Resurrecting Laplace's Demon:
The Case for Deterministic Models

Edward A. Lee

Robert S. Pepper Distinguished Professor
UC Berkeley

Keynote Talk: Workshop on Modeling in Software Engineering (MiSE)
Part of the International Conference on Software Engineering (ICSE)

May 16-17, 2016
Austin, TX

O Focus on Cyber-Physical Systems

Full of Contradictory Requirements

~ Biomedical

lllllll

It’s not just information technology anymore:

* Cyber + Physical
* Computation + Dynamics
* Security + Safety

Contradictions:

* Adaptability vs. Repeatability
* High connectivity vs. Security and Privacy

* High performance vs. Low Energy

* Asynchrony vs. Coordination/Cooperation

* Scalability vs. Reliability and Predictability

* Laws and Regulations vs. Technical Possibilities
* Economies of scale (cloud) vs. Locality (fog)

Buildings |11

* Open vs. Proprietary S e =
* Algorithms vs. Dynamics = A Eg/ I ,j
Innovation: Manufacturing H ¢ ;ﬂ
Cyber-physical systems require new engineering =
methods and models to address these contradictions. —Tﬁ E_—U#H
Lee, Berkeley — B w0 |

0
@ loT: Using Internet technology to interact

with physical devices (“things”).

: : This Bosch Rexroth printing press is a cyber-
Industrial automation physical factory using Ethernet and TCP/IP
example from 2008: with high-precision clock synchronization
Bosch-Rexroth printing | (IEEE 1588) on an isolated LAN.

press.

1 R —
P ===

The term “loT” includes
the technical solution

“Internet technology” in
the problem statement

“connect things”.

The term CPS does not.

Lee, Berkeley

(@)
@ Focus on Models

Input Signal

Input Signal

sampling rate

[

1[fuss]]

Frequency (Hz) [[05L

2

Frequency (Hz) [2et

[200.0
()

2.0

Processed Waveform

R)

Select Filter

Select Window

B>

limit to reasonable
cutoff frequendies

Power Spectrum

Student Edition ¢

SCADE
Editor

Sensees

N

A
FromPanel

Tescehtn
> SPEED_STEP
=

my

TeasredSpeed

| L

measuredAtude

53m,_guil_control

ALTITUDE_STEP

SPEED_SETTING INMT b)

Add SSM

/speed_dash

/speed_disp(Zspeed_ref)

ruisecontrolonoff:

File Edit View Simulation Format Tools

D& =)

Help

2]

S

- e
“ou

Enabled
Subsystem
int out
Sine Wave JL
Constant >
Gain n
outt
Enabled
Subsystem1

Car model (F = ma)

Ready

£ a
(force) ey peed
Desired 1imass Integrator Integratort
speed
O to60 spesd
attime 1)

Simple Cruise Control System

100%

odedS

R

The model

The target
(the thing
being
modeled).

In this example,
the modeling
framework is
calculus and
Newton’s laws.

Fidelity is how
well the model
and its target
match

S Engineers often confuse the model
with its target

You will never strike oil by
drilling through the map!

But this does not in any way
diminish the value of a map!

Solomon Wolf Golomb

Lee, Berkeley 6

Some of the most valuable models are
deterministic.

A model is deterministic if, given the initial state and
the inputs, the model defines exactly one behavior.

Deterministic models have proven extremely valuable
in the past.

“We may regard the present state of the
universe as the effect of its past and the
cause of its future. An intellect which at a
certain moment would know all forces that
set nature in motion, and all positions of all
items of which nature is composed, if this
intellect were also vast enough to submit
these data to analysis, it would embrace in a
single formula the movements of the
greatest bodies of the universe and those of
the tiniest atom; for such an intellect
nothing would be uncertain and the future
just like the past would be present before its
eyes.”

— Pierre Simon Laplace, A Philosophical
Essay on Probabilities

Pierre-Simon Laplace (1749—-1827).
Posthumous portrait by

Lee, Berkeley Joan-Baptiste Paulin Guérin, 1838

S But hasn’t Laplace’s demon

been debunked?

e(t) = (0) + / "u(r)dr Deterministic Laplace reflected a
| | O model period of
v(t) = v(0) +% : F(r)dr optimism in
science that

tended to equate
Nondeterministic the model with

target the truth.

R
He was drilling

through a map!

S A Model Need not

be True to be Useful

“Essentially, all models are wrong,
but some are useful.”

Box, G. E. P. and N. R. Draper, 1987: Empirical Model-Building and Response
Surfaces. Wiley Series in Probability and Statistics, Wiley.

@
@ Schematic of a simple CPS

Computational Network Computational
Platform Fabric Platform

Physical

plant

What kinds of models should we use?

Let’s look at the most successful kinds of models from
the cyber and the physical worlds.

(@)
@ Software is a Model

Physical System Model

/** Reset the output receivers, which are the inside receivers of
* the output ports of the container.
* xcept IllegalActionException If getting the receivers fails.
*/
private void _resetOutputReceivers() throws IllegalActionException {
List<IOPort> outputs = ((Actor) getContainer()).outputPortList();
for (I0Port output : outputs) {
if (_debugging) {
_debug("Resetting inside receivers of output port:
+ output.getName());

"

Receiver[]J[] receivers = output.getlnsideReceivers();

if (receivers != null) {
for (int i = @; i < receivers.length; i4+) {
if (receivers[i] != null) {

for (int j = @; j < receivers[i].length; j++) {
if (receivers[i][j] instanceof FSMReceiver) {
receivers[i][j].reset();

}

Single-threaded imperative programs
are deterministic models

Lee, Berkeley 12

S Consider single-threaded

Imperative programs

+ void §§°§in§3fago;‘){{ This program defines exactly one
; x = 1000; behavior, given the input x.

‘ }

5 if (x > 0) { .

6 x = x + 1000; Note that the modeling framework
: xS e, (the Clanguage, in this case)

5 X } defines “behavior” and “input.”

11 }

% The target of the model is
&% > nondeterministic (electrons and
holes sloshing around in silicon).

13

o . L.
Software relies on another deterministic

model that abstracts the hardware

Physical System Model

| Integer Register-Register Operations

RISC-V defines several arithmetic R-type operations. All operations read the rs! and rs2 registers
o "M as source operands and write the result into register rd. The funct field selects the type of operation.

27 26 22 21 17 16 76 0

rd | rsl | rs2 | funct10 | opcode |
5 5 5 10 7

dest srcl src2 ADD/SUB/SLT/SLTU (0)

dest srcl src2 AND/OR/XOR (0)

dest srcl src2 SLL/SRL/SRA oP

dest srcl src2 ADDW/SUBW OP-32

dest srcl src2 SLLW /SRLW/SRAW OP-32

ok
2 L . : Waterman, et al., The RISC-V Instruction Set Manual,
Image: Wikimedia Commons UCB/EECS-2011-62. 2011

Instruction Set Architectures (ISAs)
are deterministic models

14

Lee, Berkeley

... Which relies on yet another

deterministic model

Physical System Model

AITTver Hrvert Ca"y"'

\/

CaryOut

Synchronous digital logic
is a deterministic model

Lee, Berkeley 15

S Deterministic Models for the

Physical Side of CPS

Physical System Model

t
; . . I
Image: Wikimedia Commons X(T) — X(O) + / F(T)d T
0

Differential Equations
are deterministic models

Lee, Berkeley 16

S A Major Problem for CPS: Combinations of

Deterministic Models are Nondeterministic

1 void initTimer(void) {

2 SysTickPeriodSet (SysCt1lClockGet () / 1000);
3 SysTickEnable ();

4 SysTickIntEnable () ;

5 X

¢ volatile uint timer_count = O;
7 void ISR (void) {

8 if (timer_count != 0) {

9 timer_count --;

10 }

un r

12 int main(void) {

it SysTickIntRegister (&ISR);
14 .. // other init

15 timer_count = 2000;

16 initTimer () ;

7 while(timer_count != 0) {
18 ... code to run for 2 seconds
19 }

20 ... // other code

2}

Signal Signal
—p Model p———o

17

%(1) = %(0) +$' / F(t)dr
0

Lee, Berkeley Image: Wikimedia Commons

S Timing is not Part of

Software and Network Semantics

Correct execution of a program in all widely used
programming languages, and correct delivery of a network
message in all general-purpose networks has nothing to do
with how long it takes to do anything.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

Embedded software designers
have no map!

@
@ Determinism? Really?

CPS applications operate in an intrinsically
nondeterministic world.

Does it really make sense to insist on
deterministic models?

== O
@ The Value of Models

* |n science, the value of a model lies in how well its
behavior matches that of the physical system.

* In engineering, the value of the physical system lies
in how well its behavior matches that of the model.

In engineering, model fidelity is a two-way street!

For a model to be useful, it is necessary
(but not sufficient) to be able to be able to
construct a faithful physical realization.

== O
& A Physical Realization

 To a scientist, the model is flawed.

 To an engineer, the realization is flawed.

I’'m an engineer...

S For CPS, we need to

Change the Question

The question is not whether deterministic
models can describe the behavior of cyber-
physical systems (with high fidelity).

The question is whether we can build cyber-
physical systems whose behavior matches that
of a deterministic model (with high probability).

Lee, Berkeley 24

$ Determinism?

What about Resilience? Adaptability?

Deterministic models do not eliminate the need
for robust, fault-tolerant designs.

In fact, they enable such designs, because they
make it much clearer what it means to have a

fault!

o
@ Interim Conclusion

We have to fix the models!

But how?

@O Example of the Benefits of Embracing

Temporal Semantics

: : This Bosch Rexroth printing press is a cyber-
Despite using TCP /IP physical factory using Ethernet and TCP/IP

on Ethernet, this with high-precision clock synchronization
network achieves highly | (IEEE 1588) on an isolated LAN.

reliable bounded 1%

TSN (time-sensitive
networks) technology is
Starting to become
pervasive...

Lee, Berkeley

Deterministic models with highly faithful implementations
exist for distributed real-time systemes.

 PTIDES: distributed real-time software

— Deterministic timing across networks

* PRET machines
— Deterministic timing at the processor level

@ Roots of the Idea

Using Time Instead of Timeout
for Fault-Tolerant Distributed Systems

LESLIE LAMPORT
SR International

A general method is described for implementing a distributed system with any desired degree of fault-
tolerance. Instead of relying upon explicit timeouts, processes execute a simple clock-driven algorithm.
Reliable clock synchronization and a solution to the Byzantine Generals Problem are assumed.

Categories and Subject Descriptors: C.2.4 [Computer-Communications Networks]: Distributed
Systems—network operating systems; D.1.3 [Programming Techniques): Concurrent Program-
ming; D.4.1 [Operating Systems]: Process Management—synchronization; D.4.3 [Operating Sys-
tems]: File Systems Management—distributed file systems; D.4.5 [Operating Systems): Reliabil-
ity—fault-tolerance; D.4.7 [Operating Systems]: Organization and Design—distributed systems;
real-time systems

General Terms: Design, Reliability

Additional Key Words and Phrases: Clocks, transaction commit, timestamps, interactive consistency,
Byzantine Generals Problem

ACM Transactions on Programming Languages and Systems, 1984.

0 Ptides — A Robust Distributed DE

MoC for lolT Applications

in Proceedings of the 13th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 07) ,
Bellevue, WA, United States.

A Programming Model for Time-Synchronized Distributed Real-Time Systems

Yang Zhao Jie Liu Edward A. Lee
EECS Department Microsoft Research EECS Department
UC Berkeley One Microsoft Way UC Berkeley

Abstract: Discrete-event (DE) models are formal system specifications that
have analyzable deterministic behaviors. Using a global, consistent notion of
time, DE components communicate via time-stamped events. DE models
have primarily been used in performance modeling and simulation, where
time stamps are a modeling property bearing no relationship to real time
during execution of the model. In this paper, we extend DE models with the
capability of relating certain events to physical time...

@
@ Google Spanner — A Reinvention

Google
independently
developed a
very similar
technique and
applied it to
distributed
databases.

Spanner: Google’s Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, Dale Woodford

Google, Inc.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It is
the first system to distribute data at global scale and sup-
port externally-consistent distributed transactions. This
paper describes how Spanner is structured, its feature set,
the rationale underlying various design decisions, and a
novel time API that exposes clock uncertainty. This API
and its implementation are critical to supporting exter-
nal consistency and a variety of powerful features: non-
blocking reads in the past, lock-free read-only transac-
tions, and atomic schema changes, across all of Spanner.

tency over higher availability, as long as they can survive
1 or 2 datacenter failures.

Spanner’s main focus is managing cross-datacenter
replicated data, but we have also spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable [9], we
have also consistently received complaints from users
that Bigtable can be difficult to use for some kinds of ap-
plications: those that have complex, evolving schemas,
or those that want strong consistency in the presence of
wide-area replication. (Similar claims have been made
by other authors [37].) Manv_applications at Google

Proceedings of OSDI 2012

PTIDES: Discrete-Event Semantics

+ Synchronized Clocks + Sensors and Actuators

Time-stamped events that are
processed in time-stamp order. A few texts that use the DE MoC

2000 8 Thomas & Moorby’s

This MoC is widely used in N o
simulation and HDLs. Dhcaiption

_ Language

Given time-stamped inputs, it is
a deterministic concurrent MoC.

Introduction to

°"§;‘;‘t‘: ::om giscrete Event
ooooooooooooo ystems
Mapping Guide s st cum m.. Second Edition
‘‘‘‘‘‘‘ HARDWARE
DESCRIPTION
= [ANGUAGES etworks

Chistos G. Cassandras e e T

S Ptides: Time stamps bind to real time at

sensors and actuators

Actors wrap

sensors ; .
Time stamp value is
rm 1 time of measurement Time stamp value is a
deadline
Computationl *
Platform 3
A
I Computation3 E_—
/ Actors wrap
actuators
Platform 2 [
‘.'932* 5€n54r2 H Computation2 * Mer %/
A 9

¥

physical Local
interface network Event
fabric Source
o
@ Computation4

Messages are
processed in time-
Stamp order

physical
(nterface

Physical
plant

S Deterministic Distributed

Real-Time

Assume bounds on:
* clock synchronization error

* network latency

then events are processed in time-stamp order
at every component. If in addition we assume

e bounds on execution time

then events are delivered to actuators on time.

See http.//chess.eecs.berkeley.edu/ptides

Y So Many

Non-Synchronized Clocks

You will never strike oil by
drilling through the map!

Assumptions?

All of the assumptions
are achievable with
today’s technology, and
are requirements
anyway for hard-real-
time systems. A Ptides
model makes the
requirements explicit.

Violations of the requirements are detectable
as out-of-order events and can be treated as
faults.

Lee, Berkeley i RSP L N =

&) Handling Faults

A fault manifests as out-of-order events.

e |
Platform 1
If an event
0 arrives here with
ccurrence an earlier time
of a fault stamp...
implies one
or more of Platform 2 f
the tf_gse_* SenSer H ComputationZ* — Merge
2 SSUMDHONS A I {L"e‘iai a3 I --- after an event here
Y 'p ‘Q Local ;: with a later time

was violated. physical network | stamp has been

fabric 1 2 processed, then fault!

Physical

plant

High-precision clock synchronization will
become ubiquitous. Networks will become able
to “guarantee” bounded latencies.

The time is right.

But what about the execution time of software?

Deterministic models with highly faithful implementations
exist for distributed real-time systemes.

e PTIDES: distributed real-time software

— Deterministic timing across networks

 PRET machines
— Deterministic timing at the processor level

computers is capable of delivering “correct”
computations and precise timing...

@o The hardware out of which we build

The synchronous digital logic
abstraction removes the messiness
of transistors.

// Perform the convolution.

... but the overlaying software for (int i=0; i<10; i++) {

abstractions discard the timing oty ietimens.

precision. notify(x[i]);
}

@" PRET Machines — Giving Software the

Capabilities its Hardware Already Has.

 PREcision-Timed processors = PRET
* Predictable, REpeatable Timing = PRET

* Performance with REpeatable Timing = PRET
\ : {
http://chess.eecs.berkeley.edu/pret ‘ _ 4

// Perform the convolution.

for (int 1=0; 1<10; i++) {
x[1] = al[i]*b[J-1]; =
// Notify listeners.
notify(x[1]);

}

Computing

With time

) Major Challenges

and existence proofs that they can be met

* Pipelines

* Memory hierarchy

* 1/0

PRET ISA Realizations:
e PRET1, Sparc-based

e PTARM, ARM-based

* FlexPRET, RISC-V-based

PRET Memory Systems:
O DRAM controller

o Scratchpad managment

o Mixed criticality DRAM controller

PRET Applications:
o Control systems

o Computational fluid dynamics

PRET Principle:
O The case for PRET

O PRET ISA extensions

o Temporal isolation

PRET for Security:
o Eliminating side-channel attacks

o Design challenges

o Cyber-physical systems

0 Three Generations of PRET

Machines at Berkeley

 PRET1, Sparc-based (simulation only)

* PTARM, ARM-based (FPGA implementation)

* FlexPRET, RISC-V-based (FPGA + simulation)

S Our Second Generation PRET

PTArm, a soft core on a
Xilinx Virtex 5 FPGA (2012)

registers

Interleaved SRAM DRAM main
pipeline with one scratchpad memory,
set of registers shared among separate banks
per thread threads per thread

Isaac Liu, PhD Thesis, 2012

N Our Third-Generation PRET:

Open-Source FlexPRET (Zimmer 2014/15)

* 32-bit, 5-stage thread interleaved pipeline, RISC-V ISA

— Hard real-time HW threads:
scheduled at constant rate for isolation and repeatability.

— Soft real-time HW threads:
share all available cycles for efficiency.

* Deployed on Xilinx FPGA (area comparable to Microblaze)

>

Every 3 cycles Clock cycles
(unless done)

wn

o)

_|

_|

[EY
Instructions

[Whenever cycle available

(arbitrary interleaving) Digilent Atlys (Spartan 6) and

NI myRIO (Zync)

Lee, Berkeley 45

S FlexPRET

Hard-Real-Time (HRT) Threads
Interleaved with Soft-Real-Time

(SRT) Threads

SRT thread

HRT thread

Hardware

thread memory
registers
HRT threads have SRAM DRAM main
deterministic timing. Scratchpad memory provides
SRT threads share shared among deterministic latency
available cycles threads for HRT threads.
Conventional

behavior for the rest.

Michael Zimmer

Y FlexPRET 1/O

Interrupt-Driven I/O is notorious for disrupting timing

Interrupt Handler Thread

Hardware
thread

registers

Interrupts have
no effect on HRT threads, and
bounded effect on SRT threads!

memory

Michael Zimmer

(@)
@ Performance Cost?

WCET Benchmarks Instruction Throughput (higher is better)

PTARM

1.2 SA1100 cold = -
SA1100 warm
SA1100 allcache ——

No!

The PRET project has shown
that you do not need to o :
sacrifice performance to get st

control over timing. e =

instruction throughput (instructions/cycle)

SA1100 warm s
SA1100 cold ===

total cycles (logscale)

108 o

24 2 s
e £o) 25 £
Z D %
XN U

[Isaac Liu, PhD Thesis, May, 2012] g

(@)
@ FlexPRET Shows:

* Not only is there no performance cost for
appropriate workloads, but there is also no
performance cost for inappropriate

workloads!

* Pipelining, memory hierarchy, and interrupt-
driven I/O can all be done without losing
timing determinacy!

Deterministic models with highly faithful
implementations exist for distributed real-time systems.

 PTIDES: distributed real-time software

— Deterministic timing across networks

 PRET machines
— Deterministic timing at the processor level

We have run out of excuses for
sloppy engineering!

