
COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

1

Good is not good enough
- Evaluating and Improving Software ArchitectureEvaluating and Improving Software Architecture

Keynote COMPARCH/WICSA 2011

Michael Stal

Last chance to escape!

Warning: This presentation is about
experiences in large industrial software experiences in large industrial software
development projects. It only contains very
few scientific insights

Or as an unknown scientist called Einstein
once said: In theory, theory and practice
are the same. In practice, they are notare the same. In practice, they are not

But I will provide the first Perpetuum Mobile
Silver Bullet for optimizing systems:

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

2

The Silver Bullet

Keynote WICSA/COMPARCH 2011Page 3

About myself

Principal Engineer, Siemens R&D, Munich (GER)
Coaching & mentoring large projects (currently: Healthcare,
Rail IT)Rail IT)
Education of Certified (Senior) Software Architects
Research in Distributed Systems, Architecture, Product Lines
Books (e.g., Pattern-Oriented Software Architecture aka
POSA Series)

Professor at Rijksuniversiteit, Groningen (NL)
Promoter for Ph.D. students
Teaching lectures on Software Architecture

Contact: Photo: After the Ph.D. exam

Keynote WICSA/COMPARCH 2011

E-mail: michael.stal@siemens.com
Twitter: @MichaelStal
Blog: http://stal.blogspot.com

Page 4

and several glasses of wine
in Groningen celebrating
with my promoter Jan
Bosch & my reviewers

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

3

Why we should care

If you think good architecture
is expensive, try bad
architecture

Keynote WICSA/COMPARCH 2011Page 5

[Brian Foote and Joseph Yoder]

Learning from failure

Failure and understanding
f il i kfailure is a key
factor for successful design!

[Henry Petroski]

Keynote WICSA/COMPARCH 2011Page 6

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

4

Why should companies care?

At Siemens, approximately 60% of
current sales achieved with
products systems and servicesproducts, systems, and services
are dependent on software

Due to the current trends towards
networking and distributed
intelligence, this figure will increase
even further

As a result, the ability to develop new
ft ffi i tl hil i t i i

Keynote WICSA/COMPARCH 2011Page 7

software efficiently while maintaining
market-oriented quality will be
increasingly important

Software Failures cause huge Losses

Ambiguity lack of precision and understanding of long-term (platform) requirements
Requirements

i i

Some of these failures are related to software architects and
software architecture!

Software archi-
tecture and
development

Architecture specification started before identifying and specifying key business and technical requirements

Ambiguity, lack of precision and understanding of long term (platform) requirements

No, incomplete, or inappropriate architecture description
Predominant preference for features and developmental properties such as extensibility, adaptability rather than for

operational properties such as stability and performance
Architect has insufficient technological breadth and depth – applies the known approach

Architect views testing, reviews, refactoring, quality measurement as a means of undesirable control rather than as
a design approach and quality safety net

engineering

S ft

Testing and
quality

Keynote WICSA/COMPARCH 2011Page 8

Architecture specification started before identifying and specifying key business and technical requirements
qualitatively and quantitatively

Architect does not implement / or implements on the critical path

Communication with stakeholders and development team often missing or inappropriate
Architect does not mentor development team
Lack of courage for taking architecture decisions

No clear (understanding of) business cases
Business
and strategy

Leadership

Software
processes

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

5

Panta rhei - Evolutionary Design embraces Change

There is nothing permanent
except change

Keynote WICSA/COMPARCH 2011Page 9

[Heraclitus, 535–475 BC]

Design erosion is the root of evil

A Backpack
Backpack

A
Backpack

Another

Detached Extensions

In the lifecycle of a software system changes
are the rule and not the exception

A
Component

Someone
Else's Comp

Yet Another
C t

Another
Component

The Fifth
Element

Component
42

Backpack

Unsystematic approaches ("workarounds")
cure the symptom but not the problem

After applying several workarounds, software
systems often suffer from design erosion

Keynote WICSA/COMPARCH 2011Page 10

DB
Access Layer

Component 42

Spaghetti
design

DB access
shortcut

Such systems are doomed to fail (negative
impact on operational & developmental
properties)

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

6

How do we know we must improve?

Lack of Internal or External Quality
Quality Attributes (use methods like ATAM),

andand,

Structural quality indicators which include

Economy

Visibility

Spacing

Symmetry

Emergence

Keynote WICSA/COMPARCH 2011Page 11

Emergence

Consequently, the goal of architecture
improvement is to achieve or meet such
qualities

There is a strange Smell

Architecture smells
Duplicate design artifacts

If it stinks, there must be something
we need to clean up

Hammer&Nail syndrome
Unclear roles of entities
Inexpressive or complex architecture
Everything centralized
Home-grown solutions instead of best

practices
Over-generic design
Asymmetric structure or behavior
Dependency cycles

p

Keynote WICSA/COMPARCH 2011Page 12

p y y
Design violations (such as relaxed

instead of strict layering)
Inadequate partitioning of functionality
Unnecessary dependencies

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

7

Example of Architecture Problem

*

Abstract
Storage

Transport
Way

* Abstract
StrategyA true story: In this *

Composite
StorageBinDoorDumpEquip-

ment

y

*
Concrete
Strategy

gy

*

Cart Belt

A true story: In this
example architects
introduced Transport
Way as an additional
abstraction. But can't
we consider transport
ways as just as
another kind of
storage? As a
consequence the

Keynote WICSA/COMPARCH 2011Page 13

Concrete
Strategy

*

Abstract
Storage

Composite
StorageBinDoorDump

Abstract
Strategy

Equipment

*

unnecessary
abstraction was
removed, leading to a
simpler and cleaner
design.

Possible Refactoring Pattern

Context
Eliminating unnecessary design abstractions g y g

Problem
Minimalism is an important goal of software architecture, because minimalism

increases simplicity and expressiveness
If the software architecture comprises abstractions that could also be considered

abstractions derived from other abstractions, then better remove these abstractions
General solution idea

Determine whether abstractions / design artifacts exist that could also be derived from
other abstractions

Keynote WICSA/COMPARCH 2011Page 14

If this is the case, remove superfluous abstractions and derive from existing
abstractions instead

Caveat
Don't generalize too much (such as introducing one single hierarchy level: "All classes

are directly derived from Object")

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

8

Yet another example

GetState()

SetState {

GetState()

SetState {Monitors need to

Agent

SetState {

...

M.GetTimeStamp()

}

X Break
Cycle

Agent

SetState {

...

T.GetTimeStamp()

}

TIME

GetTimeStamp()

Monitors need to
access agents to
control the network
Agents change their
internal state and
create events
To have a common
clock architects
decided to enhance
the monitor

Keynote WICSA/COMPARCH 2011Page 15

Monitor

GetTimeStamp()

Draw() {

...
A.GetState();

}

Monitor

Draw() {

...
A.GetState();

}

the monitor
… which leads to a
cycle

Yet Another Refactoring Pattern

Context
Cyclic dependencies between subsystemsCyclic dependencies between subsystems

Problem
Your system reveals at least one dependency cycle between subsystems

Subsystem A may either depend directly or indirectly on subsystem B
(e.g., A depends on C which depends on B) which is why we always need
to consider the transitive hull

Dependency cycles make systems less maintainable, changeable, reusable, testable,
understandable

Keynote WICSA/COMPARCH 2011Page 16

understandable

General solution idea
Get rid of the dependency cycle by removing or inverting dependencies

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

9

Refactoring is part of the architecture design process

Refactoring is integrated into the
architecture design process:

It improves the structure
It supports a risk-,

i t d t t

Refine & Review
Architecture

Refactor
Architecture

Feedback Loop

Keynote WICSA/COMPARCH 2011Page 17

requirements- and test-
driven approachComplete

?
yesnoExecutable

Increment

We need to collect Architecture Refactorings

Some Examples

1. Rename Entities
2. Remove Duplicates
3. Introduce Abstraction Hierarchies
4. Remove Unncessary Abstractions
5. Substitute Mediation with Adaptation
6. Break Dependency Cycles
7. Inject Dependencies
8. Insert Transparency Layer
9. Reduce Dependencies with Facades

17. Enforce Contract
18. Provide Extension Interfaces
19. Substitute Inheritance with Delegation
20. Provide Interoperability Layers
21. Aspectify
22. Integrate DSLs
23. Add Uniform Support to Runtime Aspects
24. Add Configuration Subsystem
25. Introduce the Open/Close Principle
26. Optimize with Caching
27. Replace Singleton

Keynote WICSA/COMPARCH 2011Page 18

p
10. Merge Subsystems
11. Split Subsystems
12. Enforce Strict Layering
13. Move Entities
14. Add Strategies
15. Enforce Symmetry
16. Extract Interface

27. Replace Singleton
28. Separate Synchronous and Asynchronous Processing
29. Replace Remote Methods with Messages
30. Add Object Manager
31. Change Unidirectional Association to Bidirectional

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

10

After refactoring check for correctness

To check the correctness of refactorings, we should use a
test-driven approach.

Available options:
Formal approach: Prove semantics and correctness of

program transformation
Implementation approach: Leverage unit and

regression tests to verify that the resulting
implementation still meets the specification

Architecture analysis: Check the resulting software
architecture for its equivalence with the initial
architect re (consider req irements)

Keynote WICSA/COMPARCH 2011Page 19

architecture (consider requirements)
Use at least the latter two methods to ensure quality

Obstacles to Refactoring

Organization / management
Featuritis: Considering improvement by refactoring

as less important than features p
“Organization drives architecture” problem

Process support
No refactoring activities defined in process
Refactorings not checked for correctness, test

manager not involved
Technologies and tools

Unavailability of tools: refactoring must be done
manually

Keynote WICSA/COMPARCH 2011Page 20

y
Unavailability of refactoring catalog

Applicability
Refactoring used instead of reengineering
Wrong order of refactorings

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

11

Reengineering – when and how to use it

Use Reengineering when

The system's documentation

Process
Phase I: Reverse engineering

Reverse
engineering

Forward
engineering

The system s documentation
is missing or obsolete

The team has only limited
understanding of the system, its
architecture, and implementation

A bug fix in one place causes bugs
in other places

g g
Analysis / recovery: determine existing

architecture (consider using CQM)
SWOT analysis
Decisions: what to keep, what

to change or throw away
Phase II: Forward engineering

Keynote WICSA/COMPARCH 2011Page 21

engineering engineering

Code

Design
Pick

Workpiece

Log
Alarms

Telegram
Forwarder

Telegram
Receiver

Telegram
Converter

SetPoint
Calculation

Command

Logging
Strategy

Command
Processor Logger

The network

creates

executes

applies passes
commands to

passes telegrams to
passes telegrams to

Conference
Organizer

uses
Conference
Manager

Conference
Participant

Conference

Conference
Session

organizes

manages

Scheduler
uses

has*

*

Documents

uses
Media

Manager

*

participates

Requirements
New system-level requirements and

functions cannot be addressed or
integrated appropriately

Rewriting in a Nutshell

Rewriting is a radical and fresh restart: existing design and code is trashed and
replaced by a whole new design and implementation. Depending on focus:

Improves structure regarding:

Simplicity, visibility, spacing, symmetry,
emergence

Maintainability, readability, extensibility

Bug fixing

Provides new functionality

Improves its operational qualities

Keynote WICSA/COMPARCH 2011Page 22 Page 22

Improves design and code stability

As a consequence, rewriting addresses all types of
software quality: functional, operational, and the
various developmental qualities

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

12

Refactoring, reengineering, and rewriting comparison (1)

Refactoring, reengineering, and rewriting are complementary approaches to sustain
architecture and code quality
Start with refactoring – it is cheap and (mostly) under the radar
Consider reengineering when refactoring does not help – but it is expensive
Consider rewriting when reengineering does not help – but it is expensive and

often risky

Reverse
engineering

Forward
engineering

Requirements

Logging
Strategy

Concrete
Logging
Strategy

Client Command
Processor

Strategy
Command
Processor

Keynote WICSA/COMPARCH 2011Page 23 Page 23

Code

Design
Pick

Workpiece

Log
Alarms

Telegram
Forwarder

Telegram
Receiver

Telegram
Converter

SetPoint
Calculation

Command

Logging
Strategy

Command
Processor Logger

The network

creates

executes

applies passes
commands to

passes telegrams topasses telegrams to

Conference
Organizer

uses
Conference

Manager

Conference
Participant

Conference

Conference
Session

organizes
manages

Scheduler
uses

has*

*

Documents

usesMedia
Manager

*

participates

q

*

Strategy

Concrete
Command

Command

Composite
Command

Memento

Application

Memento

Command &
Composite

Refactoring, reengineering, and rewriting comparison (2)

Refactoring Reengineering Rewriting
Scope Many local effects Systemic effect Systemic or local effect

Process Structure transforming Disassembly / reassambly ReplacementProcess Structure transforming
Behavior / semantics preserving

Disassembly / reassambly Replacement

Results Improved structure
Identical behavior

New system New system or new component

Improved
qualities

Developmental (might change
Operational Quality)

Functional
Operational
Developmental

Functional
Operational
Developmental

Drivers Complicated design / code
evolution
When fixing bugs

Refactoring is insufficient
Bug fixes cause rippling effect
New functional and operational

Refactoring and reengineering
are insufficient or inappropriate
Unstable code and design

Keynote WICSA/COMPARCH 2011Page 24 Page 24

When design and code smell
bad

p
requirements
Changed business case

New functional and operational
requirements
Changed business case

When
Part of daily work
At the end of each iteration
Dedicated refactoring iterations
in response to reviews
It is the 3rd step of TDD

Requires a dedicated project Requires dedicated effort or a
dedicated project, depending on
scope

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

13

Software Architect’s Dilemma

Life must be understood
backwards; but it must bebackwards; but ... it must be
lived forward

[Søren Aabye Kierkegaard, Danish philosopher
and theologian, 1813-1855]

Keynote WICSA/COMPARCH 2011Page 25

Reviews help finding the Bad Smells

Quantitative Architecture Reviews
Code quality assessment

Simulations

Prototypes

Qualitative Architecture Reviews
Scenario-based approaches

Experience-based approaches

A A hit t A t R i

Keynote WICSA/COMPARCH 2011Page 26

An Architecture Assessment or Review
should not be considered an afterthought.

It is a means to check a system regularly and
find problems early

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

14

Quantitative review

Benefits

Yield "hard" results

Quantifiable, objective means for selecting alternatives

Experiments by altering the parameters relatively easy

Liabilities

Focus on only a couple of concerns or system parts

Works only if data is interpreted correctly

Effect on quality attributes other than the focus is
unknown

Keynote WICSA/COMPARCH 2011Page 27

unknown

Probably costly

Similar to test automation, the initial cost might be high, but is typically
justified by early detection of conceptual faults.

Qualitative review

Benefits

Involves all relevant stakeholders

Overview of the whole system

Improve understanding for all participants

Relatively cheap to execute

Can be conducted as soon as high level architecture
design is available

Liabilities

Relies mainly on documents and statements from personally involved stakeholders

Keynote WICSA/COMPARCH 2011Page 28

Relies mainly on documents and statements from personally involved stakeholders

Experienced reviewers required

No "hard facts" (unless supported by quantitative assessments)

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

15

In many projects the responsibility for internal
code and design quality is not well defined

Visualization Tools help keeping the system in good
Shape

The software architect has to ensure that the
required CQM activities are established

The software architect should be the
protector of the quality of the software
system!

Use Visualization Tools at least in larger code

Keynote WICSA/COMPARCH 2011Page 29

Use Visualization Tools at least in larger code
bases

By the way:
this is a real
system

A (Personal) Note on Metrics

Metrics represent a popular tool to
measure software quality:

The cyclomatic complexity (by McCabe) of a software
module is calculated from a connected graph of the
module (that shows the topology of control flow within the
program):
Cyclomatic complexity (CC) = E - N + p where:measure software quality:

Metrics can be clearly measured
Lots of metrics exist
Lots of literature on metrics

However metrics rarely help to measure the quality of
a piece of design/code!

What is the meaning of LOC-based metrics?

Wh t i th i f l l ti l it

E = the number of edges of the graph
N = the number of nodes of the graph
p = the number of connected components

A common interpretation of the CC metric is

E = 8
N = 6
P = 5
CC = 7

Keynote WICSA/COMPARCH 2011Page 30

What is the meaning of a low cyclomatic complexity
value in the presence of a complex subject—or vice
versa?

At best, a metric can indicate a quality problem, but it
cannot ultimately confirm it

01-10 – a simple program, without much risk
11-20 – more complex, moderate risk
21-50 – complex, high risk program
> 50 – untestable program, very high risk

According to the above interpretation, an Observer
arrangement with a subject and 50 observer types has a
CC of 50. Is this a complex, high risk structure? Not
really, an Observer structure is clearly defined, very
stable, testable, and has a manageable complexity!

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

16

“Preventive Maintenance”

Experts solve problems,
geniuses avoid them

[Albert Einstein]

Keynote WICSA/COMPARCH 2011Page 31

Architecture Quality is also influenced by other
aspects

Involvement of Software
Architects in different

phases and disciplines

Business
& Strategy

Requirements
Engineering

Test &
Quality

Rollout &
Maintenance

phases and disciplines

Keynote WICSA/COMPARCH 2011Page 32

Design Integration &
Implementation

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

17

Architects & Requirements – Problem 1: There are
always different views on a requirement

Keynote WICSA/COMPARCH 2011Page 33

Architects & Requirements – Problem 2: Do we have
the right requirements?

A program which
perfectly meets a lousyperfectly meets a lousy
specification is a lousy
program

[Cem Kaner, Software Engineering
Professor and Consumer

Keynote WICSA/COMPARCH 2011

Advocate]

Page 34

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

18

=> Requirements must have high Quality

Quality of Requirements determines Quality of Software Architecture

Cohesive
Complete
Consistent
Correct
Current
Externally Observable
Feasible

Keynote WICSA/COMPARCH 2011

Unambiguous
Mandatory
Verifiable

Page 35

No Risk – No Fun?

The most likely way for the
ld t b d t d tworld to be destroyed, most

experts agree, is by accident.
That's where we come in;
we're computer
professionals. We cause

Keynote WICSA/COMPARCH 2011

accidents
[Nathaniel Borenstein, US Programmer]

Page 36

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

19

Mind all Risks and conduct a Risk Analysis early

Approach for risk analysis according to Christine Hofmeister
(“Applied Software Architecture”):

Description of risk: e.g., dependence on persistence
layer

Influential factors that lead to this risk: e.g.,
requirement to decouple business from persistence
layer, not enough technology skills in team

Solution approach: e.g., introduce data access layer

Possible strategies: e.g., give subproject to external

Keynote WICSA/COMPARCH 2011

company, use open source solution, use platform-
specific solution

Related topics and strategies: e.g., decoupling
business logic from other backend layers

Page 37

Real engineers in action

Keynote WICSA/COMPARCH 2011Page 38

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

20

The Art of Architecture

There are two ways of
constructing a softwareconstructing a software
design: One way is to make
it so simple that there are
obviously no deficiencies,
and the other way is to
make it so complicated that

Keynote WICSA/COMPARCH 2011Page 39

there are no obvious
deficiencies. The first
method is far more difficult

[C.A.R Hoare]

Architecture versus Design

Design is a continuous activity of making
decisions

beginning with decisions that have broadbeginning with decisions that have broad
system wide scope (Strategic Design), and

moving to decisions that have very narrow
scope (Tactical Design)

A decision is architectural if it has one or more
of the following properties:

it has system wide impact
it affects the achievement of a quality attribute

important to the system

Keynote WICSA/COMPARCH 2011Page 40

Architecture is about everything
costly to change [Grady Booch]

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

21

Piecemeal Growth - An Iterative-Incremental
Architecture Design Process from 10000 feet

Determine
Forces

Create
Architecture

Baseline

Refine & Assess
Architecture

Refactor
Architecture

Feedback LoopCreate
Domain Model

Keynote WICSA/COMPARCH 2011Page 41

Complete
?

Executable
Architecture

yesnoExecutable
Increment

Piecemeal Growth

The Onion Model

Architecture design follows an onion metaphor:

start with the inner corestart with the inner core,
incrementally continue with outer layers

Functional Core

Infrastructure

Strategic Qualities
Prio high -> low

T ti l Q liti

Keynote WICSA/COMPARCH 2011Page 42

Tactical Qualities
Prio high -> low

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

22

How deep should we go in the Baseline
Architecture

Pyramid Model

Three levels of detail to limit
depth

Focus on architecturally

System

Subsystem / Service

The baseline architecture must be as complete
as necessary to govern the subsequent software
development, but it must also be as simple as
possible, otherwise it cannot be communicated

Keynote WICSA/COMPARCH 2011Page 43

Focus on architecturally
significant
requirements and
corresponding
architecture views to limit
breadth

Component

The Not Invented Here Syndrome

Human beings, who are
almost unique inalmost unique in
having the ability to
learn from the
experience of others,
are also remarkable for
their apparent

Keynote WICSA/COMPARCH 2011Page 44

disinclination to do so.

[Douglas Adams. 1952-2001.
Last Chance to See]

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

23

Think Green and Re-Use

Re-use design concepts:

In most cases efficiency and effectivenessIn most cases efficiency and effectiveness
are more important than originality

Proven expertise instead of inventing new
solutions – Mind the NIH Syndrome!

Different Levels of re-use:

Idioms and Design Patterns

Domain specific Patterns Anal sis

Keynote WICSA/COMPARCH 2011

Domain specific Patterns – Analysis
Patterns

Patterns for using a Technology

Architectural blueprints – reference
architectures

Page 45

Also keep in mind the issue of Architecture
Governance

Without Architecture
Governance the System y

is subject to
uncontrolled Change

and Extension

Introduce countermeasures such as:
Architecture Guidelines and Policies as

well as their Enforcement
Means to ensure Requirements

Software Software ArchitectureArchitecture

Keynote WICSA/COMPARCH 2011

Means to ensure Requirements
Traceability

No Checking-in without other Persons
reviewing Code and Documents

Test-Driven-Design
Risk-Based Analysis & Test

Page 46

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

24

The mindset, activities, practices, methods, and technologies for defining and realizing
software architectures form a best practice framework for senior software architects to

An Architect’s Toolbox as a common Mindset

Specify and implement a software architecture
systematically and in a
timely fashion

Check and ensure the appropriate architectural
quality

Respond to changes of all
kinds such as changing

System and domain
scoping

Iterative, risk-driven, Strategic and

Baseline architecture
specification

Keynote WICSA/COMPARCH 2011Page 47

kinds, such as changing
requirements and priorities

Deal with problems that arise
during the definition and realization
of the software architecture

requirements-driven, and
test-driven development

Strategic and
tactical design

Design for usability
Enforcing the

architecture vision

Give the client not what he wants, ….

Customer:
“Whenever, I amWhat? Whenever, I am
driving the road, this
rabbit will cross the
street. Trying not to
run down the animal
in the curve, I always
hit the tree. Please,

Problem Space

What?
Why?

Keynote WICSA/COMPARCH 2011

sell me a car with big
bumpers”

Page 48

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

25

…, but what he needs

Car seller: “You
don’t need a car withdon t need a car with
big bumpers, but
ABS to stabilize your
car in the curve”

Solution Space

Keynote WICSA/COMPARCH 2011

Knowing the expectations is essential

At least at project begin,
Architects don‘t understand

requirements very well
Customers tell what they want,

not what they need
Architects may even not know

the implicit requirements
Hence,

Keep in touch with Customers

Keynote WICSA/COMPARCH 2011

Keep in touch with Customers
Apply a KANO Analysis
Understand your Business Goals
Develop Design and

Requirements in parallel

Page 50

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

26

Testing as a never ending story

Testing is an infinite
f iprocess of comparing

the invisible to the
ambiguous in order to
avoid the unthinkable
happening to the

Keynote WICSA/COMPARCH 2011

anonymous
[James Bach, Test Guru]

Page 51

Communication is essential

Software Development is a
collaborative gamecollaborative game

[Alistair Cockburn]

Keynote WICSA/COMPARCH 2011Page 52

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

27

Architects need to tightly interact with all other roles in
software development

Leadership, and communication and interaction with other roles in software
development, are probably the most time-intensive and most important responsibilities
Software Architect

Product line
manager

Software

Requirements
engineer

Head of
R&D

The roles with whom the
architect interacts,

the topics about which they
interact with these roles,

and the intensity of the

?

Keynote WICSA/COMPARCH 2011Page 53

project
manager

Software
architect

Test manager Software developer

y f
interaction

depend on the concrete
development workflow and
activity performed in a
software project

Communication with stakeholders can be surprisingly
challenging

Keynote WICSA/COMPARCH 2011Page 54

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

28

Conclusions

Architecture Improvement should be considered in
the whole lifecycle, not at the end

The later a problem is detected, the more expensive
or impossible to get rid of it

Conduct Assessment, Refactoring, Testing activities
regularly

Appropriate design methods help avoid problems
KiSS Principle helps prevent accidental complexity
High Software Architecture Quality impossible

without involving other stakeholders

Keynote WICSA/COMPARCH 2011

without involving other stakeholders
An underestimated tool is effective Communication
Research opportunities in terms of refactoring,

visualization, modeling

Page 55

It is your responsibility
as architects to build
sustainable systems!

A departing thought

Each problem that I solved
became a rule which served
afterwards to solve other
problems

Keynote WICSA/COMPARCH 2011Page 56

problems.

[René Descartes, 1596–1650, in "Discours de la
Methode"]

COMPARCH/WICSA 2011 Keynote
st

er
.p

pt
 V

1
SW

A
_M

as

29

Keynote WICSA/COMPARCH 2011Page 57

