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It’s	not	just	informa/on	technology	anymore:		
•  Cyber	+	Physical	
•  Computa/on	+	Dynamics	
•  Security	+	Safety	
Contradic/ons:	
•  Adaptability	vs.	Repeatability	
•  High	connec/vity	vs.	Security	and	Privacy	
•  High	performance	vs.	Low	Energy	
•  Asynchrony	vs.	Coordina>on/Coopera>on	
•  Scalability	vs.	Reliability	and	Predictability	
•  Laws	and	Regula/ons	vs.	Technical	Possibili>es	
•  Economies	of	scale	(cloud)	vs.	Locality	(fog)	
•  Open	vs.	Proprietary	
•  Algorithms	vs.	Dynamics	
Innova/on:	
Cyber-physical	systems	require	new	engineering		
methods	and	models	to	address	these	contradic/ons.	
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IoT:	Using	Internet	technology	to	interact	
with	physical	devices	(“things”).	

Industrial automation 
example from 2008: 
Bosch-Rexroth printing 
press. 
 
The term “IoT” includes 
the technical solution 
“Internet technology” in 
the problem statement 
“connect things”. 
 
The term CPS does not. 
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This Bosch Rexroth printing press is a cyber-
physical factory using Ethernet and TCP/IP 
with high-precision clock synchronization 
(IEEE 1588) on an isolated LAN. 



Focus	on	Models	
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Models	vs.	Reality	

In	this	example,	
the	modeling	
framework	is	
calculus	and	
Newton’s	laws.	
	
Fidelity	is	how	
well	the	model	
and	its	target	
match	
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The model 

The target 
(the thing 
being 
modeled). 



Solomon Wolf Golomb 

You will never strike oil by 
drilling through the map! 
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Engineers often confuse the model 
with its target	

But this does not in any way 
diminish the value of a map! 



Determinacy	

Some	of	the	most	valuable	models	are	
determinis>c.	

	
A	model	is	determinis>c	if,	given	the	ini/al	state	and	
the	inputs,	the	model	defines	exactly	one	behavior.	

	
Determinis/c	models	have	proven	extremely	valuable	
in	the	past.	
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Laplace’s	Demon	

“We	may	regard	the	present	state	of	the	
universe	as	the	effect	of	its	past	and	the	
cause	of	its	future.	An	intellect	which	at	a	
certain	moment	would	know	all	forces	that	
set	nature	in	mo/on,	and	all	posi/ons	of	all	
items	of	which	nature	is	composed,	if	this	
intellect	were	also	vast	enough	to	submit	
these	data	to	analysis,	it	would	embrace	in	a	
single	formula	the	movements	of	the	
greatest	bodies	of	the	universe	and	those	of	
the	/niest	atom;	for	such	an	intellect	
nothing	would	be	uncertain	and	the	future	
just	like	the	past	would	be	present	before	its	
eyes.”	
— Pierre	Simon	Laplace,	A	Philosophical	
Essay	on	Probabili>es	
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Pierre-Simon Laplace (1749–1827). 
Posthumous portrait by 

Joan-Baptiste Paulin Guérin, 1838 



But	hasn’t	Laplace’s	demon		
been	debunked?	

Laplace	reflected	a	
period	of	
op/mism	in	
science	that	
tended	to	equate	
the	model	with	
the	truth.	
	
He	was	drilling	
through	a	map!	
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Deterministic 
model 

Nondeterministic 
target 



A	Model	Need	not		
be	True	to	be	Useful	

	
	

“Essen/ally,	all	models	are	wrong,		
but	some	are	useful.”	

	
	

Box,	G.	E.	P.	and	N.	R.	Draper,	1987:	Empirical	Model-Building	and	Response	
Surfaces.	Wiley	Series	in	Probability	and	Sta/s/cs,	Wiley.		
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Schema/c	of	a	simple	CPS	
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What kinds of models should we use? 
 
Let’s look at the most successful kinds of models from 
the cyber and the physical worlds.  



Socware	is	a	Model	

Physical	System	 Model	

Single-threaded	impera>ve	programs	
are	determinis>c	models	
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Consider	single-threaded		
impera/ve	programs	

The	target	of	the	model	is	
nondeterminis/c	(electrons	and	
holes	sloshing	around	in	silicon).	

This program defines exactly one 
behavior, given the input x. 
 
Note that the modeling framework 
(the C language, in this case) 
defines “behavior” and “input.” 
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Socware	relies	on	another	determinis/c	
model	that	abstracts	the	hardware	

Physical	System	 Model 

Instruction Set Architectures (ISAs) 
are deterministic models 
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Image: Wikimedia Commons 
Waterman, et al., The RISC-V Instruction Set Manual, 
UCB/EECS-2011-62, 2011 



…	which	relies	on	yet	another	
determinis/c	model	

Physical	System	 Model	

Synchronous	digital	logic	
is	a	determinis>c	model	
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Determinis/c	Models	for	the		
Physical	Side	of	CPS	

Physical	System	 Model	

Signal Signal 

Differen>al	Equa>ons	
are	determinis>c	models	
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Image: Wikimedia Commons 



Signal Signal 
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A	Major	Problem	for	CPS:	Combina/ons	of	
Determinis/c	Models	are	Nondeterminis/c	



Correct execution of a program in all widely used 
programming languages, and correct delivery of a network 
message in all general-purpose networks has nothing to do 
with how long it takes to do anything. 
 

 
Programmers have to step outside the 
programming abstractions to specify 
timing behavior. 
 
Embedded software designers  
have no map! 
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Timing is not Part of  
Software and Network Semantics	



Determinism?	Really?	

	
CPS	applica/ons	operate	in	an	intrinsically	
nondeterminis/c	world.	
	
Does	it	really	make	sense	to	insist	on	
determinis>c	models?	
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•  In	science,	the	value	of	a	model	lies	in	how	well	its	
behavior	matches	that	of	the	physical	system.	

•  In	engineering,	the	value	of	the	physical	system	lies	
in	how	well	its	behavior	matches	that	of	the	model.	
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In engineering, model fidelity is a two-way street! 

For a model to be useful, it is necessary  
(but not sufficient) to be able to be able to  

construct a faithful physical realization. 

The	Value	of	Models	



A	Model	
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A	Physical	Realiza/on	
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Model	Fidelity	

•  To	a	scien>st,	the	model	is	flawed.	

•  To	an	engineer,	the	realiza/on	is	flawed.	

I’m	an	engineer…	
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For	CPS,	we	need	to	
Change	the	Ques/on	

The	ques/on	is	not	whether	determinis/c	
models	can	describe	the	behavior	of	cyber-
physical	systems	(with	high	fidelity).	
	
The	ques/on	is	whether	we	can	build	cyber-
physical	systems	whose	behavior	matches	that	
of	a	determinis/c	model	(with	high	probability).	
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Determinism?	
What	about	Resilience?	Adaptability?	

Determinis/c	models	do	not	eliminate	the	need	
for	robust,	fault-tolerant	designs.	

In	fact,	they	enable	such	designs,	because	they	
make	it	much	clearer	what	it	means	to	have	a	
fault!	
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Interim	Conclusion	

We	have	to	fix	the	models!	
	

But	how?	
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Example	of	the	Benefits	of	Embracing	
Temporal	Seman/cs	

Despite using TCP/IP 
on Ethernet, this 
network achieves highly 
reliable bounded 
latency. 
 
 
TSN (time-sensitive 
networks) technology is 
starting to become 
pervasive… 
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This Bosch Rexroth printing press is a cyber-
physical factory using Ethernet and TCP/IP 
with high-precision clock synchronization 
(IEEE 1588) on an isolated LAN. 



Existence	Proofs	

Determinis/c	models	with	highly	faithful	implementa/ons	
exist	for	distributed	real-/me	systems.	

•  PTIDES:	distributed	real-/me	socware	
–  Determinis/c	/ming	across	networks	

•  PRET	machines	
–  Determinis/c	/ming	at	the	processor	level	
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Roots	of	the	Idea	

ACM	Transac/ons	on	Programming	Languages	and	Systems,	1984.	
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Abstract:	Discrete-event	(DE)	models	are	formal	system	specifica/ons	that	
have	analyzable	determinis/c	behaviors.	Using	a	global,	consistent	no/on	of	
/me,	DE	components	communicate	via	/me-stamped	events.	DE	models	
have	primarily	been	used	in	performance	modeling	and	simula/on,	where	
/me	stamps	are	a	modeling	property	bearing	no	rela/onship	to	real	/me	
during	execu/on	of	the	model.	In	this	paper,	we	extend	DE	models	with	the	
capability	of	rela/ng	certain	events	to	physical	/me…	
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Ptides – A Robust Distributed DE 
MoC for IoIT Applications  



Google	Spanner	–	A	Reinven/on	

Google	
independently	
developed	a	
very	similar	
technique	and	
applied	it	to	
distributed	
databases.	
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 Proceedings of OSDI 2012 



PTIDES:	Discrete-Event	Seman/cs	
+	Synchronized	Clocks	+	Sensors	and	Actuators	
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Time-stamped events that are 
processed in time-stamp order. 

This MoC is widely used in 
simulation and HDLs. 

Given time-stamped inputs, it is 
a deterministic concurrent MoC. 

A few texts that use the DE MoC 



Time stamp value is a 
deadline 

Time stamp value is 
time of measurement 

Actors wrap 
sensors 

Actors wrap 
actuators 
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Ptides: Time stamps bind to real time at 
sensors and actuators	

Messages are 
processed in time-
stamp order 



Determinis/c	Distributed		
Real-Time	

Assume	bounds	on:	
•  clock	synchroniza>on	error	
•  network	latency	
then	events	are	processed	in	.me-stamp	order	
at	every	component.		If	in	addi/on	we	assume	
•  bounds	on	execu>on	>me	
then	events	are	delivered	to	actuators	on	/me.	
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See http://chess.eecs.berkeley.edu/ptides 



All of the assumptions 
are achievable with 
today’s technology, and 
are requirements 
anyway for hard-real-
time systems. A Ptides 
model makes the 
requirements explicit. 
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So Many 
Assumptions?	

You will never strike oil by 
drilling through the map! 

Violations of the requirements are detectable 
as out-of-order events and can be treated as 
faults. 

Non-Synchronized Clocks 



A fault manifests as out-of-order events. 

… after an event here 
with a later time 
stamp has been 
processed, then fault! 

If an event 
arrives here with 
an earlier time 

stamp… 
Occurrence 
of a fault 
implies one 
or more of 
the 
assumptions 
was violated. 
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Handling Faults	



P/des	

	
High-precision	clock	synchroniza/on	will	
become	ubiquitous.	Networks	will	become	able	
to	“guarantee”	bounded	latencies.		
	
The	/me	is	right.	
	
But	what	about	the	execu>on	>me	of	soUware?	
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Existence	Proofs	

Determinis/c	models	with	highly	faithful	implementa/ons	
exist	for	distributed	real-/me	systems.	

•  PTIDES:	distributed	real-/me	socware	
–  Determinis/c	/ming	across	networks	

•  PRET	machines	
–  Determinis/c	/ming	at	the	processor	level	

Lee, Berkeley 38 



The hardware out of which we build 
computers is capable of delivering “correct” 
computations and precise timing… 

 
The synchronous digital logic 
abstraction removes the messiness 
of transistors. 
 
 
 
… but the overlaying software 
abstractions discard the timing 
precision. 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 
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PRET Machines – Giving Software the 
Capabilities its Hardware Already Has. 

•  PREcision-Timed processors = PRET 
•  Predictable, REpeatable Timing = PRET 
•  Performance with REpeatable Timing = PRET 

= PRET + 
Computing 

With time 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 

http://chess.eecs.berkeley.edu/pret 

Lee, Berkeley 40 



Major	Challenges	
and	existence	proofs	that	they	can	be	met	

•  Pipelines	
– fine-grain	mul/threading	

•  Memory	hierarchy	
– memory	controllers	with	controllable	latency	

•  I/O	
–  threaded	interrupts,	with	bounded	effects	on	/ming	
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PRET	Publica/ons	
PRET	ISA	Realiza/ons:	
•  PRET1,	Sparc-based	

–  [Lickly	et	al.,	CASES,	2008]	
•  PTARM,	ARM-based	

–  [Liu	et	al.,	ICCD,	2012]	
•  FlexPRET,	RISC-V-based	

–  [Zimmer	et	al.,	RTAS,	2014,	2015]	
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PRET	Principle:	
¢  The	case	for	PRET	

l  [Edwards	&	Lee,	DAC	2007]	
¢  PRET	ISA	extensions	

l  [Edwards	at	al.,	ICCD	2009]	
¢  Temporal	isola>on	

l  [Bui	et	al.,	DAC,	2011]	
¢  Design	challenges	

l  [Broman	et	al.,	ESLsyn,	2013]	
¢  Cyber-physical	systems	

l  [Lee.,	Sensors,	2015]	

PRET	for	Security:	
¢  Elimina>ng	side-channel	abacks	

l  [Lie	&	McGrogan,	Report	2009]	

PRET	Applica.ons:	
¢  Control	systems	

l  [Bui	et	al.,	RTCSA	2010]	
¢  Computa>onal	fluid	dynamics	

l  [Liu	et	al.,	FCCM,	2012]	

PRET	Memory	Systems:	
¢  DRAM	controller	

l  [Reineke	et	al.,	CODES+ISSS	2011]	
¢  Scratchpad	managment	

l  [Kim	et	al.,	RTAS,	2014]	
¢  Mixed	cri>cality	DRAM	controller	

l  [Kim	et	al.,	RTAS	2015]	



Three	Genera/ons	of	PRET	
Machines	at	Berkeley	

•  PRET1,	Sparc-based	(simula/on	only)	
–  [Lickly	et	al.,	CASES,	2008]	

•  PTARM,	ARM-based	(FPGA	implementa/on)	
–  [Liu	et	al.,	ICCD,	2012]	

•  FlexPRET,	RISC-V-based	(FPGA	+	simula/on)	
–  [Zimmer	et	al.,	RTAS,	2014,	PhD	Thesis	2015]	

Lee, Berkeley 43 



Hardware 
thread Hardware 

thread Hardware 
thread 

Our Second Generation PRET 
PTArm, a soft core on a 
Xilinx Virtex 5 FPGA (2012) 

Hardware 
thread 

registers 

scratch 
pad 

memory 

I/O devices 

Interleaved 
pipeline with one 
set of registers 

per thread 

SRAM 
scratchpad 

shared among 
threads 

DRAM main 
memory, 

separate banks 
per thread 

memory 
memory 

memory 

Isaac Liu, PhD Thesis, 2012 



Our	Third-Genera/on	PRET:	
Open-Source	FlexPRET	(Zimmer	2014/15)	

•  32-bit,	5-stage	thread	interleaved	pipeline,	RISC-V	ISA	
–  Hard	real-/me	HW	threads:	
scheduled	at	constant	rate	for	isola/on	and	repeatability.	

–  SoE	real-/me	HW	threads:		
share	all	available	cycles	for	efficiency.	

•  Deployed	on	Xilinx	FPGA	(area	comparable	to	Microblaze)	
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SRT thread 

Hardware 
thread Hardware 

thread Hardware 
thread Hardware 

thread 

FlexPRET 
Hard-Real-Time (HRT) Threads 
Interleaved with Soft-Real-Time (SRT) Threads 

Hardware 
thread 

registers 

scratch 
pad 

HRT threads have 
deterministic timing. 
SRT threads share 

available cycles 

SRAM 
scratchpad 

shared among 
threads 

DRAM main 
memory provides 

deterministic latency 
for HRT threads. 

Conventional 
behavior for the rest. 

memory 
memory 

memory 

HRT thread 

Michael Zimmer 



Interrupt Handler Thread 

Hardware 
thread Hardware 

thread Hardware 
thread 

FlexPRET I/O 
Interrupt-Driven I/O is notorious for disrupting timing 

Hardware 
thread 

registers 

scratch 
pad 

Interrupts have  
no effect on HRT threads, and  

bounded effect on SRT threads! 

memory 
memory 

memory 
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Performance	Cost?	

The	PRET	project	has	shown	
that	you	do	not	need	to	
sacrifice	performance	to	get	
control	over	/ming.	
	
	
	
	

48 [Isaac Liu, PhD Thesis, May, 2012] Lee, Berkeley 

No! 



FlexPRET	Shows:	

•  Not	only	is	there	no	performance	cost	for	
appropriate	workloads,	but	there	is	also	no	
performance	cost	for	inappropriate	
workloads!	

•  Pipelining,	memory	hierarchy,	and	interrupt-
driven	I/O	can	all	be	done	without	losing	
/ming	determinacy!	
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Conclusion	

Determinis/c	models	with	highly	faithful	
implementa/ons	exist	for	distributed	real-/me	systems.	

•  PTIDES:	distributed	real-/me	socware	
–  Determinis/c	/ming	across	networks	

•  PRET	machines	
–  Determinis/c	/ming	at	the	processor	level	
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We have run out of excuses for 
sloppy engineering! 


