
Making Abstraction Concrete:
An Architect’s Catalogue of

Abstraction Patterns

© Copyright Malina Software

An Architect’s Catalogue of
Abstraction Patterns
Bran (The Terminator) Selic
Malina Software Corp., Canada
Simula Research Labs, Norway
Zeligsoft (2009) Ltd., Canada
University of Toronto, Canada
Carleton University, Canada

selic@acm.org

From a Keynote by J. From a Keynote by J. NaughtonNaughton

� Advice given by an Emeritus Professor regarding
keynotes:

“Don’t do it! Giving a
keynote means you are

© Copyright Malina Software2

keynote means you are
washed-up has-been.”

A “Wake Up” QuestionA “Wake Up” Question
� Why is the following often-used form usually a

misleading and inaccurate representation of the
architecture of a “layered” software system?

CC11 CC22 CC33

D1D1

© Copyright Malina Software3

A1A1 A2A2 A3A3

BB11 BB22

CC11 CC22 CC33

Answer coming up soon!

OverviewOverview

� Part I: On abstraction and modeling

� Part II: A starter catalogue of abstraction
patterns for system architects

© Copyright Malina Software4

What is “Abstraction”?What is “Abstraction”?
� An intellectual defence mechanism for coping with

overwhelming complexity

� Often, our only mechanism

© Copyright Malina Software5

SYSTEM

WARNING: Don’t confuse
abstraction with reality:

It doesn’t always work

An Eminently Successful An Eminently Successful ExamplarExamplar

� The model of feedback control:

Plant

Controller

+

-

© Copyright Malina Software6

Abstraction: Definitions I Don’t LikeAbstraction: Definitions I Don’t Like

� ABSTRACTION: A process by which “higher”
concepts are derived from the usage and
classification of literal (“real” or “concrete”)
concepts, first principles, and/or other abstractions
[Wikipedia]

� ABSTRACTION (computer science): a mechanism
and practice to reduce and factor out details so

© Copyright Malina Software7

and practice to reduce and factor out details so
that one can focus on a few concepts [Wikipedia]

Technical Approaches to AbstractionTechnical Approaches to Abstraction

� Relaxionist: By loosening constraints

� Broadens scope of coverage

� E.g., going from “Square” to “Geometrical Shape”

� Reductionist: By removing or merging “irrelevant”
detail

� Relevance is a function of viewpoint (set of concerns)

© Copyright Malina Software8

� Relevance is a function of viewpoint (set of concerns)

Abstraction: A Crucial Skill for ArchitectsAbstraction: A Crucial Skill for Architects

� It seems to be less common than one might expect

� ...particularly among software people

� The ability to see beyond the technology

� There are many programmers but few “architects”

� Agile development and architecture perceived as mutually
exclusive by many practitioners

© Copyright Malina Software9

exclusive by many practitioners

� E.g., M. Fowler: “Is design dead?”

� Can abstraction be taught?

� …I think so, but some people are naturally better at it

Abstraction: My Favoured DefinitionAbstraction: My Favoured Definition

� ABSTRACTION : Selective reduction of information
of a system which preserves its salient properties
relative to a given set of concerns
� Refinement is the inverse process

In engineering:

© Copyright Malina Software10

In engineering:
abstraction ⇒⇒⇒⇒ modeling

Engineering ModelsEngineering Models

� ENGINEERING MODEL: A selective representation
of some system that captures accurately and
concisely all of its essential properties of interest
for a given set of concerns

• We don’t see everything
at once

• What we do see is adjusted

© Copyright Malina Software11

• What we do see is adjusted
to human understanding

Why Do Engineers Build Models?Why Do Engineers Build Models?

� To understand

� …the interesting characteristics of an existing or desired
(complex) system and its environment

� To predict

� …the interesting characteristics of the system by analysing
its model(s)

© Copyright Malina Software12

its model(s)

� To communicate

� …their understanding and design intent (to others and to
oneself!)

� To specify

� ...the implementation of the system (models as blueprints)

The Trouble with Models (Abstraction)The Trouble with Models (Abstraction)

� “The devil is in the details”

� Leaving out something crucial
� Underestimating its relevance

� Accidental oversight

⇒ Inaccurate and untrustworthy models

© Copyright Malina Software13

Exacerbated by the common practice of NOT
documenting the abstraction process

WARNING: Don’t confuse
abstraction with reality:

It doesn’t always work

Characteristics of Useful Engineering ModelsCharacteristics of Useful Engineering Models

� Purposeful:
� Constructed to address a specific set of concerns/audience

� Abstract
� Emphasize important aspects while removing irrelevant ones

� Understandable
� Expressed in a form that is readily understood by observers

� Accurate
Faithfully represents the modeled system

© Copyright Malina Software14

� Faithfully represents the modeled system

� Predictive
� Can be used to answer questions about the modeled system

� Cost effective
� Should be much cheaper and faster to construct than actual system

To be useful, engineering models must
satisfy at least these characteristics!

What About Software Modeling?What About Software Modeling?

Monitor
PH

Raise
PH

Control
PH

PH reached X

Current PH

start

stop

Input valve

© Copyright Malina Software15

“…bubbles and arrows, as opposed to programs,
…never crash”

-- B. Meyer
“UML: The Positive Spin”

American Programmer, 1997

Input valve
control

The Prevalent Attitude to ModelingThe Prevalent Attitude to Modeling

� We don’t do modeling here...it’s a waste of time

� But...

© Copyright Malina Software16

producer

Modern ModelModern Model--Based Software EngineeringBased Software Engineering

� Models can be refined continuously until the application
is fully specified ⇒⇒⇒⇒ the model becomes the system that
it was modeling!

««sc_methodsc_method»»

producerproducer
start out1

void generate_data()
{for (int i=0; i<10; i++)
{out1 = i;}}

© Copyright Malina Software17

refinerefine

NotStarted

Started

start

NotStarted

Started

start

producer

St1St1 St2St2

/generate_data()

A Unique Feature of SoftwareA Unique Feature of Software

� A software model and the software being modeled
share the same medium—the computer

� Which also happens to be our most advanced and most
versatile automation technology

Software has the unique property that it allows
us to directly evolve models into

© Copyright Malina Software18

us to directly evolve models into
implementations without fundamental
discontinuities in the expertise, tools, or
methods!

⇒⇒⇒⇒ High probability that key design
decisions will be preserved in the
implementation and that the results of
prior analyses will be valid

The ModelThe Model--Based Engineering (MBE) ApproachBased Engineering (MBE) Approach

� An approach to system and software development in which
software models play an indispensable role

� Based on two time-proven ideas:

(2) AUTOMATION

S1

S3

e3/action3

(1) ABSTRACTION

S1

S3

e3/action3

Realm of Realm of

© Copyright Malina Software19

switch (state) {

case‘1:action1;

newState(‘2’);

break;

case‘2:action2;

newState(‘3’);

break;

case’3:action3;

newState(‘1’);

break;}

S2

e1/action1

e2/action2

switch (state) {

case‘1:action1;

newState(‘2’);

break;

case‘2:action2;

newState(‘3’);

break;

case’3:action3;

newState(‘1’);

break;}

S2

e1/action1

e2/action2

Realm of
modeling
languages

Realm of
tools

NotStarted

producer

But, if the Model is the System…But, if the Model is the System…

� …do we not lose the abstraction value of models?

void generate_data()
{for (int i=0; i<10; i++)
{out1 = i;}}

• The computer offers a uniquely
capable abstraction device:

© Copyright Malina Software20

Started

start

St1St1 St2St2

/generate_data()

Started

Software can be represented
from any desired viewpoint at
any desired level of abstraction

The abstraction is inside the system
and can be extracted automatically
via suitable model transformations

Provided that the abstraction
process is tracked and recorded

Successive Levels of AbstractionSuccessive Levels of Abstraction

� In practice, higher-level models are needed at all
times both during and following development

� Not just during design but also for maintenance and system
evolution

Level N Model

© Copyright Malina Software21

Level N-1 Model

refinement

Implementation (L0) Model

. . .

refinement

Tracking Refinement/AbstractionTracking Refinement/Abstraction
� If the relationships between models at different levels

of abstraction are explicitly tracked and recorded, it is
possible to:
� Validate the abstraction/refinement steps

� Reconstruct (automatically) an abstract model from a more
concrete one

Level N Model

© Copyright Malina Software22

Implementation (L0) Model

. . .

refinement

refinement

abstraction

abstraction

Level N-1 Model

. . .

OverviewOverview

� Part I: On abstraction and modeling

� Part II: A starter catalogue of abstraction
patterns for system architects

© Copyright Malina Software23

The Abstraction Patterns CatalogueThe Abstraction Patterns Catalogue

� Intended for architects and developers

� Based on a precise definition of patterns expressed
using a graph-based formalism (featured graphs)

� Suitable for various graph-based modeling languages such as
UML

� Patterns for:

© Copyright Malina Software24

� Patterns for:

� Structure

� Behaviour

� Time

A Provisional Formalism: Featured GraphsA Provisional Formalism: Featured Graphs

n1

{f1
1, f1

2,...}

p1
1

n2

{f2
1, f2

2,...}

p2
2

p1
3

p1
2

p2
1

p3
1

e

e12{f12
1, f12

2,...}

FeaturesFeatures:

Nodes: Nodes:
structural or
behavioural
components

© Copyright Malina Software25

� FG = <Nodes, Edges>

� n ∈∈∈∈ Nodes; n = <id, Ftrs(n), Pins(n)>

� e ∈∈∈∈ Edges; e = <id, Ftrs(e), Srcs(e), Dests(e)>

n3

{f3
1, f3

2,...}

p3
3

p 1

p3
2

e13

{f23
1, f23

2,...}

Features:
fine-grained
attributes

Edges: Edges:
information flows,
communication
channels PinsPins:

connection points
(e.g., ports, pins)

Abstraction/Refinement PatternsAbstraction/Refinement Patterns

� Each pattern consists of a refinement graph, an
abstract graph, and a formally defined set of
mappings between them

Pattern = <RefGraph, Mappings, AbsGraph>

� Each mapping is a pair comprising a single AbsGraph
element and a corresponding RefGraph element

© Copyright Malina Software26

element and a corresponding RefGraph element

∀∀∀∀refElem ∈∈∈∈ RefGraph | ∃∃∃∃mapping ∈∈∈∈ Mappings
mapping = <absElem, refElem>
absElem ∈∈∈∈ AbsGraph

� Each refGraph element is covered by a mapping to
ensure that nothing is overlooked

Structural Pattern: Black BoxStructural Pattern: Black Box

� Based on a common meta-pattern that appears in
different forms in both structure and behaviour modeling

� Synthesizes a network of tightly-coupled concrete components
and renders them as a single high-level component

gb'
cx2’cx1’

p1’ p2’

e2’e1’“Cross-over”
connectors map to

© Copyright Malina Software27

Glass Box

p1’ p2’

c1

c2

c3

c4

cx2
cx1

p1
p2

e1
e2

abstraction

connectors map to
a port-connector
combination Everything fully

inside the box maps
to a single abstract
component

Structural Pattern: Black LineStructural Pattern: Black Line

� Abstracts a collection of elements realizing a
communications path into a single edge (connector)

� Could be multipoint

A’ B’

“Cross-over”
connectors map to
connector end
points

Everything fully
inside the box maps

© Copyright Malina Software28

Connector Glass Box

C1 C2A C4 BC3
e1 e2 e3 e4 e5

abstraction

Everything fully
inside the box maps
to a single abstract
connector

Structural Pattern: CableStructural Pattern: Cable

� Group of connectors that share the same source and
sink components

AbsCmp2AbsCmp1
e'

abstraction

All concrete
connectors map to
a single high-level
connector

© Copyright Malina Software29

RefCmp2

Apply

Pattern

e1

e2

e3

en

...

RefCmp1

Structural Pattern: Port GroupStructural Pattern: Port Group

� Multiple concrete ports (possibly different types)
merged into a single abstract port

� Often combined with “Cable” pattern

AbsCmp p'

© Copyright Malina Software30

RefCmp

p1

p2

p3

pn

.

.

.

abstraction

A Common Structural Pattern: LayeringA Common Structural Pattern: Layering

� What does it actually mean?

CC11 CC22 CC33

D1D1

Should D1 have access
to A3 (3 levels below)?

© Copyright Malina Software31

A1A1 A2A2 A3A3

BB11 BB22

CC11 CC22 CC33

Making it a Bit More ConcreteMaking it a Bit More Concrete

App. Serv. 1App. Serv. 1 App.Serv.2App.Serv.2 App.Serv.3App.Serv.3

ApplicationApplication

Should Applications Should Applications
have access to IPC (3
levels below)?

© Copyright Malina Software32

MemoryMemory
ManagementManagement

MultitaskingMultitasking IPCIPC

Domain Service1Domain Service1 Domain Service 2Domain Service 2

App. Serv. 1App. Serv. 1 App.Serv.2App.Serv.2 App.Serv.3App.Serv.3

“Platform” Layering“Platform” Layering
� Distinguishing characteristics

� Upper layer: realizes some higher-level functionality

� Lower layer: a set of potentially shared services used to
implement the upper layer = “platform”

� Example: Upper layer entities depend Upper layer entities depend
on the services of the
platform layer for their
implementation

Upper layer entities depend Upper layer entities depend
on the services of the
platform layer for their
implementation

© Copyright Malina Software33

Platform

Application 1 Application 2

. . .
Application 1

a11 a12

Application 2

a21 a22

Operating System

File
System

Multitasking
System

IPC
System

. . .

Lower layer entities do notLower layer entities do not
depend on the upper layer
entities, but do participate
in their implementation

Structural Pattern: Platform LayeringStructural Pattern: Platform Layering

� A composition of multiple pattern applications

app’

plat’

e'

abstraction

Black Box pattern Black Box pattern
for application and
platform
components

Black Box pattern
for application and
platform layersCable pattern for Cable pattern for

cross-over
connectors (usually
not shown)

© Copyright Malina Software34

Application Glass Box

Platform Glass Box

a2

servA

a1 b2 b1e1

e2

e3

e4

e5

servB

abstraction

e6
e7

servCe6

The Semantics of LayeringThe Semantics of Layering

� Layering requires distinguishing between two
categories of interfaces

Implementation-Implementation-
independent
(service)
interfaces

Implementation-
specific interfaces
(service access points)

© Copyright Malina Software35

Application Glass Box

Platform Glass Box

a2

servA

a1 b2 b1e1

e2

e3

e4

e5

servB

e6
e7

servCe6

The 3The 3--Dimensional Component ModelDimensional Component Model
Peer Peer
interfaceinterface
Peer Peer
interfaceinterface
Peer Peer
interfaceinterface
Peer Peer
interfaceinterface

© Copyright Malina Software36

� “To understand the capabilities of a black-box
component it is sufficient to know its interface”
� This may mean that we have to know its layer interfaces as

well

ServceServce AccessAccess
PointsPoints
ServceServce AccessAccess
PointsPoints
Service AccessService Access
PointsPoints
Service AccessService Access
PointsPoints

Level 7Level 7

Representing Layered System ArchitecturesRepresenting Layered System Architectures

� In most systems, layering is a complex multidimensional
relationship
� Most real system architectures cannot be described accurately

by a single vertical layer stack

� Most vertical stacks are merely architectural views along a
particular viewpoint

© Copyright Malina Software37

HardwareHardware

LinkLink

NetworkNetwork

Level 4Level 4

Level 5Level 5

Level 6Level 6

Level 7Level 7

OperatingOperating
systemsystem

Failed Representations of LayeringFailed Representations of Layering

� Staircase model

Operating SystemOperating System

ApplicationApplication

General ServicesGeneral Services

Specialized ServicesSpecialized Services

© Copyright Malina Software38

� Toaster model

Behavioural Pattern: Summary Message (1)Behavioural Pattern: Summary Message (1)

� A high-level message abstracts a low-level protocol

� Syntactically equivalent to the Cable pattern

Caller Phone
System

Initiate Call

abstraction

© Copyright Malina Software39

Caller Phone
System

Off Hook

Dialtone

1st Digit

2nd Digit

Last Digit

...

Ringtone

Hybrid Pattern: Layered Communication Hybrid Pattern: Layered Communication

� Combination of structural and behavioural patterns

m'

a' b'

abstraction

This connector is not
shown in this
diagram but exists in
the abstract model

© Copyright Malina Software40

Glass Box BGlass Box A

Glass Box m’

Connector Glass Box

abstraction

a1 a2 c1 b1b2c2

m1

m2
m3

m6

m4

m5

Behavioural Pattern: Summary StateBehavioural Pattern: Summary State

� Syntactically similar to
the Black Box pattern

S1

S1’

t1’
S5’

AbsS
t6’

abstractionMay involve the
Summary Message
pattern

© Copyright Malina Software41

S1

S3

S4

S2

t2

t4

t5

t1

S5

t6

Glass State

pattern

Behavioural Pattern: Group TransitionBehavioural Pattern: Group Transition

� Involves a Summary State pattern followed by a
syntactical equivalent of the structural Cable
pattern

abstraction

S1’ S’

e'

t'

© Copyright Malina Software42

S4

S1

t

S3

S2

t

t

e1

e2

e3

Behavioural Pattern: Summary ActivityBehavioural Pattern: Summary Activity

� Syntactical equivalent of Black Box

A1’ A6’
AbsAf1’ f2’

abstraction

© Copyright Malina Software43

Glass Activity

A1 A2

A5

A4

A3

A6f1 f2

Temporal Abstraction PatternsTemporal Abstraction Patterns

� For reducing the complexity of time

� Not inherently graph based

� Time Compression

� Duration abstracted as an instant

� Logical Time

© Copyright Malina Software44

� Duration abstracted away entirely

� Only temporal order is preserved

� Discrete Time

� Time discretized into equidistant intervals

� Often combined with time compression: all behaviour is
compressed to the instant when the current interval ends

SummarySummary

� Abstraction is the primary tool for dealing with
overwhelming complexity

� With model-based engineering methods, we are taking
greater advantage of the power of abstraction in
software development…but, the actual process involved is
rarely documented

⇒ Difficult to identify faulty abstractions and faulty
refinements

© Copyright Malina Software45

⇒ Difficult to identify faulty abstractions and faulty
refinements

⇒ …and difficult to reconstitute abstract views of an
implemented system

� A formalism for describing the abstraction process
combined with a catalogue of widely used and proven
abstraction patterns can help us mitigate and possibly
eliminate these issues

ReferencesReferences

� B. Selic, “A Short Catalogue of Abstraction Patterns for Model-Based
Software Engineering”, Int. Journal of Software Informatics, vol. 5,
issue 2, 2011 (in publication).

� Dirgahayu T, Sinderen MV,Quartel D. Abstractions of interaction
mechanisms. 2009 IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2009). IEEE, 2009 (173-182).

� Giunchiglia F, Villafiorita A, Walsh T. Theories of Abstraction. Technical
Report MRG/ DIST# 97 0051. Universita di Genova, Facolta di
Ingengneria, 1997.

� Knoblock CA. Automatically generating abstractions for planning. Arti¯cial

© Copyright Malina Software46

� Knoblock CA. Automatically generating abstractions for planning. Arti¯cial
Intelligence, 1994, 68: (243-302).

� Long RT. Realism and abstraction in economics: Aristotle and Mises
versus Friedman. Quarterly Journal of Austrian Economics. SpringerLink,
2008, 9(3): (3-23).

� Atkinson C, KÄuhne T. Aspect-oriented development with strati¯ed
frameworks. IEEE Software, Jan.-Feb. 2003: (81-89).

� Boiten E, Derrick J. Proc. of the 14th BCS-FACS Re¯nement Workshop
(REFINE 2009). Electronic Notes in Computer Science, Eindhoven,
Elsevier, 2009.

–– THE EGRESS THE EGRESS ––
QUESTIONS, QUESTIONS,
COMMENTS,COMMENTS,

ARGUMENTS... ARGUMENTS...

© Copyright Malina Software47

ARGUMENTS... ARGUMENTS...

