MODEL LEVEL
BE%I{I%N PATTERN INSTANCE DETECTION
ANSWER SET PROGRAMMING

MISE 2016 -
Session: MDE technologies and Model Quality

Gaurab Luitel, Dr. Matthew Stephan, & Dr. Daniela Inclezan M
Miami University, Oxford, Ohio
MIAMI

UNIVERSITY

INTRODUCTION

= Important MDE Problem: Quality of Modeling Artifacts
= How do we assess quality of our artifacts in MDE?
= Metrics
= Needs Improvement
= Quality Assurance of Traditional Software >> QA MDE

= Ideal world
= Automated analysis
= Large model sets
= Incomplete models
= Determine desired and undesired properties

PATTERNS AS A MEASURE FOR QUALITY

= One established approach to assess software quality
(Houston, 2001;Van Emden, 2002; More)

Presence of
Design
Patterns

Absence of

Antipatterns

50, WHY NOT?

Presence of
Model

Design
Patterns

Absence of

Model
Antipatterns

Stephan and Cordy, MISE 2015, Models 2016]

DISCUSSION POINTS FOR LATER

= Patterns as a measure of quality?
= Despite validated work for code and models, do you believe?

= Philosophically, does it make sense?
= Why/why not?

= Keynote:

» Patterns viewed as
‘““correct rewrites’’?

[
= Equivalent but better? L‘J i
= Structural and behavioral 3 1;

identies

PATTERN INSTANCE DETECTION

= Majority of approaches analyze
source code

= Wait until code is generated from
models

= E.g., extract out metadata from C++
source, compare to Prolog Rules

= Reverse Engineer code into other
forms

= Code -> Matrix
= Code -> Models

= But we want to provide QA on the
models themselves!

= Many patterns are already presented
and abstracted in model form!

¥ yront: BUS/15UY
A 3t-align:center;backgroting

,fSﬁt {width:756px;background: #£f3
a#theader {background:url ('image
W#main {float:right;margin:0 &0px w3
WHleft {float:left;margin: 50px; widt

M footer {background:url('images/footer.g
ifooter-right {text-align:right;float:righ¥
tfooter—left {font-size:90%;margin:127px \M
fintro:first—letter {font-size:510%;float:le
av {margin:0;padding:0}

Av 1i (list-style-type:none;list-style-image)

v 1li.last {border:none}

v 1i a {font-family: Georgia, "

r 1i a:hover {color:# } 4
Order input.edit, #frmOrder textarea (wid

lar textarea {height:150px;overflow:al
at-weight:bold} &
+ea {border:lpx solid :3::)1{
gound-color: #9 17;colox

steright:nadding: 2ne ¥
\

BENEFITS OF MODEL LEVEL DETECTION

~
Early Analysis

/
\
Applicable to

Pure or Mostly
“MDE” Projects

PROBLEMS WITH EXISTING
MODEL LEVEL PRTTERN DETECTION

= Most work focuses solely on
structure, disregards

behavior
Order
: Customer N - g date
& name g status
™ Pro blem : g 3ddress - customer - order f‘i f;&.‘TrZ:‘(() :
. . 1 a?g,cab:Totd‘.‘fe«;h: '((L'
= Structural information alone e 1T
is not always sufficient for o - oderceta
. & amourt OrderDetad
software pattern detection[1] sty
... . . f_gfitg:fﬂm%l’]
= False positives/Low precision : LT
Credit
::;mﬂ 3 crh(T::;rs\:uFd o 1 A
aexpDate = Pt = Item
L g shippngWeight

& description

oetPriceforQuantity ()
@ ostWeight ()

&5 authorized ()
[1]I. Bayley and H. Zhu. Formal specification of the variants and behavioral features of design patterns. (G)

Journal of Systems and Software, 83(2):209-221, 2010.

PROBLEMS WITH EXISTING
MODEL LEVEL PRTTERN DETECTION

= Existing work that considers
behavioral aspects requires
structural models AND
source code

= Problem:
= No longer “Model Level”
= Precludes
= Early analysis

Generated

Models/Artifacts

= Pure MDE Environment

* Static Analysis
* Dynamic
Analysis

* Bytecode

« ASTs
= Examples

= Code -> UML -> Rules
= Dynamic Code Analysis

= Bytecode
= ASG

WHICH BEHAVIORAL MODELS TO USE?

|{35tatepanernoemu | |Gl!_-,.cGntext:1 | |'Gl'_-,.5tart5tate_-1 | |Gl!_-,.5topsute:1

main: 1

Context:
o

= An existing approach uses serstarenn '

Collaboration Diagrams < gerste

tostring:1
»

= We choose Sequence I S —

Diagrams. Why? conciont

1. Sequence diagrams are more — R A SR
commonly used in industry[2] — i rosoing:1 _

2. More helpful since more . - Acen
concerned with temporal P S s N ——
aspects == T - tostring:2

3. Already been defined s Poncuen s,
explicitly for many patterns in IR SS——
the literature e ——— -

= .

[2] J. Hutchinson,]. Whittle, M. Rouncefield, and S. Kristoffersen. Empirical -
assessment of MDE in industry. In International Conference on Software
Engineering, pages 471-480. 2011. N

DISCUSSION POINTS TO CONSIDER LATER

= Support the decision to use Sequence Diagrams?
= Why or Why Not?

= Thoughts on the necessity of behavioral features/aspects
explicated in pattern definitions.

]
\?“J

i i1

!

REASONING ABOUT MODELS

= RQ: Given the need to perform analysis on both structural and
behavioral models, what can and should we use to
reason/search for pattern instances?

PROPOSITION:
ANSWER SET PROGRAMMING

= Declarative form of logic programming

= Specifically geared towards complex search problems

= Prolog syntax, but underlying computation quite different
= Stable logic programming model

= Uses answer sets

Problem

Instance [/

e

Encoding:
Program P

Theory

—

ASP Solver

Model(s)

http://www.kr.tuwien.ac.at/research/projects/WASP/asp-sep.qgif

—
Solution(s)

©

PROPOSITION:
ANSWER SET PROGRAMMING

= Non-monotonic = New information can cause “true” predicates
to be retracted

= Allows
= Natural ASP representations of natural language statements

= Exceptions through the use strong negation and default negation

= Especially suitable for representing qualitative knowledge
= E.G., the knowledge we plan on encoding in

= Class and Sequence diagrams

= Default statements and their exceptions

= Dynamic domains: change is triggered by actions

= Uncertainty

Problem

Instance [/

e

Encoding:
Program P

Theory

—

ASP Solver

Model(s)

http://www.kr.tuwien.ac.at/research/projects/WASP/asp-sep.qgif

—
Solution(s) @

HOW DOES ASP WORK?

= Key is Answer Sets
= “Believe head if you believe body”
= head is a literal (atom or its negation in FOL)
= body is a set of literals
= possible preceded by not = “there is no reason to believe”

= Atoms and literals: Express properties of domain objects and
relationships between objects

head

HOW DOES ASP WORK?

= Key is Answer Sets

= Consist of literals that are
believed to hold

=] program can have multiple
answer sets

= Each answer set = belief set

= Answer sets are computed
by inference systems called
solvers

= Syntax consists of rules and
facts

Search Results/
Stable Models

ASP VERSUS RELATED FOL APPROACH

SPASS

1.

2.

3.

SPASS can run
forever/time out without
any results

= Their experiments present
multiple time outs

Moves forward to what is
being proven

Limitation on number of
rules

ASP

1. ASP always terminates, in
principle
= Tailored to these type of
search problems

2. Has no notion of forward or
backward inference

= Multiple answer sets!
= Example in paper

3. ASP does not have a limit
on rules it can handle

4. Weakness: Computation <
when specific cycles like
default negation or
function symbols ->
infinite inputs

= Non issue in class and
sequence diagrams

©

APPLICATION OF ASP
T0 MODEL LEVEL PATTERN DETECTION

Structural Pattern
Imformation

Manual

Class Diagrams
from System

Automatic

Rules generation

ASP Engine

Behavioral Pattern
Imformation

Manual

Facts generation

Candidate Patterns
from Class Diagram

Sequence Diagrams
from System

Automatic

>

Fules generation

ASP Engine

[dentify
Corresponding
Elements and
Intersections

Fattern Candidates
and Their Roles

Facts generation

Candidate Patterns
from Sequence
Diagram

SYSTEM FACTS

= Abstract: Take in class and sequence diagrams
= Represent them as ASP Facts

Class
Diagrams

Sequence
Diagrams

SYSTEM FACTS

= Prototype: Require models in XMI form
= Automate transformation from XMI -> ASP Facts

= XMI = Prevalent

= Can produce example/test UML and export to XMI
= StarUML Tool

Produce, or

Generate Transform to

Use Existing XMI ASP Facts

Models

DISCUSSION POINTS TO CONSIDER LATER

= System Facts — Feasible?

= We leverage existing work transforming XMI to first order logic
(LAMBDES-DP)

= Still, we can discuss your skepticism.

= Keynote:
Equivalent model sets: same facts?

|
—

i

B

i

PATTERN RULES

= Manual process (for now)
= Acceptable since rule generation is rarely occurring task

= Encode structural and behavioral patterns into ASP rules

Structural
Aspects

Behavioral
Aspects

QUICK EXAMPLE — STATE PATTERN
(DETAILS IN PAPER)

= Structure alone is insufficient (can lead to low recall and
precision)

= Sample established requirements [1]
2) Requests are the operations of the context
3) Handlers are the operations of the state
5) All handlers must be abstract (not concrete)

class(contert, [state], [contert, get State, set State|, no). message(13, state PatternDemo, stariState, doAction).
operation(state, do Action, void, [conterxt], yes, no, no). message(131, startState, contert, sefState).
operation|startState, doAction, void, [context], no, no,no). message(16, stale PatternDemo, stopState, doAction).

operation|contert, set State, void, [startState], no, no, no). message(161, stopState, context, setState.

2)is Request|Op) : —class(C,_ OplList, _), isContext{C),
#Fmember(Op, Oplast), operation|_, Op, . _ _._).

JisH andler(Op, C) : —class(C,_, OplLast,_),
1sState(C),

member{Op, OpList),

operation|_ Op,_._ _ _._).
5)isHandler(Op, C) : —operation(C,Op, _,_, no, _,_). (@)

DISCUSSION POINTS TO CONSIDER LATER

= Automate Pattern Rule Development?
= Pattern inference? Interest research topic!

= Union Pattern mining work with ASP rule transformation

= Validation?
= Develop patterns incrementally
= Test on many variations (Mutation Analysis?)
= Refinement Infinite process!

= Recall and Precision
= Extra slide, if interested
= Expect

= > Precision

= Ideally ~ Same Recall (with tuning)

STATUS AND IMMEDIATE PLANS

Written ASP rules representing a variety of
design patterns

Manual fact generation
= Automation is key!

» Currently working on XMI -> ASP Facts (Goal:
Summer 2016)

Tested on toy grelatively small and
contrived) systems

= Positively identified pattern instances and
pattern roles

Validation
= Compare our results to existing approaches

= We can also reverse engineer diagrams from
source code

= Solely for testing/validation purposes of the
detection algorithm, not for SE validation

» Inject and mutate some pattern instances in
larger systems

CONCLUSIONS

 Analysis directly on the models in lieu of source code
* Use as a measure of model quality

Represent structural and behavioral pattern aspects using FOL

 Structural and behavioral pattern aspects as ASP rules
» Systems represented as ASP Facts

Plan on identifying instances efficiently and accurately

* > Methods that consider structure only
« ASP has advantages over other FOL techniques for this purpose

Interesting research aspects and potential milestones

» Formalize patterns as ASP rules
« Automating transformation of system to facts

 Validation through comparison of both model-based and code-based
techniques

* Using ASP in this manner should help facilitate MISE by improving model
analysis and evaluation

QUESTIONS AND DISCUSSIONS?

A =0
Can you the part ofgthe stuff
erefyoullsaidiall about thekthings?

EXTRA: RECALL AND PRECISION

= Expect >> Precision
= More will be correct:

= Increasing Information and increasing requirements!

= [deally ~ Same Recall
= Challenge

= Matter of tuning specification pattern rules

= Our goal is to improve false-positive rate of SPASS approach
= They have ~ false positive rate attributed to timeouts

= Precision ~ Same because we apply and extend their formalisms

= Source code
= > Precision
= Understandable since code is more detailed
= Recall ?
= Code can yield noise since more details, so models can be better
= Expect comparable recall

EXTRA: PRESENTATION OF CANDIDATES

= Simplest approach = Text
Representation

= XML?
= <pattern > tag
= <element tag> = UUID?

= Long term goal = Graphical Viewer
= Highlighting
= Labeling roles / Shading
= Possible through UML UUIDs

= Leverage existing tools that visualize
structural and behavioral analysis
information

