
Ethan Jackson, Nikolaj Bjørner and Wolfram Schulte

Research in Software Engineering (RiSE), Microsoft Research

Dirk Seifert, Markus Dahlweid and Thomas Santen,

European Microsoft Innovation Center (EMIC), Aachen, Germany

Pirates Are Watching the Clouds

1. Introduction

http://research.microsoft.com/formula

http://research.microsoft.com/~ejackson/wicsa2011

http://research.microsoft.com/formula
http://research.microsoft.com/~ejackson/wicsa2011

Unlike a single algorithm/method we want to understand system-level properties that are hard to

reason about using only code.

Big Systems Need Formal Methods

Ex 2: Integrated web-services that use each others data to make decisions.

Problem: The pirates want to know if they can exploit the decision process.

Solution: Model how decisions are made and find suspicious scenarios, so correct flaws early.

Ex 1: Users want to run their apps in the cloud.

Problem: The data center needs to find deployments in the presence of constraints .

Solution: Model apps and constraints and synthesize deployments.

http://upload.wikimedia.org/wikipedia/commons/7/7c/Mammatus-storm-clouds_San-Antonio.jpg

FORMULA is a formal specification language targeting model-based development, shaped by

the following scenarios:

Declarative Specifications of:

Rule-based systems (e.g. policy languages)

Good Configurations of Complex Systems (e.g. clouds)

Classes of Software Architectures (e.g. embedded systems)

Deployment Problems of Architectures to Compute Fabrics (e.g. schedulable deployments)

Automated Reasoning on Specifications for:

 Design space exploration,

Bounded symbolic model checking,

Test-case Generation,

Consistency Checking

A Formal Specification Language

Algebraic data types

plus novel regular type inference for representing abstractions.

Core: ADTs + Open World CLP

Strongly Typed Bottom-up Constraint Logic Programming

for describing the logic of the abstraction.

Open World Semantics by Efficient Symbolic Execution to SMT

to find diverse solutions to the problem.

Module System with Formal Composition Operators

for safely building complex specifications.

2. Deploying to a Cloud

http://research.microsoft.com/formula

http://research.microsoft.com/~ejackson/wicsa2011

http://research.microsoft.com/formula
http://research.microsoft.com/~ejackson/wicsa2011

Applications (I)

For simplicity, assume an application is just a task.

Two tasks can be in conflict, meaning they should not execute on the

same node.

T1

T2

T3

Apps

Map

Cloud

domain Applications
{
 App ::= (id: String).
 [Closed]
 Conflict ::= (t1: App, t2: App).
}

Applications (II)

The “domain”
keyword starts
and abstraction

Data type
constructors with
labeled arguments
and type
constraints

Apps

Map

Cloud

model ApplicationModel of Applications
{
 t1 is App("HBI Database")
 t2 is App("Web Server")
 t3 is App("Voice Recognition")
 Conflict(t1, t2)
 Conflict(t2, t3)
}

A “model” is claim
of conformance

And a set terms
built using data
type constructors

The Cloud (I)

Nodes are connected by channels with communication capacities.

No node can support more than two incoming and outgoing channels.

Capacities must be balanced on node with incoming and outgoing

channels.

N1 N2 N3

In-degree = 0
Out-degree = 1
In capacity = 0
Out capacity = 8

8

4

4

In-degree = 1
Out-degree = 2
In capacity = 8

Out capacity = 4+4

In-degree = 1
Out-degree = 0
In capacity = 4
Out capacity = 0

N4

Apps

Map

Cloud

domain Cloud {
 Node ::= (id: Integer).
 [Closed(fromNode, toNode)]
 [Unique(fromNode, toNode -> cap)]
 Channel ::= (fromNode: Node, toNode: Node,
 cap: PosInteger).

 bigFanIn := n is Node, count(Channel(_,n,_)) > 2.
 bigFanOut := n is Node, count(Channel(n,_,_)) > 2.

 mustBal(n) :- Channel(_,n,_), Channel(n,_,_).

 clog := mustBal(n),
 sum(Channel(_,n,_),2) !=
 sum(Channel(n,_,_),2).

 conforms := !(bigFanIn | bigFanOut | clog).
}

The Cloud (II)

Special annotations
for common
constraints

Apps

Map

Cloud

Named “queries”
can be treated like
Boolean variables.

Rules derive
complex
information

The “conforms”
query determines
the models.

Deployments (I)

Tasks should be place on nodes so all conflict

constraints are respected.

SCM

Map

PM

N1 N2 N3
8

4

4

N4

T1

T2

T3

Simplified example, but not an easy one:

A coloring problem,

A forbidden-subgraph problem

Linear arithmetic problems

Realistic problems contain constraints like these.

domain Deployment extends Applications, Cloud
{
 [Closed] [Function(fromApp -> toNode)]
 Binding ::= (fromApp: App, toNode: Node).

 inConflict := Binding(t1, n), Binding(t2, n),
 Conflict(t1, t2).

 conforms := !inConflict.
}

Deployments (II)

The “extends”
keyword safely
composes

Only need to write
the new
constraints.

SCM

Map

PM

Solve in Any Direction

The user constructs a partial model to represent the degrees of freedom

in the problem. Degrees of freedom can be anywhere.

partial model Ex of Deployment
{
 t1 is App("HBI Database")
 t2 is App("Web Server")
 t3 is App("Voice Recognition")
 Conflict(t1, t2)
 Conflict(t2, t3)

 n1 is Node(1)
 n2 is Node(2)
 n3 is Node(3)
 c1 is Channel c2 is Channel c3 is Channel
 c4 is Channel c5 is Channel c6 is Channel
 c7 is Channel c8 is Channel c9 is Channel
}

Entities that must
be in any solution

Explicit degrees of
freedom. There
are also implicit
degrees of
freedom, like
binding.

Formula

Specification

Design Space Exploration

Symbolic

Execution
SMT Formula

Cardinality bounds on

record instances

Add symmetry breaking Z3 Solver

R
econstruct

F
O

R
M

U
LA

 m
odel

Pick next region

Encode solution region

Try something new

Given a spec and a partial model, then symbolic execution constructs a

formula representing the design space.

3. Pirates and Loop-Holes

http://research.microsoft.com/formula

http://research.microsoft.com/~ejackson/wicsa2011

http://research.microsoft.com/formula
http://research.microsoft.com/~ejackson/wicsa2011

Integration of Web Services

A social networking site has rules for friend recommendations

Family-tree Website

But integrates data from other sites, importing their rules into its trust boundary.

Social Networking Site

Rules for friend
recommendations

Thin authentication
layer; automatically

links relatives

Family-tree app.
used for friend

recommendations

The pirate uses this composition to try to gain your trust.

Rules of the Social Network

domain Principals
{
 Person ::= (first: String, last: String).
}

domain SocNetwork extends Principals
{
 [Closed]
 Friend ::= (Person, Person).
 isDirectFriend ::= (Person, Person).
 isFofF ::= (Person, Person).

 isDirectFriend(p1, p2),
 isDirectFriend(p2, p1) :- Friend(p1, p2).
 isFofF(p1, p2) :- isDirectFriend(p1, p2).
 isFofF(p1, p2) :- isFofF(p1, p), isFofF(p, p2).
 recFriend(p1, p2) :- isFofF(p1, p2), p1 != p2,
 fail isDirectFriend(p1, p2).

 recAndNotFofF := recFriend(p1, p2), p1 != p2, fail isFofF(p1, p2).
}

Can Eve Do Anything Suspicious?

partial model Net of SocNetwork
{
 pEve is Person("Eve", _)
 pBob is Person("Bob", "Bob")
 pChuck is Person("Chuck", "Chuck")
 pAlice is Person("Alice", "Alice")
 Friend(pAlice, pBob)
 Friend(pBob, pChuck)
}

Maybe she can even make up her last name…

The Family Tree Website

domain FamilyTree extends Principals
{
 [Closed]
 Database ::= (Person).
 isRelated ::= (Person, Person).

 isRelated(p1, p2) :- Database(p1), Database(p2),
 p1.last = p2.last, p1 != p2.
}

The Integration

domain Integration extends SocNetwork, FamilyTree
{
 recFriend(p1, p2) :- isRelated(p1, p2).
}

[Introduce(Database, 4)]

partial model NetInt of Integration
{
 pEve is Person("Eve", _)
 pBob is Person("Bob", "Bob")
 pChuck is Person("Chuck", "Chuck")
 pAlice is Person("Alice", "Alice")
 Friend(pAlice, pBob)
 Friend(pBob, pChuck)
}

A Suspicious Scenario

model NetInt_1 of Integration at "../WICSAExamples.4ml"
{
 Person("Alice","Alice")
 Person("Bob","Bob")
 Person("Chuck","Chuck")
 Person("Eve","Chuck")

 Friend(Person("Alice","Alice"),Person("Bob","Bob"))
 Friend(Person("Bob","Bob"),Person("Chuck","Chuck"))

 Database(Person("Bob","Bob"))
 Database(Person("Chuck","Chuck"))
 Database(Person("Eve","Chuck"))
}

Not a bug in the usual sense, but a scenario that should be carefully

considered.

Some Use-Cases

Automotive Embedded Systems

Design space exploration over end-to-end assembly of components satisfying temporal and

dataflow constraints (pilot with automotive industry).

Verifying Model Transformations

Transformations re-write high-level architecture, but want to verify they don’t perturb correctness.

What happens to correctness if we introduce triple-redundancy.

Reasoning About Policy Languages

Show how large sets of policies interact by generating configurations causes the policy to react in

some way (pilot project with internal product groups).

DSE to Optimization

Use DSE loop combined with simulation-based ranking to find optimal designs w.r.t to system

dynamics.

Thank you and Questions

http://research.microsoft.com/formula

http://research.microsoft.com/~ejackson/wicsa2011

http://research.microsoft.com/formula
http://research.microsoft.com/~ejackson/wicsa2011

