
														

					

Featured	Model	Types				

Gilles	Perrouin,	Moussa	Amrani,	Mathieu	Acher,	Benoît	Combemale,	 
Axel	Legay,	Pierre-Yves	Schobbens

Towards	Systematic	Reuse	in	Modelling	
Language	Engineering

MISE@ICSE,		Austin	
May	16,	2016

www.unamur.be

Reuse	Dimensions	[1]

2

Granularity

Scope

Specificity

[1]	Kusel	et	al.		Reuse	in	Model-To-Model	Transformation	
Languages:	Are	We	There	Yet?	SoSyM,	14(2):537–572,	May	
2015.

www.unamur.be

Reuse	Dimensions	[1]

2

Granularity

Scope

Specificity

[1]	Kusel	et	al.		Reuse	in	Model-To-Model	Transformation	
Languages:	Are	We	There	Yet?	SoSyM,	14(2):537–572,	May	
2015.

www.unamur.be

Reuse	Dimensions	[1]

2

Granularity

Scope

Specificity

[1]	Kusel	et	al.		Reuse	in	Model-To-Model	Transformation	
Languages:	Are	We	There	Yet?	SoSyM,	14(2):537–572,	May	
2015.

www.unamur.be

Reuse	Dimensions	[1]

2

Granularity

Scope

Specificity

LARGE: 
(trans	parts,	or	in	full)

SMALL: 
(functions,	rules,	etc.)

[1]	Kusel	et	al.		Reuse	in	Model-To-Model	Transformation	
Languages:	Are	We	There	Yet?	SoSyM,	14(2):537–572,	May	
2015.

www.unamur.be

CONCRETE: 
Bound	to	a	specific	metamodel	/	trans	language

GENERIC: 
Independent	of	metamodel	/	trans	language

Reuse	Dimensions	[1]

2

Granularity

Scope

Specificity

LARGE: 
(trans	parts,	or	in	full)

SMALL: 
(functions,	rules,	etc.)

[1]	Kusel	et	al.		Reuse	in	Model-To-Model	Transformation	
Languages:	Are	We	There	Yet?	SoSyM,	14(2):537–572,	May	
2015.

www.unamur.be

CONCRETE: 
Bound	to	a	specific	metamodel	/	trans	language

GENERIC: 
Independent	of	metamodel	/	trans	language

Reuse	Dimensions	[1]

2

Granularity

Scope

Specificity

LARGE: 
(trans	parts,	or	in	full)

SMALL: 
(functions,	rules,	etc.)

Inter: 
Reused	across	many	transformations

INTRA: 
Reuse	inside	the	same	

transformation

[1]	Kusel	et	al.		Reuse	in	Model-To-Model	Transformation	
Languages:	Are	We	There	Yet?	SoSyM,	14(2):537–572,	May	
2015.

www.unamur.be

Model	Reuse	Strategies

• By	adapting	the	
transformation	to	be	
reused	

• By	adapting	the	source	
metamodel

3

[1]		 Salay,	Rick	and	Famelis,	Michalis	and	Rubin,	Julia	and	Di	Sandro,	Alessio	and	Chechik,	Marsha.	Lifting	Model	Transformations	To	Product	Lines.	ICSE,	2014.	
[2]	 de	Lara,	Juan	and	Guerra,	Esther	and	Cuadrado,	Jesus	Sanchez.A-posteriori	typing	for	Model-Driven	Engineering.	MoDELS	2015.	
[3]	 Tisi,	Massimo	and	Jouault,	Frédéric	and	Fraternali,	Piero	and	Ceri,	Stefano	and	Bézivin,	Jean.	On	The	Use	of	Higher-Order	Transformations.	MDA-FA,	2009.	
[4]	 Guy,	Clément	and	Combemale,	Benoît	and	Derrien,	Steven	and	Steel,	James	and	Jézéquel,	Jean-Marc.	On	Model	Subtyping.	ECMFA,	2012.	
[5]	 Moha,	Naouel	and	Mahé,	Vincent	and	Barais,	Olivier	and	Jézéquel,	Jean-Marc.	Generic	Model	Refactorings.	MoDELS	2009.	
[6]	 Sen,	Sagar	and	Moha,	Naouel	and	Mahé,	Vincent	and	Barais,	Olivier	and	Baudry,	Benoît	and	Jézéquel,	Jean-Marc.	Reusable	model	transformations.	SoSyM,	11(1),	2010.

www.unamur.be

Issues	[1]

4

[1]	Kusel	et	al.		Reuse	in	Model-To-Model	Transformation	Languages:	Are	We	There	Yet?	SoSyM,	14(2):
537–572,	May	2015.

www.unamur.be

Issues	[1]
I1	–	Insufficient	abstraction	from	metamodel(s)	to	support	

metamodel-independent	reuse

4

[1]	Kusel	et	al.		Reuse	in	Model-To-Model	Transformation	Languages:	Are	We	There	Yet?	SoSyM,	14(2):
537–572,	May	2015.

www.unamur.be

Issues	[1]
I1	–	Insufficient	abstraction	from	metamodel(s)	to	support	

metamodel-independent	reuse
 

By	generalization:	decouple	transformation	logic	from	type	info  
By	simplification:	expose	interface;	hide	realisation

4

[1]	Kusel	et	al.		Reuse	in	Model-To-Model	Transformation	Languages:	Are	We	There	Yet?	SoSyM,	14(2):
537–572,	May	2015.

www.unamur.be

Issues	[1]
I1	–	Insufficient	abstraction	from	metamodel(s)	to	support	

metamodel-independent	reuse
 

By	generalization:	decouple	transformation	logic	from	type	info  
By	simplification:	expose	interface;	hide	realisation

I2	–	Lack	of	repositories	for	simplifying	artifacts	selection,	at	coarse-	
(e.g.,	full	transfos)	and	fine-grained	(e.g.,	functions)	levels 

4

[1]	Kusel	et	al.		Reuse	in	Model-To-Model	Transformation	Languages:	Are	We	There	Yet?	SoSyM,	14(2):
537–572,	May	2015.

www.unamur.be

Issues	[1]
I1	–	Insufficient	abstraction	from	metamodel(s)	to	support	

metamodel-independent	reuse
 

By	generalization:	decouple	transformation	logic	from	type	info  
By	simplification:	expose	interface;	hide	realisation

I2	–	Lack	of	repositories	for	simplifying	artifacts	selection,	at	coarse-	
(e.g.,	full	transfos)	and	fine-grained	(e.g.,	functions)	levels 

I3	–	Lack	of	meta-information	for	selecting	appropriate	reusable	
elements	without	knowing	the	transformation’s	internal

4

[1]	Kusel	et	al.		Reuse	in	Model-To-Model	Transformation	Languages:	Are	We	There	Yet?	SoSyM,	14(2):
537–572,	May	2015.

www.unamur.be

Issues	[1]
I1	–	Insufficient	abstraction	from	metamodel(s)	to	support	

metamodel-independent	reuse
 

By	generalization:	decouple	transformation	logic	from	type	info  
By	simplification:	expose	interface;	hide	realisation

I2	–	Lack	of	repositories	for	simplifying	artifacts	selection,	at	coarse-	
(e.g.,	full	transfos)	and	fine-grained	(e.g.,	functions)	levels 

I3	–	Lack	of	meta-information	for	selecting	appropriate	reusable	
elements	without	knowing	the	transformation’s	internal

Provide	documentation,	pre-conditions,	
test	models,	formal	requirements,	etc

4

[1]	Kusel	et	al.		Reuse	in	Model-To-Model	Transformation	Languages:	Are	We	There	Yet?	SoSyM,	14(2):
537–572,	May	2015.

www.unamur.be

Issues	[1]
I1	–	Insufficient	abstraction	from	metamodel(s)	to	support	

metamodel-independent	reuse
 

By	generalization:	decouple	transformation	logic	from	type	info  
By	simplification:	expose	interface;	hide	realisation

I2	–	Lack	of	repositories	for	simplifying	artifacts	selection,	at	coarse-	
(e.g.,	full	transfos)	and	fine-grained	(e.g.,	functions)	levels 

I3	–	Lack	of	meta-information	for	selecting	appropriate	reusable	
elements	without	knowing	the	transformation’s	internal

Provide	documentation,	pre-conditions,	
test	models,	formal	requirements,	etc

4

[1]	Kusel	et	al.		Reuse	in	Model-To-Model	Transformation	Languages:	Are	We	There	Yet?	SoSyM,	14(2):
537–572,	May	2015.

Sys
tem

atic
reu

se
is n

ot

the
re y

et

5

5

Systematising	model	reuse	by	
adopting	a	product	line	
approach

www.unamur.be

Variations	over	an	FSM

6

FSM

State Transition

Graph

Vertex Edge

FSM

State Transition

Init Final

Normal

current

FSM

State Transition
time	:	real

FSM

State Transition

www.unamur.be

Variations	over	an	FSM

6

FSM

State Transition

Graph

Vertex Edge

FSM

State Transition

Init Final

Normal

current

FSM

State Transition
time	:	real

Applicable	transformations:	
minimize() : FSM

Applicable	transformations:	
accept() : boolean

Applicable	transformations:	
wcet() : real

FSM

State Transition

www.unamur.be

Variations	over	an	FSM

6

FSM

State Transition

Graph

Vertex Edge

FSM

State Transition

Init Final

Normal

current

FSM

State Transition
time	:	real

Applicable	transformations:	
minimize() : FSM

Applicable	transformations:	
accept() : boolean

Applicable	transformations:	
wcet() : real

FSM

State Transition

Mo
del

Typ
es
cap

tur
e th

e

FSM
var

ian
ts,
but

wh
at

cap
tur
es
the

Mo
del

Typ
e

Var
ian
ts ?

www.unamur.be

FMT:	What’s	in	a	name?

Intent:	Do	not	reinvent	the	wheel	!		
Reuse	existing	techniques	as	much	as	possible!	

Manage	explicitly	your	language	assets		
Operate	with	multi-granularity	(both	coarse-/fine-grained);	
Create	repositories	of	specialised	domain	assets	

Configure	your	language	!

7

www.unamur.be 8

FSM

Transition

Init Final

Normal

current
State

time	:	real

nested

r

h x t

requires

r / minimise() : FSM
r ˄ h / flatten() : HFSM
r ˄ t ˄ x / wcet() : real
r ˄ x / accept() : Boolean

FSM_FMT

www.unamur.be

Domain Engineering Activities

www.unamur.be

Building	FMTs

10

www.unamur.be

Building	FMTs

Purpose	
Define	FMT	construction	approaches:		
“Big	Bang”:	Design	FMTs	explicitly		w.r.t	SPL	paradigm	
“Incremental”:	Start	from	a	MT	and	incrementally	add	
features	and	MM	elements

10

www.unamur.be

Building	FMTs

Purpose	
Define	FMT	construction	approaches:		
“Big	Bang”:	Design	FMTs	explicitly		w.r.t	SPL	paradigm	
“Incremental”:	Start	from	a	MT	and	incrementally	add	
features	and	MM	elements

10

www.unamur.be

Building	FMTs

Purpose	
Define	FMT	construction	approaches:		
“Big	Bang”:	Design	FMTs	explicitly		w.r.t	SPL	paradigm	
“Incremental”:	Start	from	a	MT	and	incrementally	add	
features	and	MM	elements

Challenges:		providing	construction	primitives	that	support	
merging	similar	elements	and	features,	correct	by	
construction	FMTs,	evolution…

10

www.unamur.be

Validate	FMTs

11

www.unamur.be

Validate	FMTs

Purpose	

11

www.unamur.be

Validate	FMTs

Purpose	
	Dealing	with	FMTs	inconsistencies		
Structural:	conflicting	Names,	references/	multiplicities	
mismatches	=>	Can	be	addressed	with	variability-aware	type	
checking	
Semantic:	unintended	interactions	amongst	transformations,	
transformations	not	meant	to	work	on	hierarchies,	…	
Can	be	addressed	via	SPL	testing	or	verification		

11

www.unamur.be

Validate	FMTs

Purpose	
	Dealing	with	FMTs	inconsistencies		
Structural:	conflicting	Names,	references/	multiplicities	
mismatches	=>	Can	be	addressed	with	variability-aware	type	
checking	
Semantic:	unintended	interactions	amongst	transformations,	
transformations	not	meant	to	work	on	hierarchies,	…	
Can	be	addressed	via	SPL	testing	or	verification		

Challenges:	Scalability	of	analyses,	“verifiability”	of	
transformations

11

www.unamur.be

Application Engineering

www.unamur.be

Configure	and	Derive	an	MT	Product

13

www.unamur.be

Configure	and	Derive	an	MT	Product

Purpose	
Configure	your	DSML	the	same	way	you	configure	your	car…	
Configurator	partially	generated	from	the	feature	model	
Product	derivation	techniques	(e.g.	pruning)	to	build	desired	
MT	automatically		

13

www.unamur.be

Configure	and	Derive	an	MT	Product

Purpose	
Configure	your	DSML	the	same	way	you	configure	your	car…	
Configurator	partially	generated	from	the	feature	model	
Product	derivation	techniques	(e.g.	pruning)	to	build	desired	
MT	automatically		

Challenges	
Partial	configuration,		user	guidance	on	the	relevance	of	
elements	(documentation	issues)			

13

www.unamur.be

Validate	MTs

14

www.unamur.be

Validate	MTs

Purpose

14

www.unamur.be

Validate	MTs

Purpose
	Perform	QA	activities	that	are	too	expensive	at	the	domain	
engineering	level	(e.g.		“integration”	tests)		

14

www.unamur.be

Validate	MTs

Purpose
	Perform	QA	activities	that	are	too	expensive	at	the	domain	
engineering	level	(e.g.		“integration”	tests)		

14

www.unamur.be

Validate	MTs

Purpose
	Perform	QA	activities	that	are	too	expensive	at	the	domain	
engineering	level	(e.g.		“integration”	tests)		

Challenges	
Reusing	validation	artifacts	from	domain	engineering,	
validating	them	(e.g.	Mutation	Analysis)		

14

www.unamur.be

Matching	and	Customising	MTS

15

www.unamur.be

Matching	and	Customising	MTS

Purpose

15

www.unamur.be

Matching	and	Customising	MTS

Purpose
Relating	your	MT	with	existing	metamodels	

15

www.unamur.be

Matching	and	Customising	MTS

Purpose
Relating	your	MT	with	existing	metamodels	
Needed	if	your	MT	is	not	a	DSML	in	itself	but	part	of	it

15

www.unamur.be

Matching	and	Customising	MTS

Purpose
Relating	your	MT	with	existing	metamodels	
Needed	if	your	MT	is	not	a	DSML	in	itself	but	part	of	it
For	fully	derived	MTs,	existing	techniques	apply		

15

www.unamur.be

Matching	and	Customising	MTS

Purpose
Relating	your	MT	with	existing	metamodels	
Needed	if	your	MT	is	not	a	DSML	in	itself	but	part	of	it
For	fully	derived	MTs,	existing	techniques	apply		

15

www.unamur.be

Matching	and	Customising	MTS

Purpose
Relating	your	MT	with	existing	metamodels	
Needed	if	your	MT	is	not	a	DSML	in	itself	but	part	of	it
For	fully	derived	MTs,	existing	techniques	apply		

Challenges	
Dealing	with	partial	MTs	=>	“variability-aware”	matching

15

www.unamur.be

Conclusion

We	proposed	a	vision	leveraging	Model	Types	and	Feature	
Modelling	to	support	product-line	engineering	of	modelling	
languages	
FMTs	=	support	to	manage	reusable	MM	assets		
Wishlist	of	high-level	operations	to	work	with	FMTs

16

www.unamur.be

Future	Work

17

