University of L'Aquila

Master Degree in Computer Science

Course on Formal Methods

Syntactic unification: some exercises

Monica Nesi

We refer to the algorithm of the solved form by Martelli and Montanari (see the lecture notes on rewrite systems) and consider some problems of syntactic unification.

1. Given the terms $t_{1}=g\left(x_{1}, f\left(x_{1}\right)\right)$ and $t_{2}=g(x, y)$, compute (if it exists) the mgu for t_{1} and t_{2}.

The initial system of equations is $E=\left\{t_{1}=t_{2}\right\}$, thus the algorithm of the solved form starts with the initial configuration $\left(\left\{g\left(x_{1}, f\left(x_{1}\right)\right)=g(x, y)\right\}, \emptyset\right)$. As the topmost function symbols of the two terms of the only equation in E are the same, we can apply the inference rule Decomposition and get the new system $\left(\left\{x_{1}=x, f\left(x_{1}\right)=y\right\}, \emptyset\right)$.

Using the rule of Variable Elimination it is possible to establish the first binding between a variable and a term. Such a rule can be nondeterministically applied on either equation, as both satisfy the rule precondition (that is, in both equations at least one side is a variable and such variable does not occur in the other side of the same equation). Let us consider the equation $x_{1}=x$ and establish the binding $\left\{x / x_{1}\right\}$ which is applied to the remaining equations, thus obtaining $\left(\left\{x / x_{1}\right\}\left\{f\left(x_{1}\right)=y\right\},\left\{x_{1}=x\right\}\right)=$ ($\{f(x)=y\},\left\{x_{1}=x\right\}$).

The application of the rule of Variable Elimination on the remaining equation results in the final configuration $\left(\left\{\emptyset,\left\{x_{1}=x, y=f(x)\right\}\right)\right.$, whose second component is a system of equations in solved form representing the mgu $\sigma=\left\{x / x_{1}, f(x) / y\right\}$. Indeed we have $\sigma\left(t_{1}\right)=\sigma\left(t_{2}\right)=g(x, f(x))$.

Note that an mgu is unique modulo variable renaming. By applying the rule of Variable Elimination on the equation $x_{1}=x$, whose sides are both variables, so that the other possible binding $\left\{x_{1} / x\right\}$ is defined, we get another
mgu for t_{1} and t_{2} given by $\sigma^{\prime}=\left\{x_{1} / x, f\left(x_{1}\right) / y\right\}$, that is in particular a match, as its domain includes only variables of the term t_{2}. Note that both most general unifiers are idempotent by definition of system in solved form.
2. Given the terms $t_{1}=g(f(x), g(x, y))$ and $t_{2}=g\left(x^{\prime}, y^{\prime}\right)$, compute (if it exists) the mgu for t_{1} and t_{2}.

By applying the rules of Decomposition and Variable Elimination we have:

$$
\begin{aligned}
& \left(\left\{g(f(x), g(x, y))=g\left(x^{\prime}, y^{\prime}\right)\right\}, \emptyset\right) \\
& \left(\left\{f(x)=x^{\prime}, g(x, y)=y^{\prime}\right\}, \emptyset\right) \\
& \left(\left\{f(x) / x^{\prime}\right\}\left\{g(x, y)=y^{\prime}\right\}=\left\{g(x, y)=y^{\prime}\right\},\left\{x^{\prime}=f(x)\right\}\right) \\
& \left(\emptyset,\left\{x^{\prime}=f(x), y^{\prime}=g(x, y)\right\}\right)
\end{aligned}
$$

that results in the mgu $\sigma=\left\{f(x) / x^{\prime}, g(x, y) / y^{\prime}\right\}$, that is a match.
3. Given the terms $t_{1}=g(x, x)$ and $t_{2}=g(y, f(y))$, compute (if it exists) the mgu for t_{1} and t_{2}.

By applying the rules of Decomposition, Variable Elimination and Failure 2, we have:

$$
\begin{aligned}
& (\{g(x, x)=g(y, f(y))\}, \emptyset) \\
& (\{x=y, x=f(y)\}, \emptyset) \\
& (\{y / x\}\{x=f(y)\}=\{y=f(y)\},\{x=y\}) \\
& \text { Failure }
\end{aligned}
$$

because $y \in \operatorname{Var}(f(y))$. Hence, the two terms t_{1} and t_{2} are not syntactically unifiable. Actually, the term t_{1} requires the two arguments of g to be equal (as they are denoted by the same variable x), while the two arguments of t_{2} are not equal (the second one has one more f). Those terms containing more than one occurrence of the same variable, like $g(x, x)$ and $g(y, f(y))$, are called non-linear. Typically, when one tries to syntactically unify them, non-linear terms have more constraints (and are thus less easily unifiable) than linear terms where each variable occurs only once.
4. Given the terms $t_{1}=g(x, x)$ and $t_{2}=g(y, a)$, compute (if it exists)
the mgu for t_{1} and t_{2}.
By applying the rules of Decomposition and Variable Elimination, we have:

$$
\begin{aligned}
& (\{g(x, x)=g(y, a)\}, \emptyset) \\
& (\{x=y, x=a\}, \emptyset) \\
& (\{a / x\}\{x=y\}=\{a=y\},\{x=a\}) \\
& (\emptyset,\{x=a, y=a\})
\end{aligned}
$$

obtaining the mgu $\sigma=\{a / x, a / y\}$.
5. Given the terms $t_{1}=f(x, f(y, z))$ and $t_{2}=f\left(x^{\prime}, y^{\prime}\right)$, compute (if it exists) the mgu for t_{1} and t_{2}.

By applying the rules of Decomposition and Variable Elimination, we have:

$$
\begin{aligned}
& \left(\left\{f(x, f(y, z))=f\left(x^{\prime}, y^{\prime}\right)\right\}, \emptyset\right) \\
& \left(\left\{x=x^{\prime}, f(y, z)=y^{\prime}\right\}, \emptyset\right) \\
& \left(\left\{x / x^{\prime}\right\}\left\{f(y, z)=y^{\prime}\right\}=\left\{f(y, z)=y^{\prime}\right\},\left\{x^{\prime}=x\right\}\right) \\
& \left(\emptyset,\left\{x^{\prime}=x, y^{\prime}=f(y, z)\right\}\right)
\end{aligned}
$$

resulting in the mgu $\sigma=\left\{x / x^{\prime}, f(y, z) / y^{\prime}\right\}$, that is in particular a match. Modulo variable renaming, another mgu is $\sigma^{\prime}=\left\{x^{\prime} / x, f(y, z) / y^{\prime}\right\}$.

