through the roof.

It is raining. Water is pouring in through the
roof.

It adapts to changes that it perceives in its environment and circumstances by
adjusting or changing its goals, or reacting in some other appropriate way. For
example the observation that the roof is leaking may change the agent’s priorities
and give higher priority to the goal of repairing the roof than the other potential
goals.

168 F. Sadri

I must repair the roof.

The agent plans (partially) for its goals and executes actions towards achieving

them. For example (informally) the following could be a partial plan for the goal of
repairing the roof.

Call Roofer at
Time T2, T2>T1

Call Decorator at Time T3,
T3>T1

Repair the
roof

Make domestic
arrangements at Time
T4, T4>T2, T4>T3

Check bank
balance at Time T1

Fig. 1. A partial plan for the goal “Repair the roof”

The partial plan above consists of three actions of checking the bank balance, and
calling the roofer and the decorator, and a subgoal of making domestic arrangements
which has to be further planned for. All the actions and the subgoal have associated
times, possibly as yet undetermined, with some constraints on them, for example that
calling the roofer and the decorator should take place after checking the bank balance.
Of the three actions here two are communicative (calling the roofer and the decorator)
and one is sensing (checking bank balance).

KGP agents can interleave action execution with planning and observing their
environment. Sometimes the result of their action execution or what they observe
calls for adjustments to their plans. For example the agent with the plan above may
find out that its bank balance is rather low after it executes the action of checking its
bank balance. This new knowledge, in turn, can result in the agent setting itself an
additional goal of finding more money, and giving this goal appropriate temporal
constraints with respect to its other goals.

 Using the KGP Model of Agency to Design Applications 169

Bank balance very low I have to find more

money

KGP agents interact with each other. Each one has its own policy on how to
respond to messages it receives from others. Such interactions can be used, for
example, to ask for resources:

Can you lend me your laptop on

the 10
th

?

Do I need

my laptop

on the 10
th

?

Do I want

to be helpful?

Should I ask

for something

in return?

One particularly novel feature of the model is its dynamic context-dependent
control. Control is specified by cycle theories that are defined as logic programs with
priorities. They allow the agent to determine at run-time what to do next and they
allow us to design agents with heterogeneous behaviours.

In the remainder of this paper, we describe the abstract part of the KGP model in
more detail, and explain how a designer can proceed to use the model to develop an
application. For lack of space our description of the model will not give full details.
More details can be found in [9]. Here we summarise the model to the extent of
explaining its main features and giving guidelines to the user. Throughout this paper
by “user of the model” we mean the person who uses the KGP model to design agents
for an application.

170 F. Sadri

2 The KGP Model in a Nutshell

In the KGP model an agent is characterised by the following components:

• An internal mental state, < KB, Goals, Plan >, consisting of a KB which is a
collection of knowledge bases, and the agent’s (current) goals and plan

• A set of reasoning capabilities
• A sensing capability
• A set of formal state transition rules
• A cycle theory.

The cycle theory orchestrates the application of the transitions, which, in turn, use
the capabilities, which use the information in the knowledge bases in the agent’s
internal mental state. These knowledge bases are updated as the agent receives
information from the environment and executes actions in the environment.

 Transitions Capabilities Knowledge Bases

Fig. 2. The architecture of the KGP agent

Some components of the model are fixed, i.e. pre-defined and provided through the
implementation platform. These are typically the domain-independent parts of the
model:

• The structure of the internal mental state
• The set of capabilities and transitions
• The definition of the capabilities
• The definition of the transitions
• The syntax of the knowledge bases in KB
• Some parts of the knowledge bases

 Using the KGP Model of Agency to Design Applications 171

• The syntax of the rules in the cycle theories
• The definition of some of the selection operators (see Section 6) that are used in

cycle theories.

Other components of the model are under the control of the application designer
using the model. These should be specified by the designer to cater for the
requirements and domains of his applications. These components specify domain-
dependent knowledge and the specific behaviour requirements of the agent being
designed. These user-specified components are:

• Some of the contents of the knowledge bases in KB:
to cater for knowledge related to a domain or application, knowledge about the
priorities of the agents being designed, and the agents’ interaction policies.

• The contents of the cycle theories:
 to design the behaviour and profile of agents.
• Some of the definitions of the selection operators:
 to design heuristics affecting the agents’ decision making.

Domain specific requirements and heterogeneity are provided by varying the
contents of the components that are under the control of the user of the model. We
now describe all the components of the model in more detail.

3 The Internal Mental State

The internal mental state of an agent is a triple < KB, Goals, Plan >.

3.1 KB, the Agent’s Knowledge Base

KB consists of several modules supporting the reasoning capabilities. These modules
are:

• KB0: used to store dynamic data
• KBplan: used for planning
• KBtr: used for temporal reasoning
• KBreact: used for reactivity
• KBgd: used for goal decision

Now we describe each of these in some detail.
The first (KB0) is a set of logic facts. The last (KBgd) is a logic program with

priorities, and the remaining three (KBplan, KBtr, KBreact) are abductive logic programs.
KB0 is a dynamic knowledge base which is revised as the agent observes its

environment (via its sensing capability) and is contained within all the other
knowledge bases (and is used by all capabilities).
What the model provides:

KB0 of agent a records the following types of information (for details of syntax the
reader is referred to [9] or [11]):

• actions which have been executed by a, together with the time of the execution
(executed(action, time))

172 F. Sadri

• actions which have been executed by agents y other than a, together with the time
of observation by a (observed(y,action,t))

• properties (fluent literals) observed by a, together with the time of observation
(observed(literal, time)).

What the user has to provide:
The contents of KB0 are determined by the sensing capability and the Passive and
Active Observation transitions (see Section 5), and, of course, by the environment of
the agent. The user of the model does not need to design or provide any of the
contents of KB0.

KBplan is the knowledge base that is used (in conjunction with KB0) to generate
plans for the agents’ goals (via the Planning capability and Plan Introduction
transition - see Sections 4 and 5). It is an abductive event calculus (AEC) theory. For
a description of abductive logic programming see [8], for event calculus see [13], and
for abductive event calculus see [14].

What the model provides:
In a nutshell KBplan= < Pplan, Aplan, Iplan >. Pplan is a set of rules that define effects and
preconditions of actions. In describing the effects of actions it defines a predicate
holds_at(Literal,Time) in terms of happens(Action,Time) and observed(Literal,Time).

In particular Pplan has two sets of rules, those that are domain-independent and
those that are domain-dependent. The domain-dependent part of Pplan has to be
specified by the user (see later). The following are some of the domain-independent
rules in Pplan. In these and in the other rules in the remainder of this paper a comma
between atoms on either side of the arrow represents the connective “and”. All the
variables are assumed to be universally quantified over the rule they occur in, unless
stated otherwise.

holds_at(G,T2)←happens(A,T1), T1 < T2,
initiates(A,T1,G), not clipped(T1, G, T2)

holds_at(G,T)←holds_initially(G), 0 < T,
 not clipped(0,G,T)

holds_at(G,T2) ← observed(G,T1), T1 < T2,
 not clipped(T1,G,T2)

clipped(T1,G,T2) ← happens(A,T), terminates(A,T,G),
T1<T, T<T2

happens(A,T)← executed(A,T)

happens(A,T)← assume_happens(A,T)

These rules express that a property G holds at a time if at an earlier time an action
initiating it has been executed or assumed (via abduction), or if it held initially (at
time 0), or if at an earlier time it has been observed to hold, and, in all cases, provided
that G has not been clipped via a terminating action between the two times. The 3rd
and 5th rules are bridge rules for connecting the AEC theory to KB0. The 6th rule
allows abductions of actions in order to form a plan.

Aplan, the set of abducible atoms, consists of assume_happens(Action,Time). A plan
will contain a set of ground instances of this abducible atom providing the actions of

 Using the KGP Model of Agency to Design Applications 173

the plan. A brief example is given below. Iplan, the set of integrity constraints. Like
Pplan it consists of a domain-dependent part and a domain-independent part. The latter
consists of the following integrity constraints:

holds_at(Literal,Time), holds_at(¬Literal,Time)→ false

assume_happens(Action,Time),precondition(Action,Time,L)
→ holds_at(L, Time)

The first constraint expresses that a property and its negation cannot hold at the
same time, and the second expresses that if an action is assumed to happen at a time
then at that time its precondition must hold.

What the user has to provide:
The user has to provide the domain-dependent parts of Pplan and Iplan. The domain-
dependent part of Pplan consists of:

• what holds initially, using the predicate holds_initially(l) to denote that a fluent l
holds initially (at time 0), e.g. holds_initially(at(john, home)) expresses that John is
initially at home,

• what actions initiate and terminate what properties, using the predicates initiates(a,
t, l) and terminates(a,t,l) to denote that action a, executed at time t initiates or
terminates the fluent l, respectively, e.g. initiates(go(X, L1,L2),T,at(X,L2)) and
terminates(go(X, L1,L2),T,at(X,L1)) state that going from location L1 to L2
initiates being at L2 and terminates being at L1, and

• the preconditions of actions, using the predicate precondition(a,t,l) to denote that
fluent l is a precondition for executing action a at time t, e.g. precondition(go(X,
L1,L2),T,at(X,L1)) expresses that a precondition for going from location L1 to L2 is
being at L1.

The domain dependent part of Iplan consists of any constraints that are to be
specified with respect to the particular agent or environment or application domain.
These constraints have to conform to the following syntax:

Conditions → h[t], Tc,

where Conditions is a conjunction of any of the following:

• holds_at (l,t’), where l is a fluent literal and t’ is a time variable
• happens (a,t’), where a is an action operator and t’ is a time variable
• assume_happens(a,t’), where a and t’ are as above,
• temporal constraints,

h[t] is any of the following:
• holds_at (l,t),
• happens (a,t),
• assume_happens(a,t),

and Tc are temporal constraints on t possibly with respect to any time variables in
Conditions.

Either of h[t] or Tc may be absent from the head. If both are absent then the head
should be false.

174 F. Sadri

Examples of such integrity constraints are:

assume_happens(go(Person,L,maths_building) ,Time) →
Time>8, Time<23
stating that one can go to the maths building only between times 8 and 23.

assume_happens(work,Time), assume_happens(rest, Time) →
false

stating that the agent cannot work and rest at the same time. As a simple example
consider the goal of John being at the maths building at time 10, i.e. holds_at
(at(john,maths_building), 10). Given the domain-dependent examples above, a plan for
this goal is for John to go to the maths building between the hours of 8 and 10. This plan
is denoted as assume_happens(go(john, home, maths_building), T) and T>8 and T<10.

KBtr: In [9] we give a formulation of KBtr that is slightly different from that of
KBplan, but here we can assume that KBtr is the same as KBplan. KBtr, the knowledge
base for the temporal reasoning part of the model, is used to determine and predict
what properties (fluents) hold at given times (via the Temporal Reasoning capability).
This functionality is used, for example, when the agent wishes to determine if the
preconditions of an action in its plan hold, or to check if (according to what it
believes) some of its goals have been achieved.

KBreact is used for the reactivity part of the model (Reactivity capability and
transition).

What the model provides:
KBreact is KBplan with its Iplan extended to include reactive constraints. The syntax of
the reactive constraints is as follows:

Triggers, Conditions → h[t], Tc,

where Conditions, h[t] and Tc are as in the syntax of integrity constraints in Iplan,
described above, and Triggers is a non-empty conjunction of items of the form
observed(l,t’), observed(c,a,t’), happens(a,t’), assume_happens(a,t’), executed(a,t’).

The intended reading of each reactive constraint is that if the constraint is
“triggered” (via matches to Triggers found in the agent internal state) and its
Conditions hold with respect to the internal state, then the constraint “fires”, and its
conclusion is added to the Goals component of the state if it contains a timed fluent,
or to the Plan component if it contains a timed action operator.

What the user has to provide:
The user has to provide all the reactive constraints of KBreact. Reactive constraints can
be used to represent a number of different things. For example they can be used to
represent

• interaction policies,
• condition-action rules, and
• policies for repairing plans.

An example of a reactive constraint representing an interaction policy of agent a is:

observed(C, tell(C,a,request(R,D,T1)),T),
holds_at(have(R),T1), not holds_at(need(R),T1), T+1<T1
→assume_happens(tell(a,C,accept(request(R,D,T1))),T2),
T2>T, T2<T1

 Using the KGP Model of Agency to Design Applications 175

This says that if agent a observes that an agent C requests at time T to be given a
resource R at a later time T1, and a knows that it has that resource at time T1 and does
not need it then a accepts to give C the resource at time T1 and communicates this
acceptance to him any time after receiving (observing) the request and before T1. The
variable D is an identifier for the dialogue that includes the request and the acceptance
of the request.

An example of a reactive rule representing a condition-action rule is:

observed(alarm-sound(Room),T), holds_at(in(Room),T)
→assume_happens(leave(Room),T1), T1<T + 2

This says that if an alarm sounds in the room you are in leave the room within 2 time
points.

An example of a reactive rule representing a specific plan repair policy is:

executed(send_message(M),T), observed(network_down, T1),
T1=T+1 → assume_happens(send_message(M), T2), T2>T1+5

This says that if you have sent a message and then at the next time point observed
that the network is down you should send the message again after waiting at least 5
time units.

Kbgd contains the goal preference policies of the agent. It is used when the agent
wishes to decide what goals to set itself (via the Goal Decision capability and
transition).

What the model provides:
KBgd has 3 main parts (it also contains KB0):

• the lower-level part to generate potential goals,
• the higher-level part to specify priorities between the other rules of the theory,

effectively allowing to choose amongst the potential goals,
• the auxiliary part consisting of rules defining any auxiliary predicates used in the

lower and higher level parts.

The syntax for the parts is fixed in the model and is based on logic programming
with priorities. We describe the syntax below.

What the user has to provide:
The user has to provide the rules for the 3 parts of KBgd listed above. In doing so the
user will determine

• the set of all possible appropriate goals for the agent that is being designed,
• context dependency of potential goals, i.e. rules that determine under what

circumstances, depending on temporal constraints, environmental factors and the
agent’s private knowledge, what goals should be considered, and

• the agent’s preferences and priorities, i.e. under what circumstances the agent
should commit to which goals.

Note that the possible appropriate goals for the agent should guide the user towards
what needs to be specified in KBplan, i.e. it would make sense for KBplan to provide
specification of actions (through the initiates, terminates and precondition predicates)
that can help towards achieving some or all of these goals. In other words it would be

176 F. Sadri

appropriate to incorporate in the model the knowledge that can potentially be used to
generate plans for the potential goals of the agent.

The lower-level part of KBgd consists of rules of the form

name of the rule: G[t], Tg ← L1, …, Ln, Tc (n>0 or n=0)

where

• the Li are either time dependent conditions of the form holds_at(l,t), or time
dependent conditions formulated in terms of auxiliary predicates defined in the
auxiliary part of KBgd,

• G is a goal fluent (see Section3.2 and the examples below) chosen by the user,
• Tg is a (possibly empty) set of temporal constraints,
• t is a time variable, assumed to be existentially quantified with the scope the head

of the rule,
• Tc are temporal constraints on the time variables in the body of the rule.

All variables, except t, are implicitly universally quantified over the rule. Each rule in
the lower-level part is given a name. Examples of lower-level rules are:

gd(dinner): make_dinner(T) ← holds_at(finished_work,T)

gd(repair): repair_roof(T) ← holds_at(leaky_roof,T)

These state that making dinner is a potential goal when work is finished and repairing
the roof is a potential goal when the roof is leaking.

The higher-level part of KBgd consists of rules of the form

name of the rule: h_p(rule1, rule2) ← L1, …, Ln, Tc (n>0 or n=0)

where

• the Li are Tc are as described as in the lower-level part, and
• rule1 and rule2 are names of other rules in KBgd.

These higher-level rules represent priorities amongst rules in the lower-level part
or other priority rules in the higher-level part. Each rule in the higher-level part is
given a name. Examples of higher-level rules are:

gd_pref(X,Y):h_p(gd(X), gd(Y)) ← type(X,TX),
type(Y,TY), more_urgent_wrt_type(TX,TY)

This states that the rule called gd(X) should be given higher priority than the rule
called gd(Y) whenever X is a more urgent type of goal compared to Y.

The auxiliary part is simply a logic program defining any auxiliary predicates
occurring in the other parts. In addition, it can contain statements of incompatibility
using the predicate incompatible(g1,g2) denoting that two goals g1 and g2 are
incompatible (to hold at the same time). Examples of the auxiliary part rules are:

type(dinner, optional)

type(repair, required)

more_urgent_wrt_type(required,optional)

incompatible(make_dinner, repair_roof)

 Using the KGP Model of Agency to Design Applications 177

These collection of example rules for the 3 parts of KBgd ensure that whenever
both making dinner and repairing the roof are potential goals the latter will be chosen
as the one with higher priority.

3.2 Goals and Plan

What the model provides:
The representation of a goal in the state is a timed fluent l[t], for example
has_driving_licence(john, T1), where T1 may be constrained in the state, for example
by the temporal constraints 10<T1, T1<20. There are two types of goals:

• Mental (under the control of the agent), e.g. be_at_the_airport(T), T<18
• Sensing (not under the control of the agent and observable by sensing the external

environment), e.g. request_accepted(T), raining(T).

When a goal l[t] in the state is selected for planning it is automatically represented as
holds_at(l,t).

The representation of a Plan in the state is a set of partially ordered actions. An
action is a timed operator a[t], e.g pay_fine(john, T), where T may be constrained in
the state, for example by the temporal constraint T1<T, T<T3. There are three types
of actions:

• Physical e.g. do(clear_table, T)
• Sensing e.g. sense(connection_on, T)
• Communicative e.g. tell(x, y, request(r1, d, T),T1)

All the time variables associated with goals and actions are assumed to be
existentially quantified over the whole state. Goals and actions can be viewed as
organised in a tree structure, showing associations of goals/subgoals/actions for ease
of revision and partial planning.

Below is an (informal) example of goals/actions tree in state of an agent called a.

 ⊥

G: repair_roof(T), 5<T, T<20

G1: get_resource(r1,T1), G2: get_resource(r2,T2),

5<T1, T1<T3 5<T2, T2<T3

 A:

tell(a,b,request(assistance,d,T3), T5),

 T3<20, T5<T3-5

A1:

tell(a,c,request(r1,d1,T4), T6),

5<T4, T4<T1, T6<T4

Fig. 3. A Goals/Actions Tree

178 F. Sadri

In this tree the root is represented by the symbol ⊥. The top level goal is to repair
the roof at a time between times 5 and 20. A partial plan for this goal consists of the
two subgoals G1 and G2 of getting two resources r1 and r2 within the specified
temporal constraints, and an action A of requesting assistance from agent b. A (full)
plan for goal G1 consists of action A1 of requesting the resource from agent c, with
the specified temporal constraints.

What the user has to provide:
For the Goals and Plan components of the agent’s internal state the user does not need
to provide anything. The goals in Goals will result from the information the user
provides in KBgd, KBplan and KBreact. The actions in Plan will result from the
information the user provides in KBplan and KBreact.

4 The Capabilities

As mentioned in Section 2 the model provides a sensing capability and a number of
reasoning capabilities. The model provides all the necessary specifications for these.
Below we summarise these capabilities.

The Sensing Capability: This allows the agent to observe the environment and to
receive messages from other agents. The agent observes actions executed by other
agents and fluents holding in the environment. These observations are made either
passively via the Passive Observation Introduction transition (see Section 5) or
actively by the agent seeking specific information, via the Active Observation
Introduction transition (see Section 5). The results of the observations are recorded in
KB0, as described in Section 3.

The Reasoning Capabilities: There are 5 reasoning capabilities:

1. Planning: generates partial plans for given sets of goals in the internal state of the
agent

2. Temporal reasoning: makes predictions about properties holding in the environment
3. Reactivity: reacts to perceived changes in the environment by generating goals and

actions to be added to the internal state of the agent
4. Identification of preconditions of actions: identifies the preconditions of given sets

of actions
5. Goal decision: determines how the top level goals of the agent (and consequently

all the goals of Goals in the internal state of the agent) should be revised to take
into account the agent’s preferences and the perceived changes in the environment.

All the reasoning capabilities are formally specified in the model, the first 4 using
abductive logic programming, and the last using logic programming with priorities.
The formal specifications can be found in [9]. To give a flavour we give a simplified
specification of the Planning capability.

Specification of the Planning capability:
KB, Goals, Plan, (G1, …, Gn) ╞Г

plan(PP1,…, PPn) such that

• Pplan∪Goals\ Gi ∪ Plan ∪ PPi ╞LP Gi, for each i from 1 to n
• Pplan∪Goals∪Plan ∪PP1∪ …. ∪PPn╞LP Iplan

 Using the KGP Model of Agency to Design Applications 179

• There is a substitution σ for all the time variables in Goals, Plan, G1, …, Gn,
PP1,…, PPn, that satisfies all temporal constraints in Goals, Plan, G1, …, Gn,
PP1,…, PPn and allows all time variables of any actions in the PPi to be instantiated
by times in the future of Г.

Here ╞plan denotes the Planning capability and ╞LP denotes any semantics for logic
programming. The specification above states that the Planning capability takes as
input

• the agent internal state
• a set G1, …, Gn of goals (to be planned for), which would be a subset of the goals

in Goals
• a time Г (the time the capability is called),

and produces as output a partial plan PPi for each input goal Gi, such that

• each PPi entails its associated goal Gi in the context of the state (without the Gi),
• all the partial plans together with the internal state entail all the integrity

constraints in Iplan,
• all the resulting temporal constraints, including any new ones generated (and any

new instantiations of time parameters) are satisfiable together, and
• the temporal constraints of the new planned actions allow the actions to be

performed in the future of Г.

In a nutshell the Planning capability generates consistent, feasible partial plans for
all the input goals. We gloss over exactly what a partial plan is. Examples have been
given in Sections 1 and 3, and details are available in [9,14].

Notice that this specification is parametric on:

• ╞LP, i.e. some semantics for logic programs, and
• some semantics underlying constraint satisfaction.

In addition the formal specification of the Goal decision capability is parametric on
some semantics ╞PR for logic programs with priorities. The computational model of
the KGP commits to concrete instances of the above: 3-valued completion semantics
for ╞LP and argumentation based semantics for a concrete framework, LPwNF [3]
of ╞PR.

For the rest of the capabilities we give summary, informal specifications:

• The Temporal reasoning capability takes as input KBtr and a timed fluent and
determines if the fluent holds at the specified time.

• The Reactivity capability takes as input the internal state of the agent and a time of
application of the capability, and returns as output all the “reactions” that are
“fired” at that time from KBreact.

• The Identification of preconditions capability takes as input KBplan and a set of
timed action operators and returns the preconditions of those actions as determined
by KBplan.

• The Goal decision capability takes as input KBgd and a time of application of the
capability, and returns all the goals that are determined by KBgd to have highest
priority at that time.

180 F. Sadri

5 The Transitions

Transitions use the capabilities and change the internal state of the agent. The model
provides all the necessary specifications for the transitions. There are 8 transitions.
They are:

1. Goal Introduction - GI: It replaces Goals in the state by the highest priority goals
that the Goal decision capability generates.

2. Plan Introduction - PI: It uses the Planning capability and extends the state with the
resulting partial plans for a selected set of goals.

3. Reactivity - RE: It extends the Goals and/or Plan components of the state with the
reactions (goals and/or actions) that the Reactivity capability generates.

4. Action Execution - AE: It executes (a selected set of) actions and records their
execution in KB0. It uses the Sensing capability for the execution of sensing
actions.

5. Passive Observation Introduction - POI: It records in KB0 any (unsolicited)
information observed in the environment or communication received from other
agents. It uses the Sensing capability.

6. Active Observation Introduction - AOI: It senses the environment for a specific set
of properties (fluents) and records the result in KB0. It uses the Sensing capability.

7. Sensing Introduction - SI: It adds new sensing actions to the Plan for sensing the
environment to determine whether or not preconditions of some existing actions in
Plan hold.

8. State Revision - SR: It revises the Goals and Plan components of the state by
removing goals that are achieved or timed-out and their children, and actions that
have been executed or timed-out. It uses the Temporal reasoning capability.

The transitions are specified in the following general form:

 S=<KB, Goals, Plan> , Input at a time τ
 T: __________________________________

S' =<KB',Goals',Plan'>

denoting that the transition T takes a state S and an input at a time τ, and changes the
state to S'. The Input may be missing from the specification of some of the transitions.

Transitions typically:

• call some capabilities and/or check for temporal constraint satisfaction, and
• have an input computed by selection operators (see Section 6).

The input is either a set of actions (to be executed in AE, for example), or a set of
goals (to be planned for in PI), or a set of fluents (to be sensed in the environment in
AOI, for example).

As an example we give the specification of the Plan Introduction (PI) transition
below. Many details are glossed over, for lack of space.

 S=<KB, Goals, Plan>, SGs τ
PI: _________________________

 S'=<KB,Goals',Plan'>

 Using the KGP Model of Agency to Design Applications 181

where S' is determined as follows:

• The planning capability ╞plan is utilised at time τ with input the set of goals SGs.
• ╞plan will return partial plans for each goal G in SGs, the partial plans consisting of

(sub)goals, actions and temporal constraints.
• The returned (sub)goals and actions are added to Goals and Plan, respectively,

together with their temporal constraints.

6 Cycle Theories for Declarative Control

In the KGP model the agent control of the operations, i.e. the orchestration of the
transitions, is via cycle theories. This is quite different compared with some other
agent systems where a conventional control mechanism dictates a fixed sequence of
operations. The KGP cycle theories determine the sequences of transitions
dynamically and declaratively, providing flexible control that can be designed to
capture specific agent behaviour profiles and to fit specific environments or
applications.

The cycle theories are specified using logic programs with priorities. They are
described in detail in [9], and in summary in [11]. Some behaviour profiles resulting
from varying cycle theories are described in [15] and [1]. Here we give a summary
with more emphasis on distinguishing what the model provides and what the user
needs to add.

What the model provides:
A cycle theory is a (meta-)logic program with priorities Tcycle to reason about which
transition should be chosen when. It consists of:

• a basic part Tbasic to reason about which transition could be next (in some given
state and at a given time), initially or after a transition that has just been executed,

• a behaviour part Tbehaviour to decide which transition (amongst the possibly many
potential ones) will be next, and

• an auxiliary part, providing definitions of auxiliary predicates used in the other two
parts.

Tbasic consists of rules of the form:

rT1|T2 (S',X') : T2 (S',X') ← T1 (S,X,S'), EC(S', τ, X'),

 time_now(τ)

where S, S' are states, T1, T2 are transition names (PI, GI, etc), X' is input to T2, and
EC is a (possibly empty) conjunction of enabling conditions (defined in terms of the
core selection operators described below).

The rule states that after transaction T1 has been performed with some input X and
changing the state from S to S', then transition T2 is a possible follow-up provided at
the current time the enabling conditions EC hold and produce an input X' for
transition T2. The rule is given the name rT1|T2 (S',X'). Notice the predicative
representation of transitions in cycle theory rules. A transition represented as

182 F. Sadri

 S=<KB, Goals, Plan> , Input at a time τ
 T: ___________________________________

 S'=<KB',Goals',Plan'>

as seen in Section 5, is represented as an atom in the predicate T:

T(S, Input, S',τ)

and sometimes, for brevity, with some parameters omitted.
Tbehaviour consists of rules of the form:

RT

N1|N2: rT|N1(S,X1)>rT| N2(S,X2) ← BC(S,X1,X2,τ),
 time_now(τ)

where S is a state, N1, N2, T are transition names, X1 is input to N1, X2 is input to
N2, BC is a (possibly empty) conjunction of behaviour conditions (defined in terms
of the heuristic selection operators described below).

The rule states that after transition T, transition N1 is preferred to N2 when the
behaviour conditions hold at the current time τ and produce inputs X1 and X2,
respectively for N1 and N2. The behaviour rule is given the name RT

N1|N2.
The auxiliary part of Tcycle consists of the definitions of any predicates occurring in

the enabling and behaviour conditions, and rules of the form incompatible(T(S,X),
T'(S',X')) stating that different transitions are incompatible with each other as are
different calls to the same transition with different inputs (to be executed at the same
time).

The enabling conditions of the rules in Tbasic are defined in terms of the core
selection operators. These selection operators compute the inputs to the transitions
and help cycle theories to determine the next possible transition. There are 4 core
selection operators:

• Action selection - cAS(S, τ): selects a set of actions in the current state for
execution.

• Goal selection - cGS(S, τ): selects a set of goals in the current state to be planned for.
• Fluent selection - cFS(S, τ) : selects a set of fluents to be sensed in the environment.
• Precondition selection - cPS(S, τ) : selects a set of action preconditions to be sensed.

The definitions of these operators are given within the model. For example cGS(S,
τ) is the set of all goals in the state S at time τ which have not been achieved yet, are
not timed out and are not the children of goals that have been achieved or are timed
out. Analogous to the core selection operators there are 4 heuristic selection operators
which are used to define the behaviour conditions in Tbehaviour. The definitions of these
are under the control of the user.

Given an agent’s cycle theory Tcycle, the agent’s behaviour is characterised as a
(possibly infinite) sequence of transitions

 T1(S0,X1,S1, τ1),….,Ti(Si-1,Xi,Si, τi), Ti+1(Si,Xi+1,Si+1, τi+1),….

such that

• S0 is some initial state for the agent
• τi is given by some internal clock
• Tcycle , Ti(Si-1,Xi, Si, τi), time_now(τ) ╞pr Ti+1(Si,Xi+1, Si+1, τi+1).

 Using the KGP Model of Agency to Design Applications 183

╞pr denotes some semantics for logic programs with priorities. The abstract KGP
model is parametric with respect to this. The computational model chooses
argumentation based semantics for a concrete framework of ╞pr [3].

A complete specification of a cycle theory, called the normal cycle theory, can be
found in [15]. We cannot reproduce it here for lack of space.
What the user has to provide:

The user can provide his own rules for all the 3 components of Tcycle conforming to
the general syntax. The following are some examples.

Examples of Tbasic:

r PI|AE(S',As): AE(S',As) ← PI(S,Gs,S'), As=cAS(S', τ),

 As ≠ {}, time_now(τ)

This states that a Plan Introduction transition may be followed by an Action
Execution transition, if there are actions to be executed (identified by the core
selection operator for action selection cAS).

r POI|RE(S',_): RE(S',_) ← POI(S,_,S')

This states that a Passive Observation Introduction transition may be followed by a
Reactivity transition, unconditionally. Note that the Reactivity transition requires no
input computed by any of the selection operators.

Examples of Tbehaviour:

RPI

AE|N: rPI|AE(S,As) > rPI|N(S,X) ← not unreliable_pre(As)

for all transitions N ≠ AE.

RPI

SI|AE: r PI|SI(S,Ps) > r PI|AE(S,As)) ← unreliable_pre(As)

These two rules state that after Plan Introduction, the transition Action Execution is
preferred to any other, unless there are actions amongst the actions selected for
execution whose preconditions are “unreliable” and need checking, in which case
Sensing Introduction will be given preference. The predicate unreliable_pre has to be
defined in the auxiliary part of Tcycle.

By varying the rules of the cycle theory the behaviour of the agent can be varied.
Two different profiles of behaviour, called focussed and careful, obtained in this way
are described in [15], where cycle theories are provided for each profile. With the
focussed profile an agent concentrates on one goal at a time until it achieves it or it is
convinced that it is unachievable. With the careful profile, after any transition the
agent revises its state via the SR transition to ensure that unachievable or unnecessary
goals and actions are revised away as soon as possible. A collection of other profiles,
their properties and their associated cycle theories have been proposed in [1].

7 Conclusion

In this paper we have provided a tutorial on the KGP model of agency, concentrating
on the abstract counterpart of the model. The tutorial has aimed to provide an

184 F. Sadri

overview of the model and give some user guidance. For each module of the abstract
model we have summarised the domain-independent part which is provided by the
model, and available through the implementation platform. In addition, for each
module we have discussed the features of the domain-dependent part which the user
has to provide in order to specify the particular requirements of the application.

This tutorial should help the user make a start on designing an agent in the KGP
model. On its own, however, it is not sufficient for providing guidance up to and
including the implementation stage. Further guidance on implementation is needed.
This will become available when the platform becomes publicly accessible.

Acknowledgements

I am grateful to the anonymous reviewers for their helpful comments on an earlier
draft of this paper. Work on the KGP model was funded by the IST programme of the
EC, FET under the IST-2001-32530 SOCS project, within the GC proactive initiative.

References

1. M. Alberti, F. Athienitou, A. Bracciali, F. Chesani, U. Endriss, M. Gavanelli, A. Kakas, E.
Lamma, W. Lu, P. Mancarella, P. Mello, F. Sadri, K. Stathis, F. Toni, P. Torroni:
Verifiable Properties of Societies of Computees, Technical report, SOCS Consortium,
Deliverable D13, U. Endriss, F. Sadri (eds.), will be available at
http://lia.deis.unibo.it/research/socs/guests/publications/ (2005)

2. A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. Mancarella, F. Sadri, K.
Stathis, G. Terreni, F. Toni: The KGP Model of Agency for Global Computing:
Computational Model and Prototype Implementation, Global Computing 2004 Workshop,
Springer Verlag LNCS 3267 (2005) p. 342

3. Y. Dimopoulos, A.C. Kakas: Logic Programming Without Negation as Failure, in Logic
Programming, Proceedings of the 1995 International Symposium, Portland, Oregon (1995)
p. 369

4. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, F. Toni: The CIFF Proof Procedure for
Abductive Logic Programming With Constraints, JELIA'2004, International Conference on
Logics in AI, Lisbon, Portugal, September 2004, Springer Verlag LNAI 3229 (2004) p. 31

5. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, F. Toni: Abductive Logic Programming
with CIFF: System Description, JELIA'2004, International Conference on Logics in AI,
Lisbon, Portugal, September 2004, Springer Verlag LNAI 3229 (2004) p. 680

6. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, F. Toni: Abductive Logic Programming
with CIFF: Implementation and Applications, CILC04, Convegno Italiano di Logica
Computazionale, 16-17 June 2004, Parma, Italy, Research Report Quaderno del
Dipartimento di Matematica, Universita' di Parma, n. 390 (2004) p. 28

7. Gorgias: Argumentation and Abduction (http://www.cs.ucy.ac.cy/~nkd/gorgias)
8. A.C.Kakas, R.A. Kowalski, F. Toni: The Role of Abduction in Logic Programming, in

Handbook of Logic in Artificial Intelligence and Logic Programming, D.M. Gabbay, C.J.
Hogger, J.A. Robinson (eds.), volume 5, Oxford University Press (1998) p.235

9. A.C. Kakas, E. Lamma, P.Mancarella, P. Mello, K.Stathis, and F.Toni: Computational
Model for Computees and Society of Computees, Technical report, SOCS Consortium,
Deliverable D8, will be available at
http://lia.deis.unibo.it/research/socs/guests/publications/ (2003)

 Using the KGP Model of Agency to Design Applications 185

10. A.C. Kakas, P.Mancarella, F. Sadri, K.Stathis, and F.Toni: A Logic-based Approach to
Model Computees, Technical report, SOCS Consortium, Deliverable D4, will be available
at http://lia.deis.unibo.it/research/socs/guests/publications/ (2003)

11. A. Kakas, P. Mancarella, F. Sadri, K. Stathis, F. Toni: The KGP Model of Agency,
ECAI04, General European Conference on Artificial Intelligence, August 23-27, Valencia,
Spain (2004) p. 33

12. A.C. Kakas, P.Mancarella, F.Sadri, K.Stathis, and F.Toni: Declarative Agent Control, 5th
Workshop on Computational Logic in Multi-Agent Systems (CLIMA V), 29-30
September, J.Leite and P.Torroni (eds.) (2004) p. 212

13. R.A. Kowalski, M. Sergot: A Logic-based Calculus of Events, New Generation
Computing, 4(1):67-95 (1986)

14. P.Mancarella, F.Sadri, G.Terreni, and F.Toni: Planning Partially for Situated Agents, 5th
Workshop on Computational Logic in Multi-Agent Systems (CLIMA V), 29-30
September 2004, J.Leite and P.Torroni (eds.)

15. F. Sadri and F. Toni: Variety of behaviours Through Profiles in Logic-based Agents, in
this volume

16. F. Sadri, K. Stathis, F. Toni: Normative KGP Agents: A Preliminary Report, Proc.
NorMAS2005, 1st International Symposium on Normative Multi-Agent Systems, AISB
convention (2005)

17. F. Sadri, K. Stathis, F. Toni: Normative KGP Agents, Computational and Mathematical
Organization Theory (2006) (to appear)

18. Kostas Stathis, Antonis C. Kakas, Wenjin Lu, Neophytos Demetriou, Ulle Endriss, and
Andrea Bracciali: PROSOCS: a Platform for Programming Software Agents in
Computational Logic, in J. Müller and P. Petta (eds.), Proceedings of the Fourth
International Symposium “From Agent Theory to Agent Implementation” (AT2AI-4 -
EMCSR'2004 Session M), Vienna, Austria, 13-16 April (2004) p. 523

19. JXTA: http://www.jxta.org

	Introduction
	The Model
	Examples

	The KGP Model in a Nutshell
	The Internal Mental State
	KB, the Agent’s Knowledge Base
	Goals and Plan

	The Capabilities
	The Transitions
	Cycle Theories for Declarative Control
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

