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Abstract

We present a novel approach to the analysis of the reliability of a software architecture that takes into

account an important architectural attribute, namely the error propagation probability. This is the proba-

bility that an error, arising somewhere in the architecture, propagates to other components, possibly up to

the output. Although this attribute is often neglected in modeling the architecture reliability, it may heav-

ily affect decisions on crucial architectural choices. With our approach, we are able to derive closed-form

expressions for the overall system reliability and its sensitivity to variations in the reliability properties

of each component (i.e. the probability of failure and the probability of error propagation). This latter

result is useful to drive several significant tasks, such as: placing error detection and recovery mecha-

nisms, focusing the design and implementation efforts on critical components, devising cost-effective

testing strategies.

Keywords: software architecture, component-based systems, reliability, closed-form solution, state-

based model.
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1 Introduction

The architectural analysis of software systems aims at characterizing relevant properties (both functional

and extra-functional) of the systems in terms of the properties of their “components” and the way the latter

are connected and interact [2, 3]. This kind of analysis is raising an increasing interest, because it supports

emerging paradigms of software development, like component-based software engineering, COTS-based

software development and product line engineering. Moreover, it also supports software evolution, as it can

be used for “what if” experiments to predict the impact of architectural changes needed to adapt the system

to new or changing requirements.

In this paper, we focus on the architectural analysis of the reliability of a software application, defined

as a measure of its ability to successfully carry out its own task. We provide an analytic model for the

reliability estimation that, similarly to other approaches, basically relies on information concerning the

failure probability and the operational profile of each component.

The novelty of our work, that distinguishes it from most of the existing analytic approaches to architecture-

based reliability modeling, consists in the introduction of an important architectural aspect in our model. We

embed the error propagation characteristic of each component, that is its capability of propagating (rather

than masking) to other components an erroneous value it receives as input from other components. Neglect-

ing this aspect generally corresponds to implicitly assuming a “perfect” propagation, in that any error that

arises in a component always propagates up to the application outputs. This may lead, at the best, to overly

pessimistic predictions of the system reliability, that could cause unnecessary design and implementation

efforts to improve it. Worse yet, if reliability analysis is used to drive the selection of components, it could

lead to wrong estimates of the reliability of different component assemblies, thus causing the selection of an

assembly which is actually less reliable than others.

Besides an “error propagation aware” reliability model, we also provide an analytic model for the eval-

uation of the sensitivity of the software architecture reliability to variations in the internal failure and the

error propagation characteristics of its components. This latter result provides useful insights for system de-

sign, development and testing. Indeed, it can be used to drive the placement of error detection and recovery

mechanisms in the system. Moreover, from the viewpoint of project and resource management, it can be

used to convey consistent project resources on the most critical components (i.e. the ones with the highest

sensitivity). It can also be used to focus the testing efforts on those components where a small change in the

failure characteristics may lead to considerable variations in the overall system reliability.

The paper is organized as follows. In section 2 we review the related work. In section 3 we describe

the architectural model and the related failure model that we consider. In section 4 we present our approach

to the architectural reliability analysis and provide a closed-form solution for the reliability estimation that

takes into account the error propagation probabilities. Based on the results of section 4, we provide in section
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5 closed-form solutions for the sensitivity of the system reliability with respect to the reliability properties

of each component, namely the probability of failure and the probability of error propagation. In section 6

we apply our results to an example and show the relevance of the newly introduced parameters. Finally, we

draw some conclusions and give hints for future work in section 7.

2 Related work

Several approaches to the architectural analysis of reliability of modular software systems have been pre-

sented in the past. A thorough review can be found in [8], where also issues related to model parameter

estimation are discussed. Additional approaches can be found in [6, 18].

According to the classification proposed in [8], most of the architectural reliability models can be cate-

gorized as: (i)path-based models, if the reliability of an assembly of components is calculated starting from

the reliability of possible component execution paths; (ii)state-based models, if probabilistic control flow

graphs are used to model the usage patterns of components.

These two types of models are conceptually quite similar. One of the main differences between them

emerges when the control flow graph of the application contains loops. State-based models analytically

account for the infinite number of paths that might exist due to loops. Path-based models require instead an

explicit enumeration of the considered paths; hence, to avoid an infinite enumeration, the number of paths

is restricted in some way, for example to the ones observed experimentally during the testing phase or by

limiting the depth traversal of each path. In this respect, we adopt here a state-based model.

An important architectural attribute that should be taken into account in the reliability analysis of a sys-

tem is the probability for an error that arises within a component to propagate to other components. Indeed,

neglecting this aspect may lead to inexact reliability estimates and wrong choices about the most suitable

software architecture. None of the existing architecture-based analytical models considers the impact of

error propagation on the estimation of the overall system reliability.

An important advantage of architectural analysis of reliability is the possibility of studying the sensitiv-

ity of the system reliability to the reliability of each component. As said in the Introduction, this study can

help to identify the critical components which have the largest impact on system reliability, and this infor-

mation either can be used to focus design and implementation efforts on these components, or may suggest

modifications of the system architecture.

Although these advantages are widely recognized [7, 15, 22], a method for computing the sensitivity

of the system reliability with respect to each component reliability has been developed only for the model

presented in [4]. However, this model does not take into account the error propagation attribute.

An important issue for any analytic model is the estimation of the model parameters. In the case of

state-based or path-based models for reliability evaluation, these parameters include the interaction proba-

3



bilities among the system components, and the probabilistic characterization of each component reliability.

Moreover, if we want to take into account the error propagation, we also need to estimate a probabilistic

characterization of this additional feature of each component.

Methods for the estimation of the probability of failure of each component and the interaction probabil-

ities have been reviewed in [8], and are extensively discussed in [7]. Regarding the probability of failure,

most of the existing models (including ours) assume a single figure of merit for each component (e.g. a

failure probability or a time-to-failure distribution), and provide its characterization by averaging over all

the possible component usages. Actually, it can be argued that the probability of failure of a component

may depend on the distribution of its input values, since they could lead to stress different execution paths

within it [11, 16]. The introduction of an input-dependent internal failure model of the component reliability

would require the substitution of the single figure of merit with a set of input-dependent figures. Moreover,

it would also require, for each component, the definition of a (probabilistic) mapping from input to output

domain. This would likely cause an increase in both the model complexity and parameter estimation effort.

This increase may or may not lead to any significant improvement in the overall reliability estimation. An

example of component reliability model where the availability of this additional information is assumed can

be found in [9], where error propagation is not considered. However, input-dependent reliability models

deserve further investigation to get insights about the best trade-off between model refinement and model

complexity.

Regarding the estimation of the interaction probabilities, besides the approaches reviewed in [8] and [7],

a more recent method is discussed in [19], where a Hidden Markov model is used to cope with the imperfect

knowledge about the component behavior.

Finally, relevant work on the estimation of the error propagation probability has been recently presented

in [1, 12]. In [12] an error permeability parameter of a software module is defined, which is a measure

providing insights on the error propagation characteristics of the module. A methodology is devised to

extract this parameter from an existing software system through fault injection. Besides, an analytical upper

bound is provided, which depends on the number of inputs and number of outputs of the module. In [1] an

analytical formula for the estimate of the error propagation probability between two components is provided.

This estimate derives from an entropy-based metrics, which basically depends on the sizes of state spaces of

interacting components and frequencies of their interactions. Another approach based on fault injection to

estimate the error propagation characteristics of a software system during testing was presented in [21].

With respect to the existing literature, the original contributions of this paper can be summarized as

follows:

• We define a state-based architectural model for the analysis of reliability, where the error propagation

factor is taken into account.
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• We derive from this model a closed-form expression for the evaluation of reliability.

• We derive closed-form expressions for the evaluation of reliability sensitivity with respect to the error

propagation and the failure probability of each component.

Regarding the estimation of the parameters in our analytic model, we refer to the literature reviewed

above. In particular, for the estimate of error propagation characteristics of each component in our model,

we point out that it can be faced in two ways: (i) at the architectural level (and, in general, before system

deployment) both the analytical upper bound on the error permeability and the entropy-based metrics repre-

sent very suitable hints [1, 12]; (ii) upon system deployment, accurate monitoring of the error propagation

can be accomplished by means, for example, of fault injection techniques [12, 21].

3 Architectural model

Architecture-based approaches are built on the standard software engineering concept of module. Although

there is no universally accepted definition, a module is conceived as a logically independent component of

the system which performs a well-defined function. This implies that a module can be designed, imple-

mented, and tested independently. We use the terms module and component interchangeably in this paper.

The granularity level adopted to identify the components of an application depends on a tradeoff between the

number of components, their complexity and the available information about each component. Indeed, too

many small components could lead to a large state space which may pose difficulties in the measurements

and parametrization of the model. On the other hand, too few components may lead to loose the distinction

of how different components contribute to the system failures.

In our architectural model, we abstractly consider an application consisting ofC interacting components.

In this model, each interaction corresponds to a control transfer from a componenti to a componentj, that

also involves the transfer toj of some data produced byi. In [20] the distinction between data flow and

control flow is discussed with respect to the integration of module and system performance. In our approach,

we do not distinguish the two aspects, and we assume that data errors always propagate through the control

flow [7].

We assume that the operational profile of each componenti is known, and it follows the Markov property.

Hence, it is expressed by the probabilitiesp(i, j) (1 ≤ i, j ≤ C) that, given an interaction originating from

i, it is addressed to componentj [8, 23]. It holds the obvious constraint that(∀i) ∑
j p(i, j) = 1.

This abstract model may correspond to different types of modular systems (e.g. component-based soft-

ware systems, embedded systems made of software and hardware components, merely hardware systems)

where the interactions among components are based on messaging, method invocation with parameter pass-

ing, or even hardware signals. As an example, according to this model, a method invocation addressed byi
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to j is modeled by a pair of interactions where the transferred data correspond, respectively, to the method

parameters produced byi and the method results produced byj.

The application ability of producing correct results with respect to specifications is affected by the oc-

currence of failures during its execution. A failure may arise within a components because of a fault in the

software code that implements it. Hence we assume that, besides its operational profile, each componenti is

also characterized by its internal failure probabilityintf(i). intf(i) is the probability that, given a correct

input, a failure occurs during the execution ofi causing the production of an erroneous output. In this defi-

nition, “erroneous” refers to the input/output specification ofi taken in isolation.intf(i) can be interpreted

as the probability of component failure per demand [8].

However, the occurrence of a failure within a component does not necessarily affect the application abil-

ity of producing correct results. Indeed, according to [14], a failure arising within a component is only an

internal error for the whole application that may or may not manifest itself as an application failure. The for-

mer event happens only when the error propagates through other components up to the output of the overall

assembly of components. As an extreme example, a component that for any received stimulus produces the

same constant value as output completely masks to the other components any received erroneous input. To

take into account this effect, we introduce in our failure model the additional parameterep(i), that denotes

the error propagation probability of componenti, that is the probability thati propagates to its output a

received erroneous input.

We assume that both the internal failure and the error propagation probabilities are independent of the

past history of the component.

To conclude the presentation of our model, we point out that, actually, each component could offer a

set of differentservices, each service characterized by its own operational profile. This means that, if we

denote byih (1 ≤ ih ≤ Si) one of theSi services offered by componenti, the operational profile ofi

would actually consists of a set of probabilitiesp(ih, jk) (1 ≤ jk ≤ Sj). p(ih, jk) represents the probability

that an interaction originating from serviceih is addressed to servicejk offered by componentj. From

an “abstract” modeling viewpoint, this apparently refined representation does not introduce any relevant

modification to the model we have defined, except the substitution of the term “component” with “service”.

What substantially changes is the practical implication of this representation, that can highly increase the

number of parameters to be estimated, making it hardly usable even if theoretically more precise. In this

respect our model, based on the characterization of components rather than services, can be considered as

the result of a suitable “aggregation” of operational and failure characteristics of component services, thus

increasing the model tractability at the cost of some loss in accuracy.
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4 An analytic model for reliability embedding error propagation

The operational profile of a component-based software application is expressed by a matrixP = [p(i, j)], (0 ≤
i, j ≤ C + 1), where each entryp(i, j) represents the probability that componenti, during its execution,

transfers the control to componentj. The rows0 andC + 1 of P correspond to two “fictitious” components

that represent, respectively, the entry point and the exit point of the application [23]. These components

allow to easily model: (i) the stochastic uncertainty among application entry points, by means ofp(0, j)

probabilities(0 ≤ j ≤ C), (ii) the completion of the application by means of the first control transfer to

componentC + 1.

Given this model, the application dynamics corresponds to a discrete time Markov process with state

transition probability matrixP, where the process statei represents the execution of the componenti, and

stateC + 1 is an absorbing state. Figure 1 depicts the structure ofP, whereQ is a (C + 1) · (C + 1)

sub-stochastic matrix (with at least one row sum< 1), andc is a column vector withC + 1 entries.

Hence, the entries of thek-step transition probability matrixPk = [p(k)(i, j)] of this process represent

the probability that, after exactlyk control transfers, the executing component isj, given that the execution

started with componenti. We recall thatPk is recursively defined asP0 = I (the identity matrix) and

Pk = P ·Pk−1(k ≥ 1). Figure 1 also depicts the structure ofPk, wherec(k) is a column vector.

P =
Q c

10   0   …   0

Pk =
Qk c(k)

10   0   …   0

Figure 1: The structures ofP andPk matrices.

Let us denote byRel the application reliability, that is the probability that the application completes its

execution and produces a correct output. In order to modelRel we introduce the following probabilities in

addition tointf(i) andep(i) defined in section 2 (1):

• err(i) : probability that the application completes its execution producing an erroneous output, given

that the execution started at componenti (0 ≤ i ≤ C);

• err(k)(i, j) : probability that the execution reaches componentj after exactlyk (k ≥ 0) control

transfers andj produces an erroneous output, given that the execution started at componenti (0 ≤
i, j ≤ C).

Using these definitions we can write the following equations:

1By definition, we assumeintf(0) = intf(C + 1) = 0 andep(0) = ep(C + 1) = 1.
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err(i) =
∞∑

k=0

C∑

h=0

err(k)(i, h)p(h,C + 1) (1)

Rel = 1− err(0) (2)

Equation (1) derives from the assumption that the application completion is represented by the first oc-

currence of a transition to stateC + 1. The following theorem states a recurrence relation forerr(k)(i, j)

thus providing, according to equations (1) and (2), the basis for the evaluation of the application reliability.

Theorem 1.

err(k)(i, j) = p(k)(i, j) · intf(j) + ep(j) · (1− intf(j)) ·
C∑

h=0

err(k−1)(i, h)p(h, j) (3)

where we assumeerr(k)(i, j) = 0 for k < 0 (2).

Proof. See Appendix.

For computational purposes, it is convenient to put equations (1) and (3) in matrix form. To this end, let

us define the following(C + 1) · (C + 1) matrices:

• E(k) = [err(k)(i, j)](0 ≤ i, j ≤ C);

• F = [f(i, j)](0 ≤ i, j ≤ C), a diagonal matrix withf(i, i) = intf(i), andf(i, j) = 0 (∀i 6= j);

• R = [r(i, j)](0 ≤ i, j ≤ C), a diagonal matrix withr(i, i) = ep(i), andr(i, j) = 0 (∀i 6= j);

and the following(C + 1) column vector:

• e = [err(i)](0 ≤ i ≤ C).

Using these definitions, we can rewrite equations (1) and (3) as follows, wherec, Q, Qk are the vectors

and matrices depicted in Figure 1:

e =
∞∑

k=0

E(k) · c (4)

E(k) = Qk · F + E(k−1) ·Q ·R · (I− F) (5)

The following theorem provides an explicit form forE(k).

2Note that this basic assumption corresponds toerr(0)(i, j) = intf(j) (∀i = j) anderr(0)(i, j) = 0 (∀i 6= j), namely the

probability of an erroneous output from componentj without any transfer of control is its own probability ofinternal failure.
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Theorem 2.

E(k) =
k∑

i=0

Qk−i · F · (Q ·R · (I− F))i (6)

Proof. See Appendix.

It is known that for any substochastic transient square matrixA it holds
∑∞

k=0 Ak = (I − A)−1 [5].

Now, we observe that, besidesQ, alsoQ · R · (I − F) is a substochastic transient square matrix since,

by definition, bothF andR are diagonal matrices whose diagonal entries are within0 and1. Using this

observation, we can prove from (4) and Theorem 2 the following theorem, which provides a closed-form

expression fore.

Theorem 3.

e = (I−Q)−1 · F · (I−Q ·R · (I− F))−1 · c (7)

Proof. See Appendix.

Finally, from equations (2) and (7) we get a closed-form for the application reliability.

5 Sensitivity Analysis

In this section we show how the analytic model developed in section 4 can be used to analyze the sensi-

tivity of the system reliability with respect to the internal failure and error propagation probabilities of its

components. For this purpose, let us define the following notations:

• de err(i; l) : the partial derivative oferr(i) with respect toep(l) (1 ≤ i, l ≤ C);

• de err(k)(ij; l) : the partial derivative oferr(k)(ij) with respect toep(l) (1 ≤ i, j, l ≤ C);

• di err(i; l) : the partial derivative oferr(i) with respect tointf(l) (1 ≤ i, l ≤ C);

• di err(k)(ij; l) : the partial derivative oferr(k)(ij) with respect tointf(l) (1 ≤ i, j, l ≤ C);

5.1 Closed-form solution forde err(i; l)

From equation (2), the sensitivity of the application reliability with respect toep(l) can be expressed as:

∂

∂ep(l)
Rel = − ∂

∂ep(l)
err(0) = −de err(0; l) (8)
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Hence, our goal is to calculatede err(0; l). By differentiating equations (1) and (3) with respect toep(l)

we get, respectively:

de err(i; l) =
∞∑

k=0

C∑

h=0

de err(k)(ih; l)p(h,C + 1) (9)

de err(k)(ij; l) = ep(j)(1− intf(j))
C∑

h=0

de err(k−1)(ih; l)p(h, j)

+ I{j = l}(1− intf(l))
C∑

h=0

err(k−1)(i, h)p(h, l) (10)

where it is assumed thatde err(0)(ij; l) = 0, andI{e} is the indicator function defined as:I{e} = 1 if

conditione is true,0 otherwise.

Analogously to section 4, we derive matrix form expressions from equations (9) and (10). Since, ac-

cording to equation (8), we are interested in the derivative oferr(0), we define the following vector and

matrix:

• ê = [ê(l)], (0 ≤ l ≤ C), with ê(l) = de err(0; l),

• Ê(k) = [ê(k)(lj)], (0 ≤ l, j ≤ C), with ê(k)(lj) = de err(k)(0j; l).

Then, from expression (9) we get:

ê =
∞∑

k=0

Ê(k)c (11)

whereas from expression (10) we get the following recurrence equation forÊ(k):

Ê(k) = Ê(k−1)QR(I− F) + D(k−1)(I− F) (12)

whereÊ(0) = 0, andD(k) is a diagonal matrix defined asD(k) = [d(k)(lj)], (0 ≤ l, j ≤ C), with:

d(k)(jj) =
∑C

h=0 err(k)(0, h)p(hj)

d(k)(lj) = 0, ∀l 6= j

In the following theorem we derive a closed-form matrix expression forÊ(k).

Theorem 4.

Ê(k) =
k−1∑

i=0

D(k−i−1)(I− F)(QR(I− F))i (13)
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Proof.

The proof is by induction. Fork = 0 the theorem holds true, since the sum in the right hand side of (13)

is empty, and by definition̂E(0) = 0. Let the theorem holds true fork − 1; we have:

Ê(k) =

= Ê(k−1)QR(I− F) + D(k−1)(I− F)

= (by induction hypothesis)

(
k−2∑

i=0

D(k−i−2)(I− F)(QR(I− F))i)(QR(I− F)) + D(k−1)(I− F)

=
k−1∑

i=1

D(k−i−1)(I− F)(QR(I− F))i + D(k−1)(I− F)

=
k−1∑

i=0

D(k−i−1)(I− F)(QR(I− F))i

qed

Given the result of Theorem 4, we are now able to derive a closed-form matrix expression forê.

Theorem 5.

ê = D(I− F)(I−QR(I− F))−1c (14)

whereD =
∑∞

k=0 D(k) = [d(lj)] (0 ≤ l, j ≤ C) is a diagonal matrix obtained as follows: given the

matrixN = [n(lj)], N = (I−Q)−1F(I−QR(I− F))−1Q, then

d(jj) = n(0j)

d(lj) = 0, ∀l 6= j

Proof.

Looking at (11), let us first elaborate on̂E =
∑∞

k=0 Ê(k). We have from Theorem 4:

Ê =
∞∑

k=0

Ê(k) =
∞∑

k=1

Ê(k)

=
∞∑

k=1

k−1∑

i=0

D(k−i−1)(I− F)(QR(I− F))i

=
∞∑

i=0

∞∑

k=i+1

D(k−i−1)(I− F)(QR(I− F))i
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=
∞∑

i=0

(
∞∑

k=0

D(k))(I− F)(QR(I− F))i

= (
∞∑

k=0

D(k))(I− F)(I−QR(I− F))−1

= D(I− F)(I−QR(I− F))−1

The definition ofD stated in this theorem follows from the following considerations: (i)D(k), by its

definition given above, is a diagonal matrix built from the entries of row0 of the matrixE(k)Q, and (ii) it is

easy to extrapolate from expressions (4) and (7) that
∑∞

k=0 E(k) = (I−Q)−1F(I−QR(I−F))−1. Finally,

the expression for̂e given in the theorem follows from (11).qed

5.2 Closed-form solution fordi err(i; l)

The derivation of the sensitivity with respect to the internal failure probability follows very closely the

procedure adopted in the previous section for the sensitivity with respect to the error propagation probability.

Hence, we report the theorem proofs of this section in Appendix.

From equation (2), the sensitivity of the application reliability with respect tointf(l) can be expressed

as:

∂

∂intf(l)
Rel = − ∂

∂intf(l)
err(0) = −di err(0; l) (15)

By differentiating equations (1) and (3) with respect tointf(l) we get, respectively:

di err(i; l) =
∞∑

k=0

C∑

h=0

di err(k)(ih; l)p(h,C + 1) (16)

di err(0)(ij; l) = I{i = j ∧ j = l} (17)

di err(k)(ij; l) = ep(j)(1− intf(j))
C∑

h=0

di err(k−1)(ih; l)p(h, j)

+ I{j = l}(p(k)(il)− ep(l)
C∑

h=0

err(k−1)(i, h)p(h, l)) (18)

According to equation (15), we are interested in the derivative oferr(0). Hence, in order to put expres-

sions (16), (17) and (18) in matrix form, we define the following vector and matrix:

• ẽ = [ẽ(l)], (0 ≤ l ≤ C), with ẽ(l) = di err(0; l),

• Ẽ(k) = [ẽ(k)(lj)], (0 ≤ l, j ≤ C), with ẽ(k)(lj) = di err(k)(0j; l).
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Then, from expression (16) we get:

ẽ =
∞∑

k=0

Ẽ(k)c (19)

whereas from expressions (17) and (18) we get the following recurrence equation forẼ(k):

Ẽ(0) = A(0)

Ẽ(k) = Ẽ(k−1)QR(I− F) + A(k) −D(k−1)R

whereD(k) is the diagonal matrix defined in section 5.1, andA(k) is a diagonal matrix defined as

A(k) = [a(k)(lj)] (0 ≤ l, j ≤ C) with:

a(k)(jj) = p(k)(0j)

a(k)(lj) = 0,∀l 6= j

In the following theorem we derive a closed-form matrix expression forẼ(k).

Theorem 6.

Ẽ(k) =
k∑

i=0

A(k−i)(QR(I− F))i −
k−1∑

i=0

D(k−i−1)R(QR(I− F))i (20)

Proof. See Appendix.

Given the result of Theorem 6, we are now able to derive a closed-form matrix expression forẽ.

Theorem 7.

ẽ = (A−DR)(I−QR(I− F))−1c (21)

whereD is the diagonal matrix defined in Theorem 5, andA =
∑∞

k=0 A(k) = [a(lj)] (0 ≤ l, j ≤ C) is

a diagonal matrix obtained as follows:

given the matrixM = [m(ij)], M = (I−Q)−1, then

a(jj) = m(0j)

a(lj) = 0, ∀l 6= j

Proof. See Appendix.
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C0 : Start

C1 : GUI

C3 : Identifier

C4 : Account 
Manager

C7 : 
Transactor

C2 : DBMS

C6 : 
Messenger

C8 : Verifier

C9 : End

C5 : Helper

Figure 2: The ATM architecture.

To conclude this section we point out that each entry ofê andẽ represents, respectively, the sensitivity of

the system reliability with respect to the error propagation probability and the internal failure probability of

a specific component. Hence, by calculating these vectors, we obtain the reliability sensitivity with respect

to the error propagation and internal failure probability of all the system components.

6 Results and analyses

We have used an ATM bank system example to validate our reliability model, taken from [23] and illustrated

in Figure 2 (3). Shortly, a GUI is in charge of triggering the identification task that is carried out through the

interaction of the Identifier and a DBMS. Then the control goes to the Account Manager that is the core of

the system. The latter, by interacting with all the other components (i.e. Messenger, Helper, Transactor and

Verifier) and by using the data in the DBMS, manages all the operations required from the user during an

ATM working session. Without the fictitiousStartandEndcomponents, the system is made of components

C1 throughC8.

We devise two sets of experiments on this architecture to show the application of our model. In the first

set, based on the closed-form derived in section 4, we compare the reliability prediction we get by neglecting

the error propagation impact with the prediction we get when this impact is taken into consideration. In all

the experiments, the reliability values where error propagation is neglected have been obtained by setting to

1 the error propagation probabilities of all components. We call this setting as “perfect” propagation. In the

second set of experiments, based on the closed-forms derived in section 5, we analyze the sensitivity of the

3The system architecture differs from the one used in [23] only by one component that we have not duplicated as we do not

consider fault-tolerance in our approach.
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Q c intf(i)

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

C0 0 1 0 0 0 0 0 0 0 0 0

C1 0 0 0.999 0 0 0 0 0 0 0.001 0.018

C2 0 0 0 0.227 0.669 0 0.104 0 0 0 0.035

C3 0 0.048 0 0 0.951 0 0 0 0 0.001 0

C4 0 0 0.4239 0 0 0.1 0 0.4149 0 0.0612 0.004

C5 0 0 0 0 1 0 0 0 0 0 0.01

C6 0 0 0 0 1 0 0 0 0 0 0

C7 0 0 0 0 0.01 0 0 0 0.99 0 0

C8 0 0 0 0 1 0 0 0 0 0 0.1001

C9 0 0 0 0 0 0 0 0 0 1 0

Table 1: Initial values of model parameters.

system reliability to the error propagation and internal failure probabilities of its components.

6.1 Role of the error propagation: experimental results

Table 1 shows the values we have considered for the model parameters, that match the ones used in [23].

In Table 2 the valueRel of the system reliability obtained from equations (2) and (7) is reported (in the

bottom row) while varying the error propagation probabilityep(i) of all the components (in the top row). In

this experiment we have assumed the sameep() value for all components. The first column (i.e.ep(i) =

1.0) represents a perfect propagation setting, where each component propagates to its output all the errors

that it receives as input. This corresponds to the setting adopted in the reliability models of other authors

where error propagation is not considered. For sake of giving evidence to the role of “non-perfect” error

propagation, we decrease theep(i) value by the same quantity (i.e.0.1) for all the components from the

second column on.

∀i, ep(i) 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Rel 0.4745 0.8261 0.8989 0.9399 0.9494 0.9617 0.9710 0.9784 0.9848 0.9906

Table 2: System reliability vs component error propagation.

It is easy to observe that the perfect propagation assumption brings to heavily underestimate the system

reliability. In fact, a decrease of only10% of the error propagation probability of each component (i.e. from

1.0 to 0.9) suffices to bring a74% increase in the whole system reliability (i.e. from0.4745 to 0.8261).
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In order to show the negative effects of such underestimation on the system assembly, let us assume that

an alternative componentC4.1 is available for the Account Manager that is functionally equivalent to the one

adopted in the initial configuration. The failure characteristics of this component are:intf(4.1) = 0.008,

ep(4.1) = 0.9. If we adopt a failure model that does not take into consideration the error propagation,

then the new component cannot apparently improve the system reliability, as its internal failure probability

doubles the one of the original component. In fact, the system reliability with the new value ofintf(4.1) =

0.008 will be Rel = 0.4594, which corresponds to an apparent net decrease of3% with respect toRel =

0.4745 obtained withC4. This induces a system designer to not considering the new component in the

system assembly. But if we adopt our model that embeds the error propagation probability, then the system

reliability with the new values ofintf(4.1) = 0.008 andep(4.1) = 0.9 will be Rel = 0.7094, which

corresponds to a net increase of49%. The model, in this case, brings to the evidence at the system level the

better error propagation characteristic of the new component. Thus, althoughC4.1 worsen the internal failure

probability ofC4, its role of core component in the system architecture (i.e. due to the operational profile

the majority of system execution paths traverse this component) brings to prefer the former that propagates

the errors with a lower probability.

6.2 Sensitivity analysis: experimental results

In order to exploit the closed form expressions that we have found for the derivatives of system reliability,

we start from the derivative values in the initial parameter setting of Table 1 that brought toRel = 0.4745,

as shown in the previous section. These values are summarized in Table 3 along with the original component

parameters, with the exception ofC0 andC9 that are fictitious components.

C1 C2 C3 C4 C5 C6 C7 C8

ep(i) 1 1 1 1 1 1 1 1
∂Rel
∂ep(i) −0.0199 −1.7830 −0.4360 −4.2732 −0.4246 −0.2001 −1.6031 −1.5853

intf(i) 0.018 0.035 0 0.004 0.01 0 0 0.1001
∂Rel

∂intf(i) −0.5051 −2.1502 −0.4705 −3.8948 −0.3864 −0.2159 −1.4442 −1.5870

Table 3: System reliability derivatives for the initial values of model parameters.

From Table 3 it straightforwardly appears that the failure characteristics of certain components (i.e.

probability of internal failure and error propagation probability) affect the system reliability much more

severely than the characteristics of other components. In particular, quite high absolute values for both

derivatives are obtained for componentsC2, C4, C7 andC8. This means that variations in their failure

characteristics would affect the system reliability more than variations in the characteristics of the remaining
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components.

The set of critical components that have emerged is not surprising, as from the transition matrixQ in

Table 1 they appear to be the most visited components. In other words, the majority of the system execution

paths traverse these components, therefore a change in their failure characteristics would affect the majority

of the system results.

These data, that can be easily obtained from our closed-form expressions, can be very relevant to support

decisions during the system development. For example, a system developer may decide to concentrate

the efforts on critical components to improve their failure characteristics. In fact, small gains in those

components would lead to large gains in the whole system reliability.

We support with a numerical example this consideration.

We first assume thatep(2) drops to0.9, while all the other error propagation probabilities remain un-

changed. This change brings the system reliabilityRel from 0.4745 to 0.6078, with an increase of28%.

If we instead drop the value of a non-critical component, for exampleep(6), to the same value0.9, while

leaving unchanged the other ones, thenRel goes from0.4745 to 0.4939, with an increase of only4%.

With a similar logic, if we assume thatintf(8) decreases by the20% of its value, that is from0.1001

to 0.0801, then we obtain an improvement ofRel by 7% from 0.4745 to 0.5085. On the contrary, if we

decreaseintf(5) (i.e. a non-critical component one) by the same percentage, from0.01 to 0.008, then we

obtain only a0.17% improvement ofRel from 0.4745 to 0.4753.

In Figures 3 and 4 we report the derivatives of the system reliability with respect to the internal failure

probabilities over their ranges, partitioned respectively as critical components (i.e.,C2, C4, C7 andC8) and

non-critical ones (i.e.,C1, C3, C5 andC6) . Each curve has been obtained by varying the value ofintf(i)

from 0 to 1 with a0.1 step for all the components.

Similarly, in Figures 5 and 6 we report the derivatives of the system reliability with respect to the error

propagation probabilities over their ranges.

In general, it is interesting to note that, for all the components, the function∂Rel
∂ep(i) is monotonically

decreasing whereas∂Rel
∂intf(i) is monotonically increasing. This brings to find the highest absolute values of

derivatives, respectively, near the valueep(i) = 1 for ∂Rel
∂ep(i) and near the valueintf(i) = 0 for ∂Rel

∂intf(i) .

∂Rel
∂intf(i) for critical components in Figure 3 indicates that it is worth to work on the internal failure of a

component when its probability falls close to0, because large improvements can be induced on the system

reliability in that subrange. On the contrary, it is not worth spending any effort to decrease the internal

failure probability of components with high values ofintf(i) (i.e. close to1), because no large gains can be

obtained on the whole system reliability in that subrange. Figure 4 shows that the derivatives for non-critical

components are almost always flat and very close to0, thus changes in these components would never bring

perceivable effects on the system reliability.
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Figure 3: Derivatives of system reliability vs probability of failure: critical components.
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Figure 4: Derivatives of system reliability vs probability of failure: non-critical components.

∂Rel
∂ep(i) for critical components in Figure 5 indicates that it is worth to work on the error propagation

of a component when its probability falls close to1, because large improvements can be induced on the

system reliability in that subrange. On the contrary, it is not worth spending any effort to decrease the error

propagation probability of components with low values ofep(i) (i.e. close to0), because no large gains

can be obtained on the whole system reliability in that subrange. Figure 6 shows that the derivatives for

non-critical components are almost always flat and very close to0, thus changes in these components would

never bring perceivable effects on the system reliability also in this case.

On the practical side, with modern testing techniques it is practically almost impossible to produce a

software component with an internal failure probability larger than0.001. Thus, it is very likely to find

software components with values ofintf() in the range where the derivative is very high. This means

that ever more effort has to be spent on software component reliability, as slight variations in their internal

failure probability may heavily affect the whole system reliability. Likewise, it is very likely to find software
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Figure 5: Derivatives of system reliability vs error propagation probability: critical components.
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Figure 6: Derivatives of system reliability vs error propagation probability: non-critical components.

components with values ofep() very close to1 [12], that is in the range where the derivative is very high.

Therefore, techniques that decrease the error propagation probability would similarly be suitable to sensibly

affect the system reliability.

7 Conclusions

We have proposed an architectural approach to the reliability analysis of a modular software system that

takes into account the impact of the error propagation characteristics of each component on the overall sys-

tem reliability. We have shown that neglecting this impact may cause an imprecise prediction of the system

reliability, with consequent wrong decisions about the most suitable system architecture. Moreover, our

sensitivity analysis results can help in identifying the most critical system components, where the imple-

mentation and testing efforts should be focused, and where the placement of error detection and recovery
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mechanisms could be more effective.

Several open issues remain as future work, toward the goal of building a fully comprehensive architecture-

based reliability model of a software system.

A first issue concerns the definition of a more complete architectural model, where, besides components,

also connectors are taken into account. According to the software architecture paradigm, a connector is

intended to embody all the aspects concerning the connection between offered and required services of

components, so providing the modeling tool to explicitly represent all those aspects [3, 17]. The importance

of explicitly modeling and taking into account connectors in the analysis of functional and extra-functional

properties (like reliability) of a given architecture is widely recognized [2, 13, 18, 23]. Although we do not

explicitly cope with connectors in our model, we believe that their error probabilities might sensibly affect,

in some cases, the reliability of the whole system architecture.

A second issue concerns the adoption of a more comprehensive failure model. Given our focus on the

analysis of the error propagation impact, we have only considered failures that generate erroneous output.

However, other kinds of failures could affect the overall system reliability, like “stopping failures” that lead

to a complete system stop [14]. In this respect, our model focuses on non-stopping failures. Moreover,

we have not considered explicitly hardware failures, although in some cases they may heavily affect the

reliability of a software system. We do not have considered all these issues in the model presented in

this paper mainly because our intent has been to keep it as simple as possible in order to make our prime

contribution (i.e. error propagation modeling) clearly emerging. We point out that in a previous work [9]

we have proposed an architectural model that embeds connectors and stopping software/hardware failures,

without keeping into account error propagation. We are working towards the merging of the model presented

in [9] an the one presented in this paper.

Finally, an important issue concerns the trade-off between model tractability and model refinement. In

this respect, it is worth investigating the most suitable granularity level in component reliability model-

ing: in particular, modeling the individual offered service reliability versus averaging their reliability into

component-level reliability parameters, and modeling input-dependent behavior versus averaging over all

the possible input-dependent behaviors.
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Appendix

In this appendix we present the theorem proofs that have not been reported in the paper text. Some of them

(i.e. Theorems 1, 2 ad 3) have already been presented in [10].

Proof of Theorem 1.

Let us define the following events:

• transf(i,j) : componenti directly transfers the control to componentj (i.e. in one only step);

• reach (k)(i,j) : componentj gets control exactly at thek-th step, given that the execution started

at componenti;

• errout (k)(i) : componenti produces an erroneous output, given that it gets control at thek-th

step;

• intfail (k)(i) : an internal failure occurs in componenti, given that it gets control at thek-th step;
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• errprop (k)(i ) : the componenti propagates an erroneous input to its output, given that it gets

control at thek-th step.

We have by definition:

Pr{transf(i,j )} = p(i, j),

P r{reach (k)(i,j) } = p(k)(i, j). (22)

Moreover, by the assumption of independence of the internal failure and error propagation probabilities

from the past history, we have:

(∀k)Pr{intfail (k)(j) } = if(j),

(∀k)Pr{errprop (k)(j) } = ep(j). (23)

Let us consider the joint event{reach (k)(i,j ) ∧ errout (k)(j) }. We have:

err(k)(i, j) =

= Pr{reach (k)(i,j) ∧ errout (k)(j) }

= Pr{reach (k)(i,j) ∧ errout (k)(j) ∧ intfail (k)(j) }

+ Pr{reach (k)(i,j) ∧ errout (k)(j) ∧ intfail (k)(j) } (24)

The probability of the joint event{errout (k)(j) ∧ intfail (k)(i,j) } can be expressed as

Pr{errout (k)(j) ∧ intfail (k)(i,j) }

= Pr{errout (k)(j) | intfail (k)(i,j) } · Pr{intfail (k)(i,j) }

= Pr{intfail (k)(i,j) } (25)

On the other end, it is easy to realize that the probability of the joint event{reach (k)(i,j) ∧
errout (k)(j) ∧ intfail (k)(j) } can be expressed as:

Pr{reach (k)(i,j) ∧ errout (k)(j) ∧ intfail (k)(j) }

= Pr{reach (k)(i,j) ∧ errout (k)(j) | intfail (k)(j) } · Pr{intfail (k)(j) }
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By observing that the eventerrout (k)(j) , given the absence of internal failures in componentj (i.e.

intfail (k)(j) ), can only be originated by error propagation from previous steps, we can modify the

above formula as follows:

Pr{reach (k)(i,j) ∧ errout (k)(j) | intfail (k)(j) } · Pr{intfail (k)(j) }

=
C∑

h=0

Pr{reach (k−1)(i,h) ∧ errout (k−1)(h) ∧ transf(h,j) ∧ errprop (k)(j) } ·

·Pr{intfail (k)(j) }

=
C∑

h=0

err(k−1)(i, h) · Pr{transf(h,j) ∧ errprop (k)(j) } · Pr{intfail (k)(j) } (26)

Using equations (25) and (26), we can rewrite equation (24) as follows:

err(k)(i, j) =

= Pr{reach (k)(i,j) } · Pr{intfail (k)(j) }

+
C∑

h=0

err(k−1)(i, h) · Pr{transf(h,j) ∧ errprop (k)(j) } · Pr{intfail (k)(j) }

Finally, the theorem is proven by substituting in latter expression the event probabilities given by (22)

and (23).qed

Proof of Theorem 2.

The proof is by induction onk.

Given the assumption in the hypothesis of Theorem 1, fork = 0 we have from equation (5):

E(0) = Q0 · F = F ,

which is the value of the right-hand side of (6), namely
∑0

i=0 Q0−i · F · (Q ·R · (I− F))i.

Let the theorem hold fork − 1. From (5) and the induction assumption we get:

E(k) =

= Qk · F + E(k−1) ·Q ·R · (I− F)

= Qk · F +
k−1∑

i=0

Qk−1−i · F · (Q ·R · (I− F))i ·Q ·R · (I− F)

= Qk · F +
k−1∑

i=0

Qk−1−i · F · (Q ·R · (I− F))i+1

= Qk · F +
k∑

i=1

Qk−i · F · (Q ·R · (I− F))i
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=
k∑

i=0

Qk−i · F · (Q ·R · (I− F))i.

qed

Proof of Theorem 3.

e =

=
∞∑

k=0

k∑

i=0

Qk−i · F · (Q ·R · (I− F))i · c

=
∞∑

i=0

∞∑

k=i

Qk−i · F · (Q ·R · (I− F))i · c

=
∞∑

i=0

[(
∞∑

k=i

Qk−i) · F · (Q ·R · (I− F))i] · c =

=
∞∑

i=0

[(
∞∑

k=0

Qk) · F · (Q ·R · (I− F))i] · c

=
∞∑

i=0

[(I−Q)−1 · F · (Q ·R · (I− F))i] · c

= (I−Q)−1 · F ·
∞∑

i=0

(Q ·R · (I− F))i · c

= (I−Q)−1 · F · (I−Q ·R · (I− F))−1 · c.

qed

Proof of Theorem 6.

The proof is by induction. Fork = 0 the theorem holds true, since the last summation in the right hand

side of (20) is empty, and by definitioñE(0) = A(0). Let the theorem holds true fork − 1; we have:

Ẽ(k) =

= Ẽ(k−1)QR(I− F) + A(k) −D(k−1)(R)

= (by induction hypothesis)

(
k−1∑

i=0

A(k−i−1)(QR(I− F))i −
k−2∑

i=0

D(k−i−2)R(QR(I− F))i)QR(I− F) + A(k) −D(k−1)R

=
k−1∑

i=0

A(k−i−1)(QR(I− F))i+1 −
k−2∑

i=0

D(k−i−2)R(QR(I− F))i+1 + A(k) −D(k−1)R

=
k∑

i=0

A(k−i)(QR(I− F))i −
k−1∑

i=0

D(k−i−1)R(QR(I− F))i
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qed

Proof of Theorem 7.

Let us definẽE =
∑∞

k=0 Ẽ(k). We have from Theorem 6:

Ẽ =
∞∑

k=0

Ẽ(k) =

=
∞∑

k=0

(
k∑

i=0

A(k−i)(QR(I− F))i −
k−1∑

i=0

D(k−i−1)R(QR(I− F))i)

=
∞∑

i=0

∞∑

k=i

A(k−i)(QR(I− F))i −
∞∑

i=0

∞∑

k=i+1

D(k−i−1)R(QR(I− F))i

=
∞∑

i=0

(
∞∑

k=0

A(k))(QR(I− F))i −
∞∑

i=0

(
∞∑

k=0

D(k))R(QR(I− F))i

= (
∞∑

k=0

A(k))(I−QR(I− F))−1 − (
∞∑

k=0

D(k))R(I−QR(I− F))−1

= (A−DR)(I−QR(I− F))−1

The derivation ofD has been given in Theorem 5, whereas the definition ofA given in this theorem

follows from the following considerations: (i)A(k) is a diagonal matrix built from the entries of row0 of the

matrixQ(k), and (ii)
∑∞

k=0 Q(k) = (I −Q)−1. Finally, the expression for̃e given in this theorem follows

from (19).qed
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