
Representing Hierarchical State Machines
in SMT-LIB

Nancy A. Day and Amirhossein Vakili

Waterloo Formal Methods Lab
Cheriton School of Computer Science

University of Waterloo

MiSE May 2016

Nancy A. Day and Amirhossein Vakili 1 / 23

Motivation

Goal: Effective automated analysis of behavioural models early in the
development process

What should abstract behavioural models consist of?

Data abstractions:

Abstract datatypes (e.g., sets, relations, integers, uninterpreted types)

Control abstractions:

State machines with hierarchy and concurrency

Behavourial analysis options:

Model checking: control-oriented models
Automated first-order logic (FOL) provers: data-oriented models
Recent work on model checking in FOL

Question: Can we model check abstract models that include both
data and control abstractions using automated FOL solvers?

Nancy A. Day and Amirhossein Vakili 2 / 23

Motivation

Goal: Effective automated analysis of behavioural models early in the
development process

What should abstract behavioural models consist of?
Data abstractions:

Abstract datatypes (e.g., sets, relations, integers, uninterpreted types)

Control abstractions:

State machines with hierarchy and concurrency

Behavourial analysis options:

Model checking: control-oriented models
Automated first-order logic (FOL) provers: data-oriented models
Recent work on model checking in FOL

Question: Can we model check abstract models that include both
data and control abstractions using automated FOL solvers?

Nancy A. Day and Amirhossein Vakili 2 / 23

Motivation

Goal: Effective automated analysis of behavioural models early in the
development process

What should abstract behavioural models consist of?
Data abstractions:

Abstract datatypes (e.g., sets, relations, integers, uninterpreted types)

Control abstractions:

State machines with hierarchy and concurrency

Behavourial analysis options:

Model checking: control-oriented models
Automated first-order logic (FOL) provers: data-oriented models
Recent work on model checking in FOL

Question: Can we model check abstract models that include both
data and control abstractions using automated FOL solvers?

Nancy A. Day and Amirhossein Vakili 2 / 23

Motivation

Goal: Effective automated analysis of behavioural models early in the
development process

What should abstract behavioural models consist of?
Data abstractions:

Abstract datatypes (e.g., sets, relations, integers, uninterpreted types)

Control abstractions:

State machines with hierarchy and concurrency

Behavourial analysis options:

Model checking: control-oriented models
Automated first-order logic (FOL) provers: data-oriented models
Recent work on model checking in FOL

Question: Can we model check abstract models that include both
data and control abstractions using automated FOL solvers?

Nancy A. Day and Amirhossein Vakili 2 / 23

Motivation

Goal: Effective automated analysis of behavioural models early in the
development process

What should abstract behavioural models consist of?
Data abstractions:

Abstract datatypes (e.g., sets, relations, integers, uninterpreted types)

Control abstractions:

State machines with hierarchy and concurrency

Behavourial analysis options:

Model checking: control-oriented models
Automated first-order logic (FOL) provers: data-oriented models
Recent work on model checking in FOL

Question: Can we model check abstract models that include both
data and control abstractions using automated FOL solvers?

Nancy A. Day and Amirhossein Vakili 2 / 23

Hierarchical State Machines (HSMs)

Simple Heating
System HSM Model

low high

t3: turn_up / ^turn_on_fan

t4: [temp > 30 and occupied]

inactive active

t5: turn_on_fan / setting = 2

t6: [temp > 30] / setting = 1

fan

furnace
on

off

t1: turn_on

t2: turn_off

Examples: Statecharts, Stateflow, UML StateMachines
Variety in the semantics of these languages for similar syntax.

Nancy A. Day and Amirhossein Vakili 3 / 23

Automated FOL Solvers: SMT-LIB

SMT-LIB = standard notation for SMT solvers

SMT = Satisfiability Modulo Theories

SMT solver = automated FOL theorem prover + standard
interpretations for built-in types

SMT-LIB contains S-expressions:

Declare types
Declare functions
Define functions
Assertions

Nancy A. Day and Amirhossein Vakili 4 / 23

Translation from HSM to SMT Solvers

HSM Model

SMT-LIB
Kripke structure

transition relation

SMT Solver

Translate

Nancy A. Day and Amirhossein Vakili 5 / 23

Translation from HSM to SMT Solvers

HSM Model

SMT-LIB
Kripke structure

transition relation

SMT Solver

Translate

Syntax Semantics

But . . .

How do we support the variety of semantics of HSMs?

Nancy A. Day and Amirhossein Vakili 6 / 23

Translation from HSM to SMT Solvers

HSM Model

SMT-LIB
Kripke structure

transition relation

SMT Solver

Translate

Syntax Semantics

But . . .

How do we support the variety of semantics of HSMs?

Opportunity: Can we write FOL axioms/decision procedures for the
semantics? (deductive analysis)

Nancy A. Day and Amirhossein Vakili 7 / 23

Representing HSMs in SMT-LIB

Goal: Represent the state machine syntax explicitly in SMT-LIB.

Challenges:

Can we stay within a decidable fragment of FOL (at least for the
syntax)?

Can we use the rich datatypes native in SMT-LIB (transition guards
and actions)?

Can we support variable semantics for the control states?

FOL axioms to describe semantics of state hierarchy

Contribution: A standard way to write HSM syntax in SMT-LIB.

Nancy A. Day and Amirhossein Vakili 8 / 23

Representing HSMs in SMT-LIB

Goal: Represent the state machine syntax explicitly in SMT-LIB.

Challenges:

Can we stay within a decidable fragment of FOL (at least for the
syntax)?

Can we use the rich datatypes native in SMT-LIB (transition guards
and actions)?

Can we support variable semantics for the control states?

FOL axioms to describe semantics of state hierarchy

Contribution: A standard way to write HSM syntax in SMT-LIB.

Nancy A. Day and Amirhossein Vakili 8 / 23

Representing the State Hierarchy

1 (dec la re - s o r t _State 0)

2 (dec la re - fun _root () _State)

3

4 ; declare every state name

5 (dec la re - fun off () _State)

6 (dec la re - fun on () _State)

7 (dec la re - fun furnace () _State)

8 ...

Required types/functions begin with underscores.

Nancy A. Day and Amirhossein Vakili 9 / 23

Representing the State Hierarchy

1 (dec la re - s o r t _Kind 0)

2 (dec la re - fun _basic () _Kind)

3 (dec la re - fun _and () _Kind)

4 (dec la re - fun _or () _Kind)

5

6 ; represent the state hierarchy

7 (de f ine - fun _kind ((s _State)) _Kind

8 (i t e (or (= s _root) (= s furnace) (= s fan)) _or

9 (i t e (= s on) _and

10 ...

11

12 (de f ine - fun _parent ((s _State)) _State

13 (i t e (= s _root) _no_state ; to represent a partial fcn

14 (i t e (or (= s off) (= s on)) _root

15 ...

Nancy A. Day and Amirhossein Vakili 10 / 23

Representing States: Design Decision #1

Definitions vs Axioms

State hierarchy is formalized using definitions of accessor functions.

Options considered:

Recursive datatypes - not yet fully supported in all SMT solvers
Axioms rather than definitions, i.e.,

1 (a s s e r t (= (_kind (_root)) _or))

The use of axioms requires a quantifier to express the default case.
By not using quantifiers, we stay within a decidable fragment of FOL
(logic of uninterpreted functions).

Nancy A. Day and Amirhossein Vakili 11 / 23

Representing Transitions: Design Decision #2

Deep vs Shallow Embeddings

We have a deep embedding of the state hierarchy (its own new
datatype) so we can write axioms/decision procedures about the
semantics of the state hierarchy.

This is where languages vary in their semantics: which set of
transitions are taken in a step?

But, we want a shallow embedding of the transition labels (use native
SMT-LIB datatypes).

Separate semantic axioms cannot access the contents of the guard or
action.
Instead the semantic axioms must rely on a description of the effect of
the guard or action relevant for determining the overall meaning of the
model.

Nancy A. Day and Amirhossein Vakili 12 / 23

Representing Transitions

The semantics of an HSM is a transition relation between two vectors of
configuration elements.

To write these axioms, we need to know the following about the transition
labels:

guard : takes a transition name and a configuration and returns true
if the guard is true in that configuration

Nancy A. Day and Amirhossein Vakili 13 / 23

Representing Transitions

The semantics of an HSM is a transition relation between two vectors of
configuration elements.

To write these axioms, we need to know the following about the transition
labels:

guard : takes a transition name and a configuration and returns true
if the guard is true in that configuration

Nancy A. Day and Amirhossein Vakili 13 / 23

Representing Transitions

low
t4: [temp>30 and occupied]

high

1 ; declare constants for transition names

2 ...

3

4 ; true or false in a configuration

5 (de f ine - fun _guard ((t _Tran)

6 ; configuration elements

7 (temp I n t) (occupied Bool) (setting I n t))
8 Bool
9 (or (and (= t t4) (and (> temp 30) occupied))

10 (and (= t t6) (> temp 30))

11 (not (or (= t t4) (= t t6)))))

This will be cleaner when SMT-LIB supports records.
Nancy A. Day and Amirhossein Vakili 14 / 23

Representing Transitions

The semantics of an HSM is a transition relation between two vectors of
configuration elements.

To write these axioms, we need to know the following about the transition
labels:

guard : takes a transition name and a configuration and returns true
if the guard is true in that configuration

action: takes a transition name and two configurations and returns
true if the action of the transition took place between these two
configurations

Nancy A. Day and Amirhossein Vakili 15 / 23

Representing Transitions

inactive
t5: turn_on_fan / setting = 2

active

1 ; true or false in a pair of configurations

2 (de f ine - fun _action

3 ((t _Tran)

4 ; configuration elements

5 (temp I n t) (occupied Bool) (setting I n t)
6 ; next values of config elements

7 (temp_n I n t) (occupied_n Bool) (setting_n I n t)
8 Bool
9 (or (and (= t t5) (= setting_n 2))

10 (and (= t t6) (= setting_n 1))

11 (not (or (= t t4) (= t t6)))))

Nancy A. Day and Amirhossein Vakili 16 / 23

Representing Transitions

The semantics of an HSM is a transition relation between two vectors of
configuration elements.

To write these axioms, we need to know the following about the transition
labels:

guard : takes a transition name and a configuration and returns true
if the guard is true in that configuration

action: takes a transition name and two configurations and returns
true if the action of the transition took place between these two
configurations

change conf element: returns true if a transition affects this conf
element

Nancy A. Day and Amirhossein Vakili 17 / 23

Representing Transitions

inactive
t5: turn_on_fan / setting = 2

active

1 ; pe r c o n f i g u r a t i o n e l ement
2 ; does a t r a n s i t i o n c o n s t r a i n i t ?
3 (def ine−fun c h a n g e s e t t i n g ((t Tran)) Bool
4 (or (= t t5) (= t t6)))

Nancy A. Day and Amirhossein Vakili 18 / 23

Remaining Design Decisions

3. Modelling Events

An event is an instantaneous occurrence to which the system reacts.

Deeply embedded.

Modeller can add function to create them: entered(state).

4. Invariants

Invariants express parts of the model or its environment declaratively.

No need to make them an explicit element of the HSM in SMT-LIB:

Model them separately and conjunct with transition relation.

Nancy A. Day and Amirhossein Vakili 19 / 23

Contributions

A representation of HSM syntax in SMT-LIB where:

The state hierarchy is deeply embedded:

Semantics can be written separately, which accommodates variable
semantics.
Axioms/decision procedures can be created for deductive reasoning
about the state hierarchy.

The transition guards and actions are shallowly embedded:

Model can use the rich datatypes native in SMT-LIB.

The above is accomplished within a decidable fragment of FOL.

Nancy A. Day and Amirhossein Vakili 20 / 23

Example: Integrating Control with Rich Datatypes

Database Model

user1 user2

t4: / ^del

t2: / ^add

dbstate

t6: del [content(k) != NULL]
 / content(k) = NULL

t5: add [content(k) = NULL]
 / content(k) = d

db

users

t1: /^add t3: /^del

1 ; DB represents the

2 ; state of the database.

3 (dec la re - s o r t DB 0)

4

5 ; Data represents the

6 ; possible data that can be

7 ; stored in the database

8 (dec la re - s o r t Data 0)

9

10 ; Key represents the

11 ; possible keys

12 (dec la re - s o r t Key 0)

13

14 ; uninterpreted function

15 ; represents the contents

16 ; of the database

17 ; content: DB x Key -> Data

18 (dec la re - fun content

19 (DB Key) Data)

Nancy A. Day and Amirhossein Vakili 21 / 23

Example: Integrating Control with Rich Datatypes

Database Model

user1 user2

t4: / ^del

t2: / ^add

dbstate

t6: del [content(k) != NULL]
 / content(k) = NULL

t5: add [content(k) = NULL]
 / content(k) = d

db

users

t1: /^add t3: /^del

1 ; DB represents the

2 ; state of the database.

3 (dec la re - s o r t DB 0)

4

5 ; Data represents the

6 ; possible data that can be

7 ; stored in the database

8 (dec la re - s o r t Data 0)

9

10 ; Key represents the

11 ; possible keys

12 (dec la re - s o r t Key 0)

13

14 ; uninterpreted function

15 ; represents the contents

16 ; of the database

17 ; content: DB x Key -> Data

18 (dec la re - fun content

19 (DB Key) Data)

Nancy A. Day and Amirhossein Vakili 21 / 23

Related Work

On creating standard representations of the syntax of HSMs:

OpenModel Modeling Language (OMML) - Hall and Zisman, 2004

Composed Hierarchical State Machines (XML) - Niu, Atlee, and Day,
2005

fUML, Alf - OMG, 2013

We differ from these approaches because our representation is an
embedding within an existing logic and it allows a variable semantics for
the control state hierarchy.

Nancy A. Day and Amirhossein Vakili 22 / 23

Contributions

A representation of HSM syntax in SMT-LIB where:

The state hierarchy is deeply embedded:

Variable semantics can be written separately.
Axioms/decision procedures can be created for deductive reasoning
about the state hierarchy.

The transition labels are shallowly embedded:

Model can use the rich datatypes native in SMT-LIB.

The above was accomplished within a decidable fragment of FOL.

Future Work:

Translators from a user-friendly form of models to this representation.

Analysis: Write axioms for the semantics!

Goal: Model checking abstract behavioural models that include both data
and control abstractions using automated FOL solvers!

Nancy A. Day and Amirhossein Vakili 23 / 23

