
MISE 2016 –
Session: MDE technologies and Model Quality

Gaurab Luitel, Dr. Matthew Stephan, & Dr. Daniela Inclezan

Miami University, Oxford, Ohio

1

 Important MDE Problem: Quality of Modeling Artifacts

 How do we assess quality of our artifacts in MDE?

 Metrics

 Needs Improvement

 Quality Assurance of Traditional Software >> QA MDE

 Ideal world

 Automated analysis

 Large model sets

 Incomplete models

 Determine desired and undesired properties

2

 One established approach to assess software quality
(Houston, 2001; Van Emden, 2002; More)

3

Presence of
Design
Patterns

Absence of
Antipatterns

Code
Quality

4

Presence of
Model
Design
Patterns

Absence of
Model

Antipatterns

Model
Quality

[Stephan and Cordy, MISE 2015, Models 2016]

 Patterns as a measure of quality?

 Despite validated work for code and models, do you believe?

 Philosophically, does it make sense?

 Why/why not?

 Keynote:

 Patterns viewed as
“correct rewrites”?

 Equivalent but better?

 Structural and behavioral
identies

5

 Majority of approaches analyze
source code
 Wait until code is generated from

models

 E.g., extract out metadata from C++
source, compare to Prolog Rules

 Reverse Engineer code into other
forms
 Code -> Matrix

 Code -> Models

 But we want to provide QA on the
models themselves!
 Many patterns are already presented

and abstracted in model form!

6

Early Analysis

Applicable to
Pure or Mostly

“MDE” Projects

7

[Stephan and Cordy, MISE 2015 and Models 2016]

 Most work focuses solely on
structure, disregards
behavior

 Problem:

 Structural information alone
is not always sufficient for
software pattern detection[1]

 False positives/Low precision

8
[1] I. Bayley and H. Zhu. Formal specification of the variants and behavioral features of design patterns.

Journal of Systems and Software, 83(2):209-221, 2010.

 Existing work that considers
behavioral aspects requires
structural models AND
source code

 Problem:
 No longer “Model Level”

 Precludes

 Early analysis

 Pure MDE Environment

 Examples
 Code -> UML -> Rules

 Dynamic Code Analysis

 Bytecode

 ASG

Code

• Static Analysis

• Dynamic
Analysis

Generated
Models/Artifacts

• Bytecode

• ASTs

9

 An existing approach uses
Collaboration Diagrams

 We choose Sequence
Diagrams. Why?

1. Sequence diagrams are more
commonly used in industry[2]

2. More helpful since more
concerned with temporal
aspects

3. Already been defined
explicitly for many patterns in
the literature

10
[2] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empirical

assessment of MDE in industry. In International Conference on Software

Engineering, pages 471-480. 2011.

 Support the decision to use Sequence Diagrams?

 Why or Why Not?

 Thoughts on the necessity of behavioral features/aspects
explicated in pattern definitions.

11

 RQ: Given the need to perform analysis on both structural and
behavioral models, what can and should we use to
reason/search for pattern instances?

12

 Declarative form of logic programming

 Specifically geared towards complex search problems

 Prolog syntax, but underlying computation quite different

 Stable logic programming model

 Uses answer sets

13
http://www.kr.tuwien.ac.at/research/projects/WASP/asp-sep.gif

 Non-monotonic = New information can cause “true” predicates
to be retracted

 Allows

 Natural ASP representations of natural language statements

 Exceptions through the use strong negation and default negation

 Especially suitable for representing qualitative knowledge

 E.G., the knowledge we plan on encoding in

 Class and Sequence diagrams

 Default statements and their exceptions

 Dynamic domains: change is triggered by actions

 Uncertainty

14

http://www.kr.tuwien.ac.at/research/projects/WASP/asp-sep.gif

bodyhead

 Key is Answer Sets

 “Believe head if you believe body”

 head is a literal (atom or its negation in FOL)

 body is a set of literals

 possible preceded by not = “there is no reason to believe”

 Atoms and literals: Express properties of domain objects and
relationships between objects

15

 Key is Answer Sets

 Consist of literals that are
believed to hold

 1 program can have multiple
answer sets

 Each answer set = belief set

 Answer sets are computed
by inference systems called
solvers

 Syntax consists of rules and
facts

Search Results/
Stable Models

RulesFacts

16

ASP

1. ASP always terminates, in
principle

 Tailored to these type of
search problems

2. Has no notion of forward or
backward inference

 Multiple answer sets!

 Example in paper

3. ASP does not have a limit
on rules it can handle

4. Weakness: Computation <
when specific cycles like
default negation or
function symbols ->
infinite inputs

 Non issue in class and
sequence diagrams

SPASS

1. SPASS can run
forever/time out without
any results

 Their experiments present
multiple time outs

2. Moves forward to what is
being proven

3. Limitation on number of
rules

17

18

 Abstract: Take in class and sequence diagrams

 Represent them as ASP Facts

Class
Diagrams

Sequence
Diagrams

ASP
Facts

19

 Prototype: Require models in XMI form

 Automate transformation from XMI -> ASP Facts

 XMI = Prevalent

 Can produce example/test UML and export to XMI

 StarUML Tool

20

Produce, or
Use Existing

Models

Generate
XMI

Transform to
ASP Facts

 System Facts – Feasible?

 We leverage existing work transforming XMI to first order logic
(LAMBDES-DP)

 Still, we can discuss your skepticism.

 Keynote:
Equivalent model sets: same facts?

21

 Manual process (for now)

 Acceptable since rule generation is rarely occurring task

 Encode structural and behavioral patterns into ASP rules

22

Structural
Aspects

Behavioral
Aspects

ASP
Rules

 Structure alone is insufficient (can lead to low recall and
precision)

 Sample established requirements [1]
2) Requests are the operations of the context

3) Handlers are the operations of the state

5) All handlers must be abstract (not concrete)

23

 Automate Pattern Rule Development?

 Pattern inference? Interest research topic!

 Union Pattern mining work with ASP rule transformation

 Validation?

 Develop patterns incrementally

 Test on many variations (Mutation Analysis?)

 Refinement Infinite process!

 Recall and Precision

 Extra slide, if interested

 Expect

 > Precision

 Ideally ~ Same Recall (with tuning)

24

 Written ASP rules representing a variety of
design patterns

 Manual fact generation
 Automation is key!

 Currently working on XMI -> ASP Facts (Goal:
Summer 2016)

 Tested on toy (relatively small and
contrived) systems
 Positively identified pattern instances and

pattern roles

 Validation
 Compare our results to existing approaches

 We can also reverse engineer diagrams from
source code

 Solely for testing/validation purposes of the
detection algorithm, not for SE validation

 Inject and mutate some pattern instances in
larger systems

25

Technique to detect model patterns using ASP

• Analysis directly on the models in lieu of source code

• Use as a measure of model quality

Represent structural and behavioral pattern aspects using FOL

• Structural and behavioral pattern aspects as ASP rules

• Systems represented as ASP Facts

Plan on identifying instances efficiently and accurately

• > Methods that consider structure only

• ASP has advantages over other FOL techniques for this purpose

Interesting research aspects and potential milestones

• Formalize patterns as ASP rules

• Automating transformation of system to facts

• Validation through comparison of both model-based and code-based
techniques

• Using ASP in this manner should help facilitate MISE by improving model
analysis and evaluation 26

27

 Expect >> Precision

 More will be correct:

 Increasing Information and increasing requirements!

 Ideally ~ Same Recall

 Challenge

 Matter of tuning specification pattern rules

 Our goal is to improve false-positive rate of SPASS approach

 They have ~ false positive rate attributed to timeouts

 Precision ~ Same because we apply and extend their formalisms

 Source code

 > Precision

 Understandable since code is more detailed

 Recall ?

 Code can yield noise since more details, so models can be better

 Expect comparable recall
28

 Simplest approach = Text
Representation

 XML?

 <pattern > tag

 <element tag> = UUID?

 Long term goal = Graphical Viewer

 Highlighting

 Labeling roles / Shading

 Possible through UML UUIDs

 Leverage existing tools that visualize
structural and behavioral analysis
information

29

