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Model	Reuse	Strategies

• By	adapting	the	
transformation	to	be	
reused	

• By	adapting	the	source	
metamodel
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Systematising	model	reuse	by	
adopting	a	product	line	
approach
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FMT:	What’s	in	a	name?

Intent:	Do	not	reinvent	the	wheel	!		
Reuse	existing	techniques	as	much	as	possible!	

Manage	explicitly	your	language	assets		
Operate	with	multi-granularity	(both	coarse-/fine-grained);	
Create	repositories	of	specialised	domain	assets	

Configure	your	language	!
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FSM

Transition

Init Final

Normal

current
State

time	:	real

nested

r

h x t

requires

r         / minimise() : FSM 
r ˄ h     / flatten() : HFSM 
r ˄ t ˄ x / wcet() : real 
r ˄ x     / accept() : Boolean 

FSM_FMT
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Domain Engineering Activities 
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Building	FMTs
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Building	FMTs

Purpose	
Define	FMT	construction	approaches:		
“Big	Bang”:	Design	FMTs	explicitly		w.r.t	SPL	paradigm	
“Incremental”:	Start	from	a	MT	and	incrementally	add	
features	and	MM	elements
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Building	FMTs

Purpose	
Define	FMT	construction	approaches:		
“Big	Bang”:	Design	FMTs	explicitly		w.r.t	SPL	paradigm	
“Incremental”:	Start	from	a	MT	and	incrementally	add	
features	and	MM	elements

Challenges:		providing	construction	primitives	that	support	
merging	similar	elements	and	features,	correct	by	
construction	FMTs,	evolution…
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Validate	FMTs

Purpose	
	Dealing	with	FMTs	inconsistencies		
Structural:	conflicting	Names,	references/	multiplicities	
mismatches	=>	Can	be	addressed	with	variability-aware	type	
checking	
Semantic:	unintended	interactions	amongst	transformations,	
transformations	not	meant	to	work	on	hierarchies,	…	
Can	be	addressed	via	SPL	testing	or	verification		
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Semantic:	unintended	interactions	amongst	transformations,	
transformations	not	meant	to	work	on	hierarchies,	…	
Can	be	addressed	via	SPL	testing	or	verification		

Challenges:	Scalability	of	analyses,	“verifiability”	of	
transformations
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Application Engineering  
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Configure	and	Derive	an	MT	Product

Purpose	
Configure	your	DSML	the	same	way	you	configure	your	car…	
Configurator	partially	generated	from	the	feature	model	
Product	derivation	techniques	(e.g.	pruning)	to	build	desired	
MT	automatically		
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Purpose	
Configure	your	DSML	the	same	way	you	configure	your	car…	
Configurator	partially	generated	from	the	feature	model	
Product	derivation	techniques	(e.g.	pruning)	to	build	desired	
MT	automatically		

Challenges	
Partial	configuration,		user	guidance	on	the	relevance	of	
elements	(documentation	issues)			
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Purpose
	Perform	QA	activities	that	are	too	expensive	at	the	domain	
engineering	level	(e.g.		“integration”	tests)		
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Validate	MTs

Purpose
	Perform	QA	activities	that	are	too	expensive	at	the	domain	
engineering	level	(e.g.		“integration”	tests)		

Challenges	
Reusing	validation	artifacts	from	domain	engineering,	
validating	them	(e.g.	Mutation	Analysis)		
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Matching	and	Customising	MTS

Purpose
Relating	your	MT	with	existing	metamodels	
Needed	if	your	MT	is	not	a	DSML	in	itself	but	part	of	it
For	fully	derived	MTs,	existing	techniques	apply		

Challenges	
Dealing	with	partial	MTs	=>	“variability-aware”	matching

15



www.unamur.be

Conclusion

We	proposed	a	vision	leveraging	Model	Types	and	Feature	
Modelling	to	support	product-line	engineering	of	modelling	
languages	
FMTs	=	support	to	manage	reusable	MM	assets		
Wishlist	of	high-level	operations	to	work	with	FMTs

16
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Future	Work

17


