
An End-to-End Domain Specific
Modeling and Analysis Platform
Arman Shahbazian, George Edwards, Nenad Medvidovic
Computer Science Department
University of Southern California, Los Angeles, USA

USC Viterbi
School of EngineeringMotivation

• Architecture modeling is critically important
• Software systems are growing in size
• Early design decisions drastically affect eventual system quality
• Models form a basis for rationalizing design decisions

• Advances in different areas tend to be disconnected
• Modeling
• Analysis
• Simulation
• Implementation
• Deployment
• Evolution

• “One size fits all” approaches have drawbacks

USC Viterbi
School of EngineeringPurpose of Architecture Modeling

• Documentation and communication

• Optimization and verification

• Automation of engineering tasks

Design

Quality Analysis

Implementation

USC Viterbi
School of EngineeringDomain-Specific Models

• Rely on domain specific languages (DSLs)
• Customized for a problem family
• Defined via metamodels

• Concise and intuitive
• No missing or extra features
• Capture patterns
• Enforce constraints
• Use native symbols and terms

• Can be modified, evolved, composed

USC Viterbi
School of EngineeringDomainPro

• Leverages DSLs
• Simplifies and automates development

• Tool support for defined DSLs
• Fully customizable modeling UI
• Out-of-the-box simulation-capable models

• Supports engineers in key activities
• Model design
• Model analysis (currently via simulation)
• Implementation

• Extensible via pluggable architecture

USC Viterbi
School of EngineeringKey Elements

• Metamodel
• Concisely captures DSL semantics
• Metamodel interpreter generates model transformation rules

• Model interpreter framework (MIF)
• Applies model transformation algorithms according to rules

• Simulation
• MIF for fully configured discrete-event simulations

USC Viterbi
School of EngineeringDomainPro Workflow

1. Metamodel editor with built-in metamodeling language
2. Metamodel interpreter configures a model editor
3. Model interpreter generates executable simulations

Metamodel
Interpreter

Metamodeling
Language

Metamodels

GME Modeling
Environment

Metaprogrammable
Model Editor

Domain-Specific
Modeling Languages

Domain-Specific
Models

Metamodel Editor

Model
Interpreter

Run-Time Environment

Executable ModelsExecutable ModelsExecutable Models
(Simulations)

USC Viterbi
School of EngineeringMetamodeling

• Metatypes founded on canonical architectural constructs
• Basis for styles, patterns, reference architectures
• May reflect desired analysis techniques
• Embedded metatype semantics defined in terms of

domain-independent capabilities and constraints
• Metatype properties capture the capabilities and

constraints of a particular domain

USC Viterbi
School of EngineeringModel Interpreter Frameworks

• Reusable templates for constructing model interpreters
• Artifacts useful in a variety of contexts

• e.g., finite state machines, discrete event simulations

• Algorithms for performing semantic transformations
• e.g., pattern matching, model traversal

• Auto-generated type specifications for “understanding”
domain-specific models
• e.g., XML files, C# plug-ins

USC Viterbi
School of EngineeringSimulation

• An architecture-centric discrete event simulation engine
• Facilities for inserting event listeners
• Monitor, compute, and record simulation data
• Functional or non-functional behavior

• Allows optimization of simulation engine functions
• Scheduling
• Routing
• Dispatching

USC Viterbi
School of EngineeringSimulation Use Cases

• Providing design rationale
• Weighing architectural trade-offs
• Discovering emergent behaviors
• Validating component implementations

0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

0 200 400 600 800PE
RC

EN
T

O
F

CO
RR

EC
T

TA
SK

S

SIMULATION TIME

0.85

0.9

0.95

1

0 500 1000

PE
RC

EN
T

O
F

CO
RR

EC
T

TA
SK

S

SIMULATION TIME

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200PE
RC

EN
T

O
F

CO
RR

EC
T

TA
SK

S

SIMULATION TIME

USC Viterbi
School of EngineeringExample System

• Distributed computation
architecture (DCA)
• Skype
• Hadoop
• BOINC

USC Viterbi
School of EngineeringDCA Metamodel

• Metatype
properties:
• Computation

Size
• Required

Confidence
• Node

Reliability
• Pool

Size

USC Viterbi
School of Engineering

USC Viterbi
School of EngineeringDCA Model

• Quality attributes:

• Reliability
• Percentage of tasks

computed correctly

• Efficiency
• Total number of

generated jobs

USC Viterbi
School of Engineering

USC Viterbi
School of EngineeringA Trade-Off Scenario in DCA

• Reliability vs.
efficiency
• Two scenarios
• Similar reliability
• 6.5x more efficiency

in Scenario #1

0.85

0.9

0.95

1

0 200 400 600 800 1000

PE
RC

EN
T

O
F

CO
RR

EC
T

TA
SK

S

SIMULATION TIME

0.88
0.9

0.92
0.94
0.96
0.98

1

0 50 100 150 200

PE
RC

EN
T

O
F

CO
RR

EC
T

TA
SK

S

SIMULATION TIME

Required Confidence: 8
Node Reliability: 60 %
Generated Jobs: 36684

Required Confidence: 3
Node Reliability: 75 %
Generated Jobs: 5630

USC Viterbi
School of EngineeringBackups-Snapshots

USC Viterbi
School of EngineeringContributions and Future Work

• Contributions
• End-to-end domain specific modeling
• Automated generation of model interpreters
• Discrete event simulation
• Extensible architecture

• Future work
• Automating model optimization
• Isomorphic treatment of modeling, analysis, implementation
• Additional case studies

An End-to-End Domain Specific
Modeling and Analysis Platform
Arman Shahbazian, George Edwards, Nenad Medvidovic
Computer Science Department
University of Southern California, Los Angeles, USA

