Heterogeneous Megamodel Management with MMINT

Alessio Di Sandro1, Nick Fung1, Ioanna Stavropoulou1, Sahar Kokaly1,2, Rick Salay1, Marsha Chechik1

1 Department of Computer Science, University of Toronto, Canada
\{adisandro|nlsfung|ioanna|skokaly|rsalay|chechik\}@cs.toronto.edu
2 McMaster Centre for Software Certification, McMaster University, Canada
\{kokalys\}@mcmaster.ca

Abstract. Model Management addresses the accidental complexity caused by the proliferation of models in software engineering. It provides a high-level view in which entire models and their relationships (i.e., mappings between models) can be manipulated using transformations, such as match and merge, to implement management tasks. Other model management frameworks focus on support for the programming required to prepare for model management activities at the expense of the user environment needed to facilitate these activities. We demonstrate MMINT—a model management tool that provides a graphical and interactive environment for model management. MMINT has many features that help manage complexity while reducing effort in carrying out model management tasks. We illustrate MMINT’s latest features which address heterogeneous megamodels.

MMINT is available at: https://github.com/adisandro/MMINT

Acknowledgements. This work is done as part of the NECSIS project funded by Automotive Partnership Canada and NSERC in collaboration with General Motors, IBM and Malina.