
MISE 2016 –
Session: MDE technologies and Model Quality

Gaurab Luitel, Dr. Matthew Stephan, & Dr. Daniela Inclezan

Miami University, Oxford, Ohio

1

 Important MDE Problem: Quality of Modeling Artifacts

 How do we assess quality of our artifacts in MDE?

 Metrics

 Needs Improvement

 Quality Assurance of Traditional Software >> QA MDE

 Ideal world

 Automated analysis

 Large model sets

 Incomplete models

 Determine desired and undesired properties

2

 One established approach to assess software quality
(Houston, 2001; Van Emden, 2002; More)

3

Presence of
Design
Patterns

Absence of
Antipatterns

Code
Quality

4

Presence of
Model
Design
Patterns

Absence of
Model

Antipatterns

Model
Quality

[Stephan and Cordy, MISE 2015, Models 2016]

 Patterns as a measure of quality?

 Despite validated work for code and models, do you believe?

 Philosophically, does it make sense?

 Why/why not?

 Keynote:

 Patterns viewed as
“correct rewrites”?

 Equivalent but better?

 Structural and behavioral
identies

5

 Majority of approaches analyze
source code
 Wait until code is generated from

models

 E.g., extract out metadata from C++
source, compare to Prolog Rules

 Reverse Engineer code into other
forms
 Code -> Matrix

 Code -> Models

 But we want to provide QA on the
models themselves!
 Many patterns are already presented

and abstracted in model form!

6

Early Analysis

Applicable to
Pure or Mostly

“MDE” Projects

7

[Stephan and Cordy, MISE 2015 and Models 2016]

 Most work focuses solely on
structure, disregards
behavior

 Problem:

 Structural information alone
is not always sufficient for
software pattern detection[1]

 False positives/Low precision

8
[1] I. Bayley and H. Zhu. Formal specification of the variants and behavioral features of design patterns.

Journal of Systems and Software, 83(2):209-221, 2010.

 Existing work that considers
behavioral aspects requires
structural models AND
source code

 Problem:
 No longer “Model Level”

 Precludes

 Early analysis

 Pure MDE Environment

 Examples
 Code -> UML -> Rules

 Dynamic Code Analysis

 Bytecode

 ASG

Code

• Static Analysis

• Dynamic
Analysis

Generated
Models/Artifacts

• Bytecode

• ASTs

9

 An existing approach uses
Collaboration Diagrams

 We choose Sequence
Diagrams. Why?

1. Sequence diagrams are more
commonly used in industry[2]

2. More helpful since more
concerned with temporal
aspects

3. Already been defined
explicitly for many patterns in
the literature

10
[2] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empirical

assessment of MDE in industry. In International Conference on Software

Engineering, pages 471-480. 2011.

 Support the decision to use Sequence Diagrams?

 Why or Why Not?

 Thoughts on the necessity of behavioral features/aspects
explicated in pattern definitions.

11

 RQ: Given the need to perform analysis on both structural and
behavioral models, what can and should we use to
reason/search for pattern instances?

12

 Declarative form of logic programming

 Specifically geared towards complex search problems

 Prolog syntax, but underlying computation quite different

 Stable logic programming model

 Uses answer sets

13
http://www.kr.tuwien.ac.at/research/projects/WASP/asp-sep.gif

 Non-monotonic = New information can cause “true” predicates
to be retracted

 Allows

 Natural ASP representations of natural language statements

 Exceptions through the use strong negation and default negation

 Especially suitable for representing qualitative knowledge

 E.G., the knowledge we plan on encoding in

 Class and Sequence diagrams

 Default statements and their exceptions

 Dynamic domains: change is triggered by actions

 Uncertainty

14

http://www.kr.tuwien.ac.at/research/projects/WASP/asp-sep.gif

bodyhead

 Key is Answer Sets

 “Believe head if you believe body”

 head is a literal (atom or its negation in FOL)

 body is a set of literals

 possible preceded by not = “there is no reason to believe”

 Atoms and literals: Express properties of domain objects and
relationships between objects

15

 Key is Answer Sets

 Consist of literals that are
believed to hold

 1 program can have multiple
answer sets

 Each answer set = belief set

 Answer sets are computed
by inference systems called
solvers

 Syntax consists of rules and
facts

Search Results/
Stable Models

RulesFacts

16

ASP

1. ASP always terminates, in
principle

 Tailored to these type of
search problems

2. Has no notion of forward or
backward inference

 Multiple answer sets!

 Example in paper

3. ASP does not have a limit
on rules it can handle

4. Weakness: Computation <
when specific cycles like
default negation or
function symbols ->
infinite inputs

 Non issue in class and
sequence diagrams

SPASS

1. SPASS can run
forever/time out without
any results

 Their experiments present
multiple time outs

2. Moves forward to what is
being proven

3. Limitation on number of
rules

17

18

 Abstract: Take in class and sequence diagrams

 Represent them as ASP Facts

Class
Diagrams

Sequence
Diagrams

ASP
Facts

19

 Prototype: Require models in XMI form

 Automate transformation from XMI -> ASP Facts

 XMI = Prevalent

 Can produce example/test UML and export to XMI

 StarUML Tool

20

Produce, or
Use Existing

Models

Generate
XMI

Transform to
ASP Facts

 System Facts – Feasible?

 We leverage existing work transforming XMI to first order logic
(LAMBDES-DP)

 Still, we can discuss your skepticism.

 Keynote:
Equivalent model sets: same facts?

21

 Manual process (for now)

 Acceptable since rule generation is rarely occurring task

 Encode structural and behavioral patterns into ASP rules

22

Structural
Aspects

Behavioral
Aspects

ASP
Rules

 Structure alone is insufficient (can lead to low recall and
precision)

 Sample established requirements [1]
2) Requests are the operations of the context

3) Handlers are the operations of the state

5) All handlers must be abstract (not concrete)

23

 Automate Pattern Rule Development?

 Pattern inference? Interest research topic!

 Union Pattern mining work with ASP rule transformation

 Validation?

 Develop patterns incrementally

 Test on many variations (Mutation Analysis?)

 Refinement Infinite process!

 Recall and Precision

 Extra slide, if interested

 Expect

 > Precision

 Ideally ~ Same Recall (with tuning)

24

 Written ASP rules representing a variety of
design patterns

 Manual fact generation
 Automation is key!

 Currently working on XMI -> ASP Facts (Goal:
Summer 2016)

 Tested on toy (relatively small and
contrived) systems
 Positively identified pattern instances and

pattern roles

 Validation
 Compare our results to existing approaches

 We can also reverse engineer diagrams from
source code

 Solely for testing/validation purposes of the
detection algorithm, not for SE validation

 Inject and mutate some pattern instances in
larger systems

25

Technique to detect model patterns using ASP

• Analysis directly on the models in lieu of source code

• Use as a measure of model quality

Represent structural and behavioral pattern aspects using FOL

• Structural and behavioral pattern aspects as ASP rules

• Systems represented as ASP Facts

Plan on identifying instances efficiently and accurately

• > Methods that consider structure only

• ASP has advantages over other FOL techniques for this purpose

Interesting research aspects and potential milestones

• Formalize patterns as ASP rules

• Automating transformation of system to facts

• Validation through comparison of both model-based and code-based
techniques

• Using ASP in this manner should help facilitate MISE by improving model
analysis and evaluation 26

27

 Expect >> Precision

 More will be correct:

 Increasing Information and increasing requirements!

 Ideally ~ Same Recall

 Challenge

 Matter of tuning specification pattern rules

 Our goal is to improve false-positive rate of SPASS approach

 They have ~ false positive rate attributed to timeouts

 Precision ~ Same because we apply and extend their formalisms

 Source code

 > Precision

 Understandable since code is more detailed

 Recall ?

 Code can yield noise since more details, so models can be better

 Expect comparable recall
28

 Simplest approach = Text
Representation

 XML?

 <pattern > tag

 <element tag> = UUID?

 Long term goal = Graphical Viewer

 Highlighting

 Labeling roles / Shading

 Possible through UML UUIDs

 Leverage existing tools that visualize
structural and behavioral analysis
information

29

