
Resurrecting Laplace's Demon:
The Case for Deterministic Models

Edward A. Lee
Robert S. Pepper Distinguished Professor
UC Berkeley

Keynote Talk: Workshop on Modeling in Software Engineering (MiSE)
Part of the International Conference on Software Engineering (ICSE)
May 16-17, 2016
Austin, TX

It’s	not	just	informa/on	technology	anymore:		
•  Cyber	+	Physical	
•  Computa/on	+	Dynamics	
•  Security	+	Safety	
Contradic/ons:	
•  Adaptability	vs.	Repeatability	
•  High	connec/vity	vs.	Security	and	Privacy	
•  High	performance	vs.	Low	Energy	
•  Asynchrony	vs.	Coordina>on/Coopera>on	
•  Scalability	vs.	Reliability	and	Predictability	
•  Laws	and	Regula/ons	vs.	Technical	Possibili>es	
•  Economies	of	scale	(cloud)	vs.	Locality	(fog)	
•  Open	vs.	Proprietary	
•  Algorithms	vs.	Dynamics	
Innova/on:	
Cyber-physical	systems	require	new	engineering		
methods	and	models	to	address	these	contradic/ons.	

Automotive

Focus	on	Cyber-Physical	Systems	
Full	of	Contradictory	Requirements	

Biomedical

Military

Energy

Manufacturing

Avionics

Buildings

2 Lee, Berkeley

IoT:	Using	Internet	technology	to	interact	
with	physical	devices	(“things”).	

Industrial automation
example from 2008:
Bosch-Rexroth printing
press.

The term “IoT” includes
the technical solution
“Internet technology” in
the problem statement
“connect things”.

The term CPS does not.

Lee, Berkeley 3

This Bosch Rexroth printing press is a cyber-
physical factory using Ethernet and TCP/IP
with high-precision clock synchronization
(IEEE 1588) on an isolated LAN.

Focus	on	Models	

Lee, Berkeley 4

Models	vs.	Reality	

In	this	example,	
the	modeling	
framework	is	
calculus	and	
Newton’s	laws.	
	
Fidelity	is	how	
well	the	model	
and	its	target	
match	

Lee, Berkeley 5

The model

The target
(the thing
being
modeled).

Solomon Wolf Golomb

You will never strike oil by
drilling through the map!

Lee, Berkeley 6

Engineers often confuse the model
with its target	

But this does not in any way
diminish the value of a map!

Determinacy	

Some	of	the	most	valuable	models	are	
determinis>c.	

	
A	model	is	determinis>c	if,	given	the	ini/al	state	and	
the	inputs,	the	model	defines	exactly	one	behavior.	

	
Determinis/c	models	have	proven	extremely	valuable	
in	the	past.	

Lee, Berkeley 7

Laplace’s	Demon	

“We	may	regard	the	present	state	of	the	
universe	as	the	effect	of	its	past	and	the	
cause	of	its	future.	An	intellect	which	at	a	
certain	moment	would	know	all	forces	that	
set	nature	in	mo/on,	and	all	posi/ons	of	all	
items	of	which	nature	is	composed,	if	this	
intellect	were	also	vast	enough	to	submit	
these	data	to	analysis,	it	would	embrace	in	a	
single	formula	the	movements	of	the	
greatest	bodies	of	the	universe	and	those	of	
the	/niest	atom;	for	such	an	intellect	
nothing	would	be	uncertain	and	the	future	
just	like	the	past	would	be	present	before	its	
eyes.”	
— Pierre	Simon	Laplace,	A	Philosophical	
Essay	on	Probabili>es	

Lee, Berkeley 8

Pierre-Simon Laplace (1749–1827).
Posthumous portrait by

Joan-Baptiste Paulin Guérin, 1838

But	hasn’t	Laplace’s	demon		
been	debunked?	

Laplace	reflected	a	
period	of	
op/mism	in	
science	that	
tended	to	equate	
the	model	with	
the	truth.	
	
He	was	drilling	
through	a	map!	

Lee, Berkeley 9

Deterministic
model

Nondeterministic
target

A	Model	Need	not		
be	True	to	be	Useful	

	
	

“Essen/ally,	all	models	are	wrong,		
but	some	are	useful.”	

	
	

Box,	G.	E.	P.	and	N.	R.	Draper,	1987:	Empirical	Model-Building	and	Response	
Surfaces.	Wiley	Series	in	Probability	and	Sta/s/cs,	Wiley.		

	

Lee, Berkeley 10

Schema/c	of	a	simple	CPS	

Lee, Berkeley 11

What kinds of models should we use?

Let’s look at the most successful kinds of models from
the cyber and the physical worlds.

Socware	is	a	Model	

Physical	System	 Model	

Single-threaded	impera>ve	programs	
are	determinis>c	models	

Lee, Berkeley 12

Consider	single-threaded		
impera/ve	programs	

The	target	of	the	model	is	
nondeterminis/c	(electrons	and	
holes	sloshing	around	in	silicon).	

This program defines exactly one
behavior, given the input x.

Note that the modeling framework
(the C language, in this case)
defines “behavior” and “input.”

Lee, Berkeley 13

Socware	relies	on	another	determinis/c	
model	that	abstracts	the	hardware	

Physical	System	 Model

Instruction Set Architectures (ISAs)
are deterministic models

Lee, Berkeley 14

Image: Wikimedia Commons
Waterman, et al., The RISC-V Instruction Set Manual,
UCB/EECS-2011-62, 2011

…	which	relies	on	yet	another	
determinis/c	model	

Physical	System	 Model	

Synchronous	digital	logic	
is	a	determinis>c	model	

Lee, Berkeley 15

Determinis/c	Models	for	the		
Physical	Side	of	CPS	

Physical	System	 Model	

Signal Signal

Differen>al	Equa>ons	
are	determinis>c	models	

Lee, Berkeley 16

Image: Wikimedia Commons

Signal Signal

17 Image: Wikimedia Commons Lee, Berkeley

A	Major	Problem	for	CPS:	Combina/ons	of	
Determinis/c	Models	are	Nondeterminis/c	

Correct execution of a program in all widely used
programming languages, and correct delivery of a network
message in all general-purpose networks has nothing to do
with how long it takes to do anything.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

Embedded software designers
have no map!

Lee, Berkeley 18

Timing is not Part of
Software and Network Semantics	

Determinism?	Really?	

	
CPS	applica/ons	operate	in	an	intrinsically	
nondeterminis/c	world.	
	
Does	it	really	make	sense	to	insist	on	
determinis>c	models?	

19 Lee, Berkeley

•  In	science,	the	value	of	a	model	lies	in	how	well	its	
behavior	matches	that	of	the	physical	system.	

•  In	engineering,	the	value	of	the	physical	system	lies	
in	how	well	its	behavior	matches	that	of	the	model.	

Lee, Berkeley 20

In engineering, model fidelity is a two-way street!

For a model to be useful, it is necessary
(but not sufficient) to be able to be able to

construct a faithful physical realization.

The	Value	of	Models	

A	Model	

Lee, Berkeley 21

A	Physical	Realiza/on	

Lee, Berkeley 22

Model	Fidelity	

•  To	a	scien>st,	the	model	is	flawed.	

•  To	an	engineer,	the	realiza/on	is	flawed.	

I’m	an	engineer…	

Lee, Berkeley 23

For	CPS,	we	need	to	
Change	the	Ques/on	

The	ques/on	is	not	whether	determinis/c	
models	can	describe	the	behavior	of	cyber-
physical	systems	(with	high	fidelity).	
	
The	ques/on	is	whether	we	can	build	cyber-
physical	systems	whose	behavior	matches	that	
of	a	determinis/c	model	(with	high	probability).	

Lee, Berkeley 24

Determinism?	
What	about	Resilience?	Adaptability?	

Determinis/c	models	do	not	eliminate	the	need	
for	robust,	fault-tolerant	designs.	

In	fact,	they	enable	such	designs,	because	they	
make	it	much	clearer	what	it	means	to	have	a	
fault!	

Lee, Berkeley 25

Interim	Conclusion	

We	have	to	fix	the	models!	
	

But	how?	

Lee, Berkeley 26

Example	of	the	Benefits	of	Embracing	
Temporal	Seman/cs	

Despite using TCP/IP
on Ethernet, this
network achieves highly
reliable bounded
latency.

TSN (time-sensitive
networks) technology is
starting to become
pervasive…

Lee, Berkeley 27

This Bosch Rexroth printing press is a cyber-
physical factory using Ethernet and TCP/IP
with high-precision clock synchronization
(IEEE 1588) on an isolated LAN.

Existence	Proofs	

Determinis/c	models	with	highly	faithful	implementa/ons	
exist	for	distributed	real-/me	systems.	

•  PTIDES:	distributed	real-/me	socware	
–  Determinis/c	/ming	across	networks	

•  PRET	machines	
–  Determinis/c	/ming	at	the	processor	level	

Lee, Berkeley 28

Roots	of	the	Idea	

ACM	Transac/ons	on	Programming	Languages	and	Systems,	1984.	

Lee, Berkeley 29

Abstract:	Discrete-event	(DE)	models	are	formal	system	specifica/ons	that	
have	analyzable	determinis/c	behaviors.	Using	a	global,	consistent	no/on	of	
/me,	DE	components	communicate	via	/me-stamped	events.	DE	models	
have	primarily	been	used	in	performance	modeling	and	simula/on,	where	
/me	stamps	are	a	modeling	property	bearing	no	rela/onship	to	real	/me	
during	execu/on	of	the	model.	In	this	paper,	we	extend	DE	models	with	the	
capability	of	rela/ng	certain	events	to	physical	/me…	

30 Lee, Berkeley

Ptides – A Robust Distributed DE
MoC for IoIT Applications

Google	Spanner	–	A	Reinven/on	

Google	
independently	
developed	a	
very	similar	
technique	and	
applied	it	to	
distributed	
databases.	

Lee, Berkeley 31

 Proceedings of OSDI 2012

PTIDES:	Discrete-Event	Seman/cs	
+	Synchronized	Clocks	+	Sensors	and	Actuators	

Lee, Berkeley 32

Time-stamped events that are
processed in time-stamp order.

This MoC is widely used in
simulation and HDLs.

Given time-stamped inputs, it is
a deterministic concurrent MoC.

A few texts that use the DE MoC

Time stamp value is a
deadline

Time stamp value is
time of measurement

Actors wrap
sensors

Actors wrap
actuators

Lee, Berkeley 33

Ptides: Time stamps bind to real time at
sensors and actuators	

Messages are
processed in time-
stamp order

Determinis/c	Distributed		
Real-Time	

Assume	bounds	on:	
•  clock	synchroniza>on	error	
•  network	latency	
then	events	are	processed	in	.me-stamp	order	
at	every	component.		If	in	addi/on	we	assume	
•  bounds	on	execu>on	>me	
then	events	are	delivered	to	actuators	on	/me.	

Lee, Berkeley 34

See http://chess.eecs.berkeley.edu/ptides

All of the assumptions
are achievable with
today’s technology, and
are requirements
anyway for hard-real-
time systems. A Ptides
model makes the
requirements explicit.

Lee, Berkeley 35

So Many
Assumptions?	

You will never strike oil by
drilling through the map!

Violations of the requirements are detectable
as out-of-order events and can be treated as
faults.

Non-Synchronized Clocks

A fault manifests as out-of-order events.

… after an event here
with a later time
stamp has been
processed, then fault!

If an event
arrives here with
an earlier time

stamp…
Occurrence
of a fault
implies one
or more of
the
assumptions
was violated.

Lee, Berkeley 36

Handling Faults	

P/des	

	
High-precision	clock	synchroniza/on	will	
become	ubiquitous.	Networks	will	become	able	
to	“guarantee”	bounded	latencies.		
	
The	/me	is	right.	
	
But	what	about	the	execu>on	>me	of	soUware?	

Lee, Berkeley 37

Existence	Proofs	

Determinis/c	models	with	highly	faithful	implementa/ons	
exist	for	distributed	real-/me	systems.	

•  PTIDES:	distributed	real-/me	socware	
–  Determinis/c	/ming	across	networks	

•  PRET	machines	
–  Determinis/c	/ming	at	the	processor	level	

Lee, Berkeley 38

The hardware out of which we build
computers is capable of delivering “correct”
computations and precise timing…

The synchronous digital logic
abstraction removes the messiness
of transistors.

… but the overlaying software
abstractions discard the timing
precision.

// Perform the convolution.
for (int i=0; i<10; i++) {
 x[i] = a[i]*b[j-i];
 // Notify listeners.
 notify(x[i]);
}

Lee, Berkeley 39

PRET Machines – Giving Software the
Capabilities its Hardware Already Has.

•  PREcision-Timed processors = PRET
•  Predictable, REpeatable Timing = PRET
•  Performance with REpeatable Timing = PRET

= PRET +
Computing

With time

// Perform the convolution.
for (int i=0; i<10; i++) {
 x[i] = a[i]*b[j-i];
 // Notify listeners.
 notify(x[i]);
}

http://chess.eecs.berkeley.edu/pret

Lee, Berkeley 40

Major	Challenges	
and	existence	proofs	that	they	can	be	met	

•  Pipelines	
– fine-grain	mul/threading	

•  Memory	hierarchy	
– memory	controllers	with	controllable	latency	

•  I/O	
–  threaded	interrupts,	with	bounded	effects	on	/ming	

Lee, Berkeley 41

PRET	Publica/ons	
PRET	ISA	Realiza/ons:	
•  PRET1,	Sparc-based	

–  [Lickly	et	al.,	CASES,	2008]	
•  PTARM,	ARM-based	

–  [Liu	et	al.,	ICCD,	2012]	
•  FlexPRET,	RISC-V-based	

–  [Zimmer	et	al.,	RTAS,	2014,	2015]	

Lee, Berkeley 42

PRET	Principle:	
¢  The	case	for	PRET	

l  [Edwards	&	Lee,	DAC	2007]	
¢  PRET	ISA	extensions	

l  [Edwards	at	al.,	ICCD	2009]	
¢  Temporal	isola>on	

l  [Bui	et	al.,	DAC,	2011]	
¢  Design	challenges	

l  [Broman	et	al.,	ESLsyn,	2013]	
¢  Cyber-physical	systems	

l  [Lee.,	Sensors,	2015]	

PRET	for	Security:	
¢  Elimina>ng	side-channel	abacks	

l  [Lie	&	McGrogan,	Report	2009]	

PRET	Applica.ons:	
¢  Control	systems	

l  [Bui	et	al.,	RTCSA	2010]	
¢  Computa>onal	fluid	dynamics	

l  [Liu	et	al.,	FCCM,	2012]	

PRET	Memory	Systems:	
¢  DRAM	controller	

l  [Reineke	et	al.,	CODES+ISSS	2011]	
¢  Scratchpad	managment	

l  [Kim	et	al.,	RTAS,	2014]	
¢  Mixed	cri>cality	DRAM	controller	

l  [Kim	et	al.,	RTAS	2015]	

Three	Genera/ons	of	PRET	
Machines	at	Berkeley	

•  PRET1,	Sparc-based	(simula/on	only)	
–  [Lickly	et	al.,	CASES,	2008]	

•  PTARM,	ARM-based	(FPGA	implementa/on)	
–  [Liu	et	al.,	ICCD,	2012]	

•  FlexPRET,	RISC-V-based	(FPGA	+	simula/on)	
–  [Zimmer	et	al.,	RTAS,	2014,	PhD	Thesis	2015]	

Lee, Berkeley 43

Hardware
thread Hardware

thread Hardware
thread

Our Second Generation PRET
PTArm, a soft core on a
Xilinx Virtex 5 FPGA (2012)

Hardware
thread

registers

scratch
pad

memory

I/O devices

Interleaved
pipeline with one
set of registers

per thread

SRAM
scratchpad

shared among
threads

DRAM main
memory,

separate banks
per thread

memory
memory

memory

Isaac Liu, PhD Thesis, 2012

Our	Third-Genera/on	PRET:	
Open-Source	FlexPRET	(Zimmer	2014/15)	

•  32-bit,	5-stage	thread	interleaved	pipeline,	RISC-V	ISA	
–  Hard	real-/me	HW	threads:	
scheduled	at	constant	rate	for	isola/on	and	repeatability.	

–  SoE	real-/me	HW	threads:		
share	all	available	cycles	for	efficiency.	

•  Deployed	on	Xilinx	FPGA	(area	comparable	to	Microblaze)	

Lee,	Berkeley	 45	

Every	3	cycles	
(unless	done)	

W	
M	
X	
D	

W	
M	
X	

W	
M	 W	

F	 D	
F	

X	
D	
F	

M	
X	
D	
F	

W	
M	
X	
D	
F	

HRTT	0	

SRTT	1	

SRTT	2	

Clock	cycles	

In
st
ru
c/
on

s	

Whenever	cycle	available	
(arbitrary	interleaving)	 Digilent	Atlys	(Spartan	6)	and		

NI	myRIO	(Zync)	

SRT thread

Hardware
thread Hardware

thread Hardware
thread Hardware

thread

FlexPRET
Hard-Real-Time (HRT) Threads
Interleaved with Soft-Real-Time (SRT) Threads

Hardware
thread

registers

scratch
pad

HRT threads have
deterministic timing.
SRT threads share

available cycles

SRAM
scratchpad

shared among
threads

DRAM main
memory provides

deterministic latency
for HRT threads.

Conventional
behavior for the rest.

memory
memory

memory

HRT thread

Michael Zimmer

Interrupt Handler Thread

Hardware
thread Hardware

thread Hardware
thread

FlexPRET I/O
Interrupt-Driven I/O is notorious for disrupting timing

Hardware
thread

registers

scratch
pad

Interrupts have
no effect on HRT threads, and

bounded effect on SRT threads!

memory
memory

memory

Michael Zimmer

Performance	Cost?	

The	PRET	project	has	shown	
that	you	do	not	need	to	
sacrifice	performance	to	get	
control	over	/ming.	
	
	
	
	

48 [Isaac Liu, PhD Thesis, May, 2012] Lee, Berkeley

No!

FlexPRET	Shows:	

•  Not	only	is	there	no	performance	cost	for	
appropriate	workloads,	but	there	is	also	no	
performance	cost	for	inappropriate	
workloads!	

•  Pipelining,	memory	hierarchy,	and	interrupt-
driven	I/O	can	all	be	done	without	losing	
/ming	determinacy!	

Lee, Berkeley 49

Conclusion	

Determinis/c	models	with	highly	faithful	
implementa/ons	exist	for	distributed	real-/me	systems.	

•  PTIDES:	distributed	real-/me	socware	
–  Determinis/c	/ming	across	networks	

•  PRET	machines	
–  Determinis/c	/ming	at	the	processor	level	

Lee, Berkeley 50

We have run out of excuses for
sloppy engineering!

