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Abstract. In Model-Driven Engineering models and metamodels are not pre-
served from the evolutionary pressure which inevitably affects almost any arte-
facts. Moreover, the coupling between models and metamodels implies that when
a metamodel undergoes a modification, the conforming models require to be ac-
cordingly co-adapted. One of the main obstacles to the complete automation of
the adaptation process is represented by the dependencies which occur among
the different kinds of modifications. The paper illustrates a dependency analy-
sis, classifies such dependencies, and proposes a metamodeling language driven
resolution which is independent from the evolving metamodel and its underlying
semantics. The resolution enables a decomposition and consequent scheduling of
the adaptation steps allowing the full automation of the process.

1 Introduction
Model Driven Engineering (MDE) [1] is increasingly gaining acceptance as a mean to
leverage abstraction and render business logic resilient to technological changes. Co-
ordinated collections of models and modelling languages are used to describe software
systems on different abstraction layers and from different perspectives [2]. In general,
domains are analysed and engineered by means of a metamodel, i.e. a coherent set of
interrelated concepts. A model is said to conform to a metamodel, or in other words
it is expressed by the concepts encoded in the metamodel, constraints are expressed at
the metalevel, and model transformation occurs when a source model is modified to
produce a target model.

In a model-centric vision of software-development, models and metamodels are not
preserved from the evolutionary pressure which inevitably affects almost any artefacts
involved in the process [3]. Moreover, the coupling between models and metamod-
els implies that when a metamodel undergoes a modification, the conforming models
require to be accordingly co-adapted3 not to let them become invalid. This adapta-
tion process is difficult, error-prone and can give place to inconsistencies between the
? Partially supported by the European Communitys 7th Framework Programme (FP7/2007-

2013), grant agreement n◦ 214898.
3 The terms co-adaptation, co-evolution, and coupled evolution will be at some extent used as

synonyms throughout the paper.
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metamodel and the related artefacts, if not supported by any automation. Such an is-
sue becomes even more relevant when dealing with enterprise applications, since in
general system models encompass a large population of instances which need to be
appropriately adapted, hence inconsistencies can possibly lead to irremediable infor-
mation erosion [4]. The management of coupled evolution is intrinsically complex and
requires the capability of a) differencing, i.e. determining the differences between two
versions of the same metamodel and b) adaptation, that is a transformational process
able to partly or fully automatize the adaptation of the models according to the modifi-
cations detected in the previous step. Recently, these aspects have been investigated by
several works, while some focused on the problem of metamodel matching (e.g., [5]),
most of them concentrated on the adaptation by either assuming that change traces,
for instance, are somehow available or addressing only atomic modifications (e.g., [4,
6, 7]), see Sect. 2.1 for a detailed discussion. Unfortunately, supposing the availabil-
ity of predefined information about changes and assuming only atomic operations is
not always practicable, because metamodels usually evolve in a complex way without
keeping track of the applied changes.

This paper proposes a transformational approach to co-adaptation which is agnostic
of the differencing method and considers complex modifications of metamodels, in con-
trast with current approaches [4, 6, 7]. As shown in [8], the adaptation is defined as the
parallel composition of two different transformations which are automatically derived
from the breaking resolvable, and breaking unresolvable changes. Unfortunately, the
occurrence of dependencies between these two kind of changes compromises the par-
allel independence of the generated transformations, and thus the complete automation
of the co-adaptation. This work enhances the work in [8] by proposing a dependency
analysis which underpins a resolution strategy allowing the correct scheduling of the
adaptation steps. All the metamodel change dependencies have been considered and for
each of them a resolution schema is proposed enabling the complete automation of the
adaptation. Interestingly, the technique is independent of the metamodel and its under-
lying semantics, since it relies only on the definition of the metamodeling language.

The structure of the paper is as follows. In Sect. 2 a discussion about the related
work and the background is presented. Next section analyzes the metamodel change
dependencies and discusses the countermeasures to adopt in order to resolve them. Fi-
nally some conclusions are drawn.

2 Metamodel evolution and model co-evolution

Metamodels are expected to evolve during their life-cycle, thus causing possible prob-
lems to existing models which conform to the old version of the metamodel and do not
conform to the new version anymore. A possible solution is the adoption of mecha-
nisms of model co-evolution, i.e. models are migrated in new instances according to the
changes of the corresponding metamodel. In the following, related works are illustrated
to give an overall view of the problem, current solutions, and the issues which are still
open.
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2.1 Related work

The problem of co-evolution presents intrinsic difficulties. In [7] the authors introduce
a new language, COPE, to support the adaptation of models with respect to meta-
model updates. However, the language is mainly exploited to provide helpers in in-
stance co-adaptations and not to introduce a generative approach based on metamodel
variations. In [4, 6, 9] the authors try to improve the degree of automation, by consid-
ering all the possibile metamodel manipulations and distinguishing them with respect
to the effects they have on the existing instances. In particular, metamodel changes
are classified in (i) non-breaking changes that do not break the conformance of mod-
els once the corresponding metamodel has been modified, (ii) breaking and resolvable
changes which break the conformance of models even though they can be automati-
cally co-adapted, and (iii) breaking and unresolvable changes that break the confor-
mance of models which can not be automatically co-evolved and user intervention is re-
quired. Such a categorization suggests to support model co-evolution by separating the
various forms of metamodel revisions and then by adopting the appropriate countermea-
sures. For instance, in [4] metamodel evolutions are specified by QVT relations, while
co-adaptations are defined in terms of QVT transformations when resolvable changes
occur. The main limitations are that co-adapting transformations are not automatically
obtained from metamodel modifications and unresolvable changes are not given ex-
plicit support. Moreover, using relations instead of difference models does not allow
distinguishing metaelement updates from deletion/addition patterns. This problem is
(partly) addressed in [6], which advocates for some metamodel difference management
by means of change traces, although no specific proposal is adopted or given.

In [10] the authors discuss the possibility to induce model transformations through
model weaving. In particular, weaving links are given to establish correspondences
(or matchings) between metamodel elements and consequently to derive mappings be-
tween corresponding models. If the weaving is seen as a difference representation, the
induced transformation can be considered as the automated co-adaptation of existing
instances. Nonetheless, the approach in [10] lacks of expressiveness, since only addi-
tions and deletions can be represented through the semantics provided by the proposed
weaving relationships. The problem of metamodel matching is also discussed in [5]
where techniques based on schema matching algorithms are used to compute meta-
model alignments.

The co-evolution problem is also investigated in the context of database evolution
and metadata handling, which have been demonstrated to share several problems re-
lated to model management [11]. In fact, when schemas evolve to overcome new re-
quirements all the interconnected artefacts need to be co-adapted, like queries, scripts
and even existing data. Also in this field, a common solution relies on the separation be-
tween schema manipulations causing no or limited updates to existing instances versus
modifications requiring deep structural changes and data conversions. Analogously to
model co-evolution, simple situations can be automatically supported, while complex
ones demand for user intervention, even though the environment can be adequately
started-up [12].
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Fig. 1. Petri Net metamodel evolution

2.2 Supporting complex metamodel changes

A common aspect that seems to underlay current approaches to co-evolution is the
atomicity of the changes, i.e. the classified change types are assumed to occur individu-
ally, which is not always the case since modifications tend to occur with arbitrary mul-
tiplicity and complexity. Additionally, interdependencies may also be present posing
severe difficulties in distinguishing the various change types. To clarify such problems
the sample evolution of the (simplified) Petri Net metamodel depicted in Figure 1 will
be considered in the rest of the section. In particular, the initial metamodel MM0 consists
of Places and Transitions, places can have source and/or destination transitions,
whereas transitions must link source and destination places (src and dst association
roles, respectively). In the new metamodel MM1, each Net has at least one Place and
one Transition. Besides, arcs between places and transitions are made explicit by
extracting PTArc and TPArc metaclasses, thus allowing to add further properties to
relationships between places and transitions. Since PTArc and TPArc both represent
arcs, they have been generalized in MM2 by the new abstract class Arc encompassing
the integer metaproperty weight. Finally, the metaclass Net has been renamed into
PetriNet.

The modifications applied to the Petri Net metamodel MM0 to obtain MM1 consists of
breaking and resolvable changes. In fact the addition of the new PTArc and TPArc
metaclasses breaks the conformance of the existing models to MM0 since, according
to the new metamodel MM1, Place and Transition instances have to be related
through PTArc and TPArc elements. However, models can be automatically migrated
by adding for each couple of Place and Transition entities two additional PTArc
and TPArc instances between them. An automatic model adaptation cannot be per-
formed when MM1 is changed to get MM2 because of the breaking and unresolvable modi-
fications. In particular, in this case, only a human intervention can introduce the missing
information related to the weight of the arc being specified, or otherwise default values
have to be considered.

All the scenarios of model co-adaptations, like the one of the Petri Net example,
can be managed with respect to the possible metamodel modifications which can be
distinguished into additive, subtractive, and updative [8]. By going into more details,
with additive changes we refer to the following metamodel element additions:



5

Change type Change
Non-breaking changes Generalize metaproperty, Add (non-obligatory) metaclass,

and Add (non-obligatory) metaproperty
Breaking and Extract (abstract) superclass, Eliminate metaclass,
resolvable changes Eliminate metaproperty, Push metaproperty,

Flatten hierarchy, Rename metaelement,
Move metaproperty, and Extract/inline metaclass

Breaking and Add obligatory metaclass, Add obligatory metaproperty,
unresolvable changes Pull metaproperty, Restrict metaproperty,

Change metaproperty type, and Extract (non-abstract) superclass
Table 1. Changes classification

– Add metaclass or metaproperty, introducing new metaclasses or metaproperties is
a common practice in metamodel evolution which gives place to metamodel exten-
sions;

– Generalize metaproperty, a metaproperty is generalized when its multiplicity or
type are relaxed, for instance the cardinality is modified from 3..n to 0..n, or a
type is substituted with its supertype;

– Pull metaproperty, a metaproperty p is pulled into a superclass A and the old one is
removed from a subclass B;

– Extract superclass, a superclass is extracted in a hierarchy and a set of properties is
pulled on.

Subtractive changes consist of the deletion of some of the existing metamodel elements:
– Eliminate metaclass, a metaclass is deleted by giving place to a sub metamodel of

the initial one;
– Eliminate metaproperty, a property is eliminated from a metaclass, it has the same

effect of the previous modification;
– Push metaproperty, pushing a property in subclasses means that it is deleted from

an initial superclass A and then cloned in all the subclasses C of A;
– Flatten hierarchy, to flatten a hierarchy means eliminating a superclass and intro-

ducing all its properties into the subclasses;
– Restrict metaproperty, a metaproperty is restricted when its multiplicity or type are

enforced, for example the cardinality is modified from 0..* to 0..10, or a type is
substituted with one of its subtypes.

Finally, a new version of the model can consist of some updates of already existing
elements leading to updative modifications:

– Change metaproperty type, the type of a metaproperty is updated and the new type
has not particular relationships with the old one;

– Rename metaelement, a metaelement is renamed;
– Move metaproperty, it consists of moving a property p from a metaclass A to a

metaclass B;
– Extract/inline metaclass, extracting a metaclass means to create a new class and

move the relevant fields from the old class into the new one. Vice versa, to inline a
metaclass means to move all its features into another class and delete the former.

Such classification plays a key role in a transformational approach to model co-evolution
presented by the authors in [8] and its discussion goes beyond the purpose of this pa-
per; nonetheless, an overall illustration of such proposal is given in Figure 2. The im-
plementation of the approach relies on the KM3 metamodeling language [13] which
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provides metamodeling constructs consisting of a common subset of OMG/MOF and
EMF/Ecore. The applicability of the proposed co-evolution approach with respect to the
metamodeling elements which are not included in such a subset is an open issue and
it will be investigated in the near future. In particular, given two versions MM1 and MM2

of the same metamodel, their differences are recorded in a difference model ∆, whose
metamodel KM3Diff is automatically derived from KM3 and shown in Figure 3. Es-
sentially, for each metaclass MC of the KM3 metamodel, the additional metaclasses
AddedMC, DeletedMC, and ChangedMC are generated in order to represent additions,
deletions, or changes, respectively, of MC instances [14].

In realistic cases, the metamodel modifications represented in the model ∆ con-
sist of an arbitrary combination of the atomic changes in Tab. 1. Hence, a difference
model formalizes all kind of modifications, i.e. non-breaking, breaking resolvable and
unresolvable ones. In this respect, the adopted difference representation approach is
crucial. In particular, if the representation of the updates is too coarse-grained, then
the co-adaptation acts with less efficacy. For instance, if the introduction of PTArc
and TPArc in the sample MM0 would be represented as the deletion of the current as-
sociations and the addition of those new entities (instead of an update of the current
relationships), all the existing connections between arcs and transitions would be lost
in the co-adaptation process. In fact, PTArc and TPArc would be interpreted as new
relationships between arcs and transitions instead of being a refinement of them. In
this respect, the quality of the approach used for the difference calculation may af-
fects the results of the proposed co-adaptation technique. In other words, depending on
the metamodels being considered, difference algorithms have to be properly chosen or
customized. Interested readers can refer to [15] which summarizes the already exist-
ing approaches for model matching. Once the metamodel changes have been calculated
(as for instance in [5]) and represented in ∆, such a difference model is automatically
decomposed in two disjoint (sub) models, ∆R and ∆¬R [8], which denote breaking
resolvable and unresolvable changes, respectively. The decomposition is given by two
model transformations, TR and T¬R (see Figure 2.a).

As previously said, the possibility to have a set of dependencies among the several
parts of the evolution makes the updates not always distinguishable as single atomic
steps of the metamodel revision. In such situations, a certain set of delta entities can per-
tain to multiple modification categories in Tab. 1 at the same time, and then the order in
which such manipulations take place matters. In fact, it does not allow the decomposi-
tion of a difference model in ∆R and ∆¬R, like for instance when evolving MM0 directly
to MM2 in Figure 1 (although the sub steps MM0−MM1 and MM1−MM2 are directly manage-
able). In these cases ∆R and ∆¬R are said to be parallel dependent and they have to be

a) b)
Fig. 2. Transformative co-evolution approach
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Fig. 3. Fragment of the generated difference KM3 metamodel

further refined to identify and isolate the interdependencies causing the interferences. If
∆R and ∆¬R are parallel independent then corresponding co-evolutions are generated
separately. In particular, co-evolution actions are directly obtained as model transforma-
tions from the calculated metamodel changes by means of higher-order transformations,
i.e. transformations which produce other transformations [16]. More specifically, two
different higher-order transformations HR and H¬R take ∆R and ∆¬R and produce
the (co-evolving) model transformations CTR and CT¬R, respectively. Since ∆R and
∆¬R are parallel independent CTR and CT¬R can be applied in any order because
they operate to disjoint sets of model elements (see Figure 2.b). On the contrary, paral-
lel dependence is more complex to manage: the main problem in having such kind of
interdependencies is in the nondeterminism given by the following

∆R|∆¬R 6= ∆R; ∆¬R + ∆¬R; ∆R

denoting with + the nondeterministic choice. In the next section, we proposes a depen-
dency analysis and resolution criteria to decompose and schedule the modifications in
order to resolve the dependencies according to a comprehensive classification of them
as they can occur in a metamodel evolution.

3 Dealing with parallel dependent changes

The automatic co-adaptation approach recalled in the previous section relies on the
parallel independence of breaking resolvable and unresolvable modifications. For in-
stance, when evolving the sample PetriNet metamodel MM0 in Figure 1 directly to MM2,
the approach cannot be directly applied unless the dependent changes in ∆R and ∆¬R

are identified and resolved. In particular, in the example, the Add obligatory metaclass
modification, consisting of the addition of the attribute weight in the metclass Arc,
depends on the addition of this new metaclass induced by the Extract abstract meta-
class change. Such a dependence is due to the reference owner which, according to
the KM3 metamodel, needs to be specified for each structural feature.
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Table 2. Metamodel change dependencies

Being more precise, our solution is based on the following observation: given two
versions of a same metamodel and a model ∆ which represents their differences, the
models ∆R and ∆¬R obtained from the decomposition of ∆ to isolate breaking re-
solvable and unresolvable modifications, respectively, are parallel dependent when the
source and the target elements of the following references (defined in the KM3 differ-
ence metamodel) are not in the same difference model:

– owner : StructuralFeature → {AddedClass, ChangedClass}, all the at-
tributes and references defined in a given metamodel are related to a corresponding
class which represents their owner. If a given structural feature sf belongs to ∆R

(or ∆¬R) and its owner metaclass mc to ∆¬R (or ∆R), then a parallel dependence
occurs. In this case, owner(sf) can be specified once mc has been added or modified;

– type : TypedElement → {AddedClass, ChangedClass}, given an element te,
type(te) refers to the added or modified classifier mc which represents its type. In
this respect, if a typed element te belongs to ∆R (or ∆¬R) and its type mc to ∆¬R

(or ∆R), then a parallel dependence occurs. In this case, type(te) can be specified
once mc has been added or modified;

– superTypes : Class → {AddedClass, ChangedClass}∗, in order to specify
hierarchies of classes, the superTypes reference is available to define all the super-
classes ci of a given class c. If a given class c belongs to ∆R (or ∆¬R) and its
superclasses ci to ∆¬R (or ∆R), then a parallel dependence occurs. In fact super-
Types(c) can be specified once the superclasses ci have been added or modified.

Because of such references, many of the metamodel changes recalled in the previous
section may give place to parallel dependencies which are summarized in Table 2.
In particular, the rows of the table reports unresolvable changes whereas the resolv-
able ones are given in the columns. Non empty cells represent the dependencies which
may occur because of the corresponding couple of unresolvable and resolvable changes
which might interfere one with another because of the specified reference. For instance,
the cell B1 is not empty since an Add obligatory metaproperty modification and an Ex-
tract abstract superclass one may give place to a dependence because of the references
owner or type. In particular, an added obligatory metaproperty may have as owner or
type the new superclass obtained by means of an Extract abstract superclass modifica-
tion. In this respect, as in the PetriNet example, the dependence can be sorted out by
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MM1 MM2

Fig. 4. Sample metamodel evolution

applying the resolvable change before the unresolvable one (this is the meaning of the
R in the cell B1).

The rest of the section is organized as follows: all the metamodel change depen-
dencies summarized in Table 2 will be described in Section 3.1. The identification and
the resolution of the dependencies occurring in large difference models are discussed in
Section 3.2.

3.1 Classification of change dependencies

The description of the parallel dependent changes summarized in Table 2 exploits the
sample metamodel evolution reported in Figure 4 (for the sake of readability, parallel
independent combinations have not been included in that table). The differences be-
tween the sample metamodels MM1 and MM2 are represented in the difference model
in Figure 5 which has been decomposed in the corresponding ∆R and ∆¬R in Figure 6.

A1. Both the Add obligatory metaclass and Extract abstract superclass modifications
give place to new metaclasses. Such modifications are parallel dependent if the meta-
class added by the former is subclass of the metaclass added by the latter (or vicev-
ersa). For instance, in the running example, an Add obligatory metaclass modification
has been executed to add the new metclass MC7 as specialization of MC4 which is a new
abstract metaclass that has been added as superclass of the existing MC2. The addition
of MC7 is represented by the element ac3 in the model ∆¬R whereas the addition of
the metaclass MC4 is represented in the ∆R by means of the element ac2. Such mod-
ifications are parallel dependent since supertTypes of the added MC7 refers to the
metaclass MC4 whose addition is in ∆R.
B1. The owner or the type of a new attribute obtained by means of an Add obligatory
metaproperty modification may be a new class which has been added by means of an
Extract abstract superclass operation. For instance, in the running example the new
meta attribute ma5 has been added as represented by the element aa1 in ∆¬R and
its owner refers to the metaclass MC4 which has been obtained through the Extract
abstract superclass modification previously described.
C1. The Pull metaproperty modification moves a metaproperty p from a subclass B to
the superclass A. If such superclass is obtained through an Extract abstract superclass
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Fig. 5. Representation of the sample metamodel modifications

modification, a parallel dependence occur since in order to set the reference owner
of p, the metaclass A has to be added first. For instance, the metaproperty ma3 has
been moved from MC2 to the new metaclass MC4 by means of a Pull metaproperty
modification (see the elements ac2 and a1 in ∆¬R) Such modification depends on the
addition of the metaclass MC4 which is represented in ∆R as described above.
D1. The Extract non abstract superclass modification extracts a non abstract superclass
A in a hierarchy. If A is superclass of an abstract class obtained after an Extract abstract
superclass modification (or viceversa), a parallel dependence is raised because of the
supertypes reference. For instance, an Extract non abstract superclass modification
has been performed to create the new metaclass MC3 as superclass of MC2 (see the ele-
ment ac4 in ∆¬R). In this case, the dependence D1 occurs since MC3 also specializes
the metaclass MC4 (see the reference superTypes of the element ac4 in ∆¬R to
the element ac2 in ∆R) which has been obtained after an Extract abstract superclass
modification represented in ∆R.
E1. If the type of a metaproperty is changed to the abstract class obtained by means of
an Extract non abstract superclass modification, a parallel dependence occurs because
of the type reference. For instance, the type of the attribute ma2 in the metaclass MC2
has been changed from String to MC4. This is a Change metaproperty type modifica-
tion and is represented in ∆¬R by means of the elements ca2 and a2. However, since
the new type of the attribute ma2 is a class obtained by means of an Extract abstract
superclass modification, the dependence E1 occurs.
A2. The Push metaproperty modification deletes a metaproperty p from a superclass
A and clones it in all the subclasses C of A. If the subclasses C have been added by



11

a. Resolvable changes (∆R) b. Unresolvable changes (∆¬R)

Fig. 6. Decomposed difference model

means of Add obligatory metaclass modifications, parallel dependencies occur because
of the owner reference. In the running example, an Add obligatory metaclass change
has been performed to add MC6 as specialization of MC2. Such a modification is repre-
sented in ∆¬R by means of the element ac1. Moreover, a Push metaproperty change
has been executed to change the owner of the attribute ma4 from the metaclass MC2
to the just added MC6. This modification is represented in ∆R by the elements ca3
and a3 instances of the metaclasses ChangedAttribute, and Attribute, respec-
tively. The addition of MC6 and the owner change of the attribute ma4 are an example
of the dependence A2.
A3. Similarly to the dependence A3, A2 occurs because of the reference owner when a
metaproperty is moved to a metaclass added by means of an Add obligatory metaclass
modification. For instance, the attribute ma7 has been moved from the metaclass MC1
to the new metaclass MC6 by means of the Move metaproperty change represented in
∆R by the elements ca5 and a5. Such a modification depends on the Add obligatory
metaclass change which has to be performed first in order to add the metaclass MC6 and
update the value of the reference owner of the attribute ma7.
D3. A metaproperty can be moved to a new metaclass obtained by means of an Extract
non abstract superclass modification. In this case, because of the owner reference, a
dependence occurs and to set the owner of the moved property, the new non abstract
metaclass has to be extracted first. In the running example, a Move metaproperty mod-
ification has been executed to move the attribute ma1 from the metaclass MC1 to MC3
as represented by the elements ca4 and a4 in ∆R. However, since the new owner
of the attribute ma1 is the metaclass MC3 (obtained through an Extract non abstract
superclass represented in ∆¬R) the dependence D3 takes place.
B4. The Extract metaclass operation means to create a new metaclass and move the
relevant fields from the old metaclass to the new one and relate them. For instance, in
Figure 4 an Extract metaclass operation has been performed to create the new metaclass
MC5 associated with the existing MC1 (see the elements cc2, c2, ar1, and ac5 in
∆R). Consequently, if a new metaproperty mp is created by means of an Add obligatory
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metaproperty modification, a dependence with the Extract metaclass modification can
be raised if the type or the owner of mp is the extracted metaclass. For instance, the
new attribute ma6 has been added in MC5 as represented by the element aa2 in ∆¬R,
and the modification depends on the Extract metaclass operation since the owner of the
new attribute ma6 is the extracted metaclass MC5.
D4. As previously said, the Extract non abstract superclass modification extracts a non
abstract superclass A in a hierarchy. If A is superclass of a class obtained by means of an
Extract metaclass modification (or viceversa), a parallel dependence is raised because
of the superTypes reference. For instance, the metaclass MC5, obtained through an
Extract metaclass modification, has been added as specialization of the class MC3which
has been created by means of Extract non abstract superclass change giving place to
dependent modifications.
E4. An existing metaproperty can be modified by setting its type to a metaclass which
has been added by means of an Extract metaclass modification. In this case, dependent
modifications have been performed which need to be sorted out. For instance, the type
of the attribute ma3 moved to the new metaclass MC4 has been changed from String
to the new metaclass MC5 by means of a Change mataproperty type operation repre-
sented by the elements ca1 and a2 in ∆¬R. Since the new type of the attribute is a
class obtained by means the Extract metaclass modification, the dependence E4 takes
place.

When the evolution of a metamodel consists of complex modifications, the decom-
position in resolvable and unresolvable changes can easily give place to dependencies
which are usually difficult to be identified and sorted out by hand. In the next section
we propose a formal approach to support the identification and the resolution of such
dependencies.

3.2 Identification and resolution of change dependencies

In this section we propose an approach to identify and resolve the dependencies which
have been discussed in the previous section. The approach is based on the concepts of
sets and functions which will enable a precise and formal identification and manipula-
tion of dependencies among atomic changes.

In particular, an algebra signature is directly derived from the KM3 difference meta-
model whose elements define sorts and functions as reported in Figure 7. This operation
can be performed in an automated way by means of model transformations as shown
in [17, 18]. More precisely, the metamodel induces the signature Σ composed of sorts

Σ = (S, OP )
S := {Class, AddedClass, ChangedClass, Attribute,

AddedAttribute, ChangedAttribute, . . . }
OP :={ name : Class → String

name : Attribute → String
isAbstract : Class → Boolean
isPrimary : Attribute → Bool
type : Attribute → Class
owner : Attribute → Class, . . .}

Fig. 7. Fragment of the signature induced by the KM3 difference metamodel
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(S) and functions (OP ): for each non abstract metaclass of the metamodel a correspon-
dent set in S is defined, and the functions in OP are induced by the attributes and refer-
ences of all the metaclasses. For instance, the attribute name of the metaclass Class
induces the definition of the function name: Class → String. Moreover, to specify the
type of an Attribute, the function type: Attribute → Class is defined with respect
to the property type of the abstract metaclass TypedElement which is superclass of
the Attribute one.

The sets and the functions in Figure 7 enables the encoding of models conform-
ing to the KM3 difference metamodel as in the example in Figure 8 which depicts the
encoding of a fragment of the difference models in Figure 6. More specifically, the el-
ements ac3, aa1 and a1 of Figure 6.a, cc1, c1, ac2, cc2, and c2 of Figure 6.b
are represented. The ovals in Figure 8 represents some metaclasses of the KM3 differ-
ence metamodel. The elements contained in such ovals are instances of the represented
metaclasses. For example, the changed class MC2 on the left hand side of Figure 6.a, is
encoded in Figure 8 by means of the element cc1 contained in the ChangedClass
oval. Please note that the overlaps of the ovals and the graphical order in which they
appear have no semantics and their layout is related to presentation purposes only.

The resolvable and the unresolvable modifications are also distinguished (see the
dashed parts which enclose ∆R and ∆¬R , respectively) and each of them consists of
a set of the atomic metamodel changes described in the previous section. For instance,
the modification δ2 in ∆R corresponds to the Extract abstract superclass modification
which has been applied to the metamodel MM1 in Figure 4 to add the metaclass MC4 in
MM2. Moreover, the Add obligatory metaclass modification which has been executed
to add the metaclass MC7 has been represented by δ′1 in ∆¬R. As discussed in the
previous section, the latter modification depends on the former according to the case
A1 in Table 2. Such a dependence can be noticed also by considering the encoding in
Figure 8. In fact, the reference superTypes of the elements ac3 in ∆¬R has ac2 as
value which is in ∆R. In this respect, the modification δ′1 depends on δ2, hence ∆¬R

depends on ∆R.
Being more formal, by considering the owner, superTypes, and type functions defined
at the beginning of the section, the following definitions can be given:

Definition 1. Let δ1 = {a1, a2, . . . , an} and δ2 = {b1, b2, . . . , bm} be two meta-
model changes. δ1 depends on δ2 if there exists a couple (ai, bj), i ∈ {1 . . . n}, j ∈
{1 . . .m}, of atomic modifications such that owner(ai) = bj or type(ai) = bj or
superTypes(ai) = bj .

Definition 2. Let ∆1 = {δ1, δ2, . . . , δn} and ∆2 = {δ′1, δ′2, . . . , δ′m} be two difference
models, ∆1 depends on ∆2 if there exists a couple (δi, δ

′
j), i ∈ {1 . . . n}, j ∈ {1 . . . m},

of metamodel changes such that δi depends on δ′j .

It is important to stress how the functions above are part of the KM3 definition and are
the only responsible for the dependencies among the breaking resolvable and breaking
unresolvable changes. As a consequence, this makes the technique independent from
the metamodel and its underlying semantics.

As mentioned above, the automatic co-adaptation of models relies on the parallel
independence of breaking resolvable and unresolvable modifications, or more formally
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name(a1) = ”ma3” name(ac3) = ”MC7”

name(aa1) = ”ma5” name(cc1) = ”MC2”

name(ac2) = ”MC4” name(c1) = ”MC2”

name(c2) = ”MC1” name(cc2) = ”MC1”

Fig. 8. Sample difference model encoding

∆R|∆¬R = ∆R; ∆¬R + ∆¬R; ∆R (1)

where + denotes the non-deterministic choice. In essence, their application is not af-
fected by the adopted order since they do not present any interdependencies. If change
dependencies are identified they have to be sorted out in order to recover the parallel
independence condition. In this respect, according to Table 2, the discovered depen-
dencies induce the order in which changes have to be applied. For instance, Figure 9
contains a fragment of the sample metamodel changes presented above with their de-
pendencies depicted by means of dashed arrows. By taking into account such dependen-
cies and the resolution criteria presented above, the correct scheduling of modifications
is as follows

(∆R − {δn}) | (∆¬R − {δ′1, δ′2, δ′3}) ; {δ′1 | δ′2 | δ′3} ; δn (2)

denoting with− the calculation of model differences and with ; and | the sequential and
parallel application of differences, respectively.

The identification of change dependencies can be easily automatized by translat-
ing each non-empty entry in Table 2 into first-order logic predicates. For instance, the
dependency B1 in Table 2 can be detected if exists a structural feature sf in the set
AddedAttribute or AddedReference such that owner(sf) or type(sf) is an el-
ement belonging to the set AddedClass and which is an abstract superclass of one
of the existing elements in the set Class. Thus the dependency identification can be
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Fig. 9. Fragment of the sample change dependencies

implemented in OCL [19], for instance, which has the support for specifying first-order
logic predicates.

Finally, it is worth to mention that cyclic change dependencies cannot occur. In
particular, because of the typing of the functions type, owner, and superTypes the only
admitted cycle might be caused by the last one since it has the set Class as domain and
codomain. However, having a cyclic dependence because of such a function would give
the possibility to define cyclic hierarchies which are not admitted in general.

4 Conclusions and future work

In this paper, we have presented an approach that automates the adaptation of mod-
els whenever the corresponding metamodel is subject to evolution, i.e., to arbitrary,
complex and, possibly non-monotonic modifications. To the best of our knowledge, the
existing approaches are only dealing with atomic changes which are assumed to occur
in isolation and which can then be automatized in a pretty straightforward way. Com-
plex modifications, which can be applied with arbitrary multiplicity and complexity,
poses severe difficulties since they may present interdependencies which compromises
the automation of the adaptation.

This work advocates the adoption of the transformational approach presented in [8]
which encompasses the decomposition of difference models to distinguish among break-
ing resolvable and unresolvable metamodel changes. The main contribution of this pa-
per is in providing a classification of the interdependencies which can occur in these
two categories of modifications. The classification is used to define resolution criteria
which provide the decomposition and the correct scheduling of modifications. More-
over, it has been shown how the dependencies are caused by features which are defined
in the meta-metamodel (in this case KM3), which implies that the results are general
and agnostic from the metamodel and its semantics.

A prototypical implementation of the co-evolution approach is available at [20].
Future works includes a more systematic validation of the dependency detection and
resolution technique which necessarily encompasses larger population of models and
metamodels. Finally, we plan to investigate how the works related to change impact
analysis [21] can be adapted and used in MDE to support the co-evolution of metamod-
els and corresponding models.

References

1. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Computer 39(2)
(2006) 25–31

2. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools. Wiley (2004)



16

3. Favre, J.M.: Meta-Model and Model Co-evolution within the 3D Software Space. In: Procs.
of the Int. Workshop ELISA at ICSM. (September 2003)

4. Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In Ernst, E., ed.: Pro-
ceedings of the 21st ECOOP. Volume 4069 of LNCS., Springer-Verlag (July 2007)

5. Falleri, J.R., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel matching for automatic
model transformation generation. In: Procs. of the 11th Int. Conf. MoDELS 2008, Toulouse
(France). Volume 5301 of Lecture Notes in Computer Science., Springer (2008) 326–340

6. Gruschko, B., Kolovos, D., Paige., R.: Towards Synchronizing Models with Evolving Meta-
models. In: Procs of the Work. MODSE. (2007)

7. Herrmannsdoerfer, M., Benz, S., Jürgens, E.: Automatability of Coupled Evolution of Meta-
models and Models in Practice. In: Procs. of the 11th Int. Conf. MoDELS 2008, Toulouse
(France). Volume 5301 of Lecture Notes in Computer Science., Springer (2008) 645–659

8. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution in model-
driven engineering. In: 12th IEEE International EDOC Conference (EDOC 2008), Munich,
Germany, IEEE Computer Society (2008) 222–231

9. Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model evolution.
Journal of Visual Languages & Computing 15(3-4) (2004) 291–307

10. Del Fabro, M.D., Valduriez, P.: Semi-automatic Model Integration using Matching Transfor-
mations and Weaving Models. In: The 22th ACM SAC - MT Track, ACM (2007) 963–970

11. Bernstein, P.: Applying Model Management to Classical Meta Data Problems. In: Procs of
the 1st Conf. on Innovative Data Systems Research (CIDR). (2003)

12. Galante, R., Edelweiss, N., dos Santos, C.: Change Management for a Temporal Versioned
Object-Oriented Database. In: Procs. of the 21st ER. Volume 2503 of LNCS., Springer
(2002) 1–12
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