

Technical Report TRCS Series

A framework for automated generation of architectural
feedback from software performance analysis

V. Cortellessa, L. Frittella

Technical Report TRCS 007/2007

The Technical Reports of the Dipartimento di
Informatica at the University of L'Aquila are available
online on the portal http://www.di.univaq.it.
Authors are reachable via email and all the addresses
can be found on the same site.

Dipartimento di Informatica
Università degli Studi dell'Aquila
Via Vetoio Loc. Coppito
I-67010 L'Aquila, Italy

http://www.di.univaq.it

A framework for automated generation of architectural
feedback from software performance analysis

Vittorio Cortellessa‡ Laurento Frittella§

Dipartimento di Informatica
Università dell’Aquila

Via Vetoio, 1, Coppito (AQ), 67010 Italy
‡ cortelle@di.univaq.it

§ laurento.frittella@gmail.com

Abstract A rather complex task in the performance analysis of software archi-
tectures has always been the interpretation of the analysis results and the gen-
eration of feedback that may help developers to improve their architecture with
alternative "better performing" solutions. This is due, on one side, to the fact that
performance analysis results may be rather complex to interpret (e.g., they are
often collections of different indices) and, on the other side, to the problem of
coupling the "right" architectural alternatives to results, that are the alternatives
that allow to improve the performance by resolving critical issues in the architec-
ture. In this paper we propose a framework to interpret the performance analysis
results and to propose alternatives to developers to improve their architectural de-
signs. The interpretation of results is based on the ability to automatically recog-
nize performance anti-patterns in the software architecture. The whole process of
result interpretation and generation of architectural alternatives is supported by a
tool based on the Layered Queueing Network notation.

Keywords: Software Performance, Layered Queueing Networks, Architectural feed-
back, Performance indices.

1 Introduction

The validation of software performance often finds obstacles to be accepted as a daily
practice in the software development processes for many reasons. One of the major
drawback is the lack of automated support. The performance validation activity can be
summarized in four main steps: generation of a performance model from a software
model, performance model analysis, interpretation of analysis results, generation of
feedback on the software model.

Among the above steps, the analysis of a performance model (e.g. a Petri Net) is the
one that has been studied since more time and for which well assessed techniques exist
[5]. In the last few years many efforts have been devoted to introduce automation in the
first step, that is the performance model generation. Several methodologies and tools
have been introduced to transform a software model (e.g., a set of UML diagrams) into
a performance model (e.g. a Queueing Network) [1].

However, in order to close the 4-steps loop described above, automation shall be
introduced in the last few steps that represent the reverse path from the performance
model to the software model. What obviously software developers expect from perfor-
mance analysis is not a repository of values and curves that represent different indices
(such as throughput, utilization, etc.) at different level of granularity, and that are very
hard to decipher even by performance experts. They would expect to receive an inter-
pretation of these results in terms of directives, suggestions, architectural alternatives
that can drive their development process towards a software product able to meet the
performance requirements.

With the support of automated tool their decision about the software architecture
(and later decisions) could be driven even by performance issues that, instead, are often
discovered at the end of the process when changes are much more expensive to be made.

Goal of this paper is to introduce a process that can drive the performance result
interpretation and the generation of architectural feedback. The rationale of our process
founds on three main considerations: (i) performance analysis is a hierarchical task
that, in order to produce feedback, often must investigate tiny details of the system ar-
chitecture; for this reason, each iteration of our process lays on a zooming approach
that, from system-level performance indices, drives down to resource/component-level
indices; (ii) only a structured and integrated knowledge may lead to produce signifi-
cant feedback; for this reason, the core data used in our process have been organized
in matrices that are shared by the interpretation and the generation phases; (iii) for a
hierarchical investigation, it plays a crucial role the capability to recognize architec-
tural patterns that may adversely affect the system performance; for this reason, we
have classified and solved a set of patterns that can be recognized with simple pattern
matching techniques.

Few related works can be found in literature that deal with the interpretation of per-
formance results and the generation of architectural feedback. Most of them are based
on monitoring techniques and therefore are conceived to only applied after software
deployment for tuning its performance. We are instead interested to model-based ap-
proaches that can be applied all along the software lifecycle to support development
decisions.

In [12] the PASA (Performance Analysis of Software Architecture) approach has
been introduced that aims at achieving good performance results through a deep under-
standing of the architectural features. This is the approach that better define the concept
of antipattern that will be widely used in our approach. However, this approach is based
on the interactions between software architects and performance experts, therefore its
level of automation is quite poor.

A simulation based approach has been introduced in [8], where the model simula-
tion produces data on the system states that, once processed, can offer useful sugges-
tions about the maximum performance achievable with the current system configura-
tion.

The Arcade tool, introduced in [2], is also based on a simulation model. Heuristic
algorithms, in presence of detected system bottlenecks, are able to provide alternative
solutions that practically remove the bottlenecks. The heuristics are based on architec-
tural metrics that help to compare different solutions.

A quite interesting work has been introduced in [3], where "bad smells" are de-
fined as structures that suggest possible problems in the system in terms of functional
and non-functional aspects. Refactoring operations are suggested in presence of "bad
smells". Rules for refactoring are formally defined.

The paper is organized as follows: in Section 2 we illustrate our approach along with
the structures and the entities that represent its core; in Section 3 we step-by-step apply
our approach to a case study, and finally in Section 4 we provide conclusive remarks
and future work.

2 Automated generation of feedback

In this section we illustrate our approach for the interpretation of performance results
and the automated generation of architectural alternatives. The approach goes through
two fundamental phases:

– an identificationphase (or interpretation phase), where the analysis of the perfor-
mance results brings to identify particular scenarios that affect performance;

– aconstructionphase (or generation phase), where several architectural alternatives
are constructed, basing on the information collected in the previous phase.

Even though these two phases are conceptually separate, and they are executed in
sequence, in Section 2.3 we show how they need to share common knowledge on the
system structure and its performance.

2.1 Software performance granularity: system, subsystem, resource

Software performance analysis can be conducted at different granularity levels. Indices
like throughput, response time and utilization can be obtained from the performance
analysis at the system level down to the single resource level.

A system can be logically split into several parts, and a detailed performance analy-
sis restricted to the most critical partes can be conducted to better identify the adversary
issues in a specific system’s area as soon as possible. Software architectures are by de-
finition made of subsystems and components, therefore this "zooming" approach to the
performance analysis finely applies to them.

In order to define a structural approach to the analysis of performance results, we
have identified three granularity levels at which a software architecture can be analyzed,
that are: System level, Subsystem level, Resource level.

System level- This is the highest abstraction level for conducting a performance
analysis experiment; only global indices can be obtained by a system level analysis of
the architecture, such as end-to-end response time (i.e. from the input to the output),
system throughput, etc.

Subsystem level- This is an intermediate abstraction level where the system’s com-
ponents and their interactions can be analyzed. Zooming into architectural details (i.e.
subsystem mechanism) can be driven by different strategy that aim at splitting the sys-
tem following different criteria.

Since our goal is to support the validation of a certain architecture vs a performance
requirement, we devise two criteria for architecture splitting that depend on the type of
performance requirement imposed on the system, as follows:

– flat requirement, i.e. one or more performance requirement are imposed on the
whole system, no matter what is the service that the system will execute. An exam-
ple of such requirement can be "The web server must be able to show a web page
on the client side within 8 seconds from the request". In fact, this requirement must
hold on the whole system, as it does not detail on the type of pages to show. To
investigate such requirement, the system can be partitioned in subsystems that are
clusters of components heavily coupled to perform a certain task. In this case the
subsystems can be considered aspath-crossingvs the path followed through the
whole software architecture to satisfy a certain service request. In the remainder
of the paper, the subsystems obtained with this type of splitting will belong to the
type1category.

– service oriented requirement, i.e. one or more performance requirement are im-
posed on a specific system service. An example of such requirement can be "The
web server must be able to show the catalog web page on the client side within 8
seconds from the request". This requirement holds only on a specific system ser-
vice, that is a catalog request. To investigate such requirement, the system can be
partitioned in subsystems such that each subsystem contains the components in-
volved in a specific service provision. One of the major advantage in this type of
splitting is that the performance requirements at the system-level can be easily as-
sociated with the subsystem that implements the service undergoing a requirement.
The subsystems obtained with this type of splitting will belong to thetype2cate-
gory.

Note, however, that in both the above cases we do not exclude that two subsystems
overlap each other, i.e. that a component can belong to more than one subsystem. This
situation is more frequent in case oftype2partitioning, as it will be seen later.

Resource level- It represents the finest grain level for conducting a performance
analysis. Indices that can be obtained at this level are associated to a specific compo-
nent. We assume here a general definition of component, that is: an atomic part of a
system (software or hardware), that has an internal behavior and an external interface,
and cannot be further split. At this level of granularity, the major difference between the
two resource types resides in the changes that can be made on them to satisfy the per-
formance constraints. For example, a hardware resource like a CPU can be duplicated
to improve the throughput, whereas the duplication of a software component might im-
prove the performance only if the two instances can be allocated on separate machines.
For an overloaded software component, it is rather better to split the services that it
provides among other unoccupied components.

2.2 Using feedback for architectural refinements: a thorough process

Figure 1 shows an activity diagram representing the main flow of the whole process for
interpretation of results and feedback generation. The iterative nature of the process is

Figure 1. Results interpretation and feedback generation process.

obviously related to the progressive refinements that are brought on the system archi-
tecture while the interpretation of performance indices progresses. The refinement steps
are driven by the suggestions defined in special data structures that we callinterpreta-
tion matricesand that will be described in more details in Section 2.3. One or more
interpretation matrices are associated to each granularity level. In order to produce such
suggestions the process also lays on the ability to recognizeantipatternsin the archi-
tectural design. The concept of antipattern within the performance domain and some
examples of them are provided in Section 2.4.

A first performance model is built for the whole system. After results are obtained
from the solution of the system-level performance model solution (i.e. topmost block in
Figure 1), the first step consists in the interpretation of these results (i.e. SYSTEM level
block in Figure 1). If all the requirements are satisfied then the process successfully stop
without suggesting any change in the architecture. If some of the given requirements
are not satisfied, then it is suggested to move to a lower granularity level that is, in this
case, the subsystem level. The set of identified subsystems have to be sorted following
a certain criterion that may depend on the application domain (1). The performance
indices of the various subsystems are observed, and the focus is given to the worst one.

Subsystems are examined in a certain order (i.e. the loop on the subsystem level
interpretation in Figure 1 represents this iteration) and if changes can be made without
ambiguity on some subsystem (with the support of the interpretation matrices) then the
process goes back to the first step and the updated performance model has to be solved.

1 The identification of subsystem is still a step that requires some human support, especially in
case of flat requirement.

Otherwise, a further move to a lower granularity level is suggested: in this case, the
resource level.

Analogous behavior of the process occurs at the resource level. After this interpre-
tation step in any case the process brings back to the performance model solution to
check whether the performance requirements are met or not.

2.3 The interpretation matrices

In our approach, the identification and construction phases share a structured knowledge
about the system that we have organized in so-calledinterpretation matrices. Such ma-
trices have a2 × 2 format. The matrix rows represent interval of values for a certain
performance index, and matrix columns do the same. In a(i, j) cell we describe the
performance scenario and, if it is needed, we define the actions that should be taken to
find alternative scenarios.

We have devised matrices for different levels of granularity, different splitting strate-
gies of subsystems, and different types of components.

Figure 2 shows the matrix that we have built for system-level analysis. We assume
that performance requirements at the system level must be formulated in terms of sys-
tem throughput and response time (2). On the matrix rows we split the range of the
system throughput in two intervals: the throughput values higher than the valueReq_X
specified in the requirement are associated to the upmost row of the matrix, whereas the
lower values are associated to the bottommost row. On the matrix columns we represent
the range of the system response time in two intervals: the values higher than the value
Req_R specified in the requirement are associated to the leftmost column of the matrix,
whereas the lower values are associated to the rightmost column.

Figure 2. System Level Interpretation Matrix

In each cell of the matrix in Figure 2 we identify the performance scenario (in
plain text), and we specify the next step (in italic text) to find an alternative scenario,
if needed. For example, the lower leftmost red-framed cell represents the case of a low
system-level throughput associated to a high response time. The matrix entry suggests

2 We do not deal here with requirements on the utilization index, as it is quite rare to have such
a requirement at the system and subsystem level. Utilization enters however in the picture at
resource level of granularity.

to investigate at the subsystem level, and the designer has to choose one of the splitting
strategies illustrated in Section 2.1. As opposite, the upper rightmost green-framed cell
represents the case of a high system-level throughput associated to a low response time.
The matrix entry suggests to stop the analysis because all the system requirements have
been satisfied.

In Appendix we present the other four matrices that we have defined.

2.4 Supporting structures: some classified antipatterns

A quite crucial role in the interpretation matrices is played byantipatterns. Indeed,
almost always at the subsystem level (and sometimes at the resource level) the action to
be taken for result interpretation and to find alternative scenarios consists of searching
in the subsystem for an antipattern, that we define here below.

A design patternis a standard solution for a known problem. An antipattern is in
practice a negative pattern, in that it is a pattern whose presence into a design has neg-
ative effects that should be avoided. In our case we consider performance antipatterns
[9] that produce effects on the system performance. For each known performance an-
tipattern arefactoringmechanism can be provided to overcome it. The refactoring con-
sists of a sequence of transformations, from the original architectural model to a target
model, that improve system performance while preserving the system functionalities
(3).

Many antipatterns have been classified in literature [9,10,11]. In our work we have
considered the ones that can feasibly applied, with appropriate tailoring, to software
architectures for performance goals. In this section we provide evidence of two antipat-
terns that will be used in the example provided in Section 3. However, other classified
antipatterns are available in [7].

TheBlob antipattern reveals itself if a particular resource does the majority of the
work in a software architecture while banishing the other ones to minor support roles.
This situation is often easy to recognize looking at the performance results, because the
"blobbing resource", that embeds many of the functionalities provided by the system,
presents a very high utilization if compared to resources in its neighborhood. The left
side of Figure 3 shows an example of such antipattern.

The density of lines within each resource indicates the intensity of the resource load.
A poor distribution of the system intelligence evidently appears in Figure 3. In the right
side of Figure 3 a refactoring has been made on the system by distributing the system
logics over all the resources. A better performing pattern can be thus obtained.

In the left side of Figure 4 theUnbalanced Extensive Processingantipattern is
shown. It characterizes the scenario in which a specific class of requests generates a
pattern of execution within the system that tends to overload a particular resource (or
a set of resources). In other words the overloaded resource (i.e. typically the slowest
one) will be executing a certain type of job very often, thus in practice damaging other
classes of jobs that will experience very long waiting times and, in addition, leaving
quite idle the following resources in the pattern. This scenario has negative effects on

3 In the remainder of the paper we will call software performance antipatterns simply as antipat-
terns, with few exceptions where differently specified.

Figure 3. An example of Blob antipattern

the mean response time of the whole system, especially for the requests that do not
belong to the considered class, as well as on the whole system throughput.

Figure 4. An example of Unbalanced Extensive Processing antipattern

TheUnbalanced Extensive Processingantipattern can be recognized by observing
the utilization of the resources along the pattern and the classes of jobs that they process.
This antipattern can be refactored by introducing specificfast-pathsfor the service re-
quests that do not overload the considered resource and/or that need a particularly fast
service, as shown in the right side of Figure 4.

Obviously the positive effects of this refactoring will be more pronounced for the re-
quests that will use the fast-path, while the positive effects on the whole system depend
on the percentage of this request type overall the served requests.

3 Applying our approach

Our approach is not intended to be specific for a particular performance model, but for
sake of experimental validation we need to choose a notation to instantiate the method-
ology and use it on a case of study. We have chosen the Layered Queued Networks
[6,13].

The Layered Queuing Network (LQN) model is a canonical form for extended
queueing networks with a layered structure. The layered structure arises from servers

at one level making requests to servers at lower levels as a consequence of a request
from a higher level. LQN was developed for modeling software systems, but it applies
to any extended queueing network with multiple resource possession, in which multiple
resources are held in a nested fashion.

The case study on which we have applied our approach represents a software archi-
tecture used for a small robot that can interact with the environment where it works and
learns from its past experiences. The robot consists of three fundamental parts:

– sensor machinery- the robot makes use of sensors for visual perception, for mea-
suring the environmental temperature and for communicating with other robots via
wireless;

– servosystems- they enable the robot to move around and to interact, and possibly
avoid, objects on its path;

– computational engine- this includes the intelligent and reactive components.

The main activity of the robot is to explore the whole environment around it and
acquire knowledge for classifying events and sharing information with other robot-
friends.

When an event happens either it is pointed out by the devices in the sensor machin-
ery, or it is reported by one or more robot-friends that collaborate with the considered
robot. The computational engine, using the acquired knowledge, establishes whether it
is a potentially dangerous event or not and, in the latter case, it can be used to acquire
new knowledge. The knowledge might also be acquired using the servosystems, for ex-
ample by interacting with some objects on the ground. If an event is instead classified
as dangerous, then the robot must quickly react by making suitable remarks and stop-
ping itself before running into danger. An UML Sequence Diagram of a generic regular
event handling is shown in Appendix.

We have modeled such system architecture in LQN, as shown in Figure 5. The
EnvironmentandOtherROBOTStasks of Figure 5 are used only as request sources to
generate the system workload and do not belong to the analyzed system.

Following the previous classification, the LQN tasks can be subdivided as:

– sensor machinery: Sensors, NetRX, NetTX;
– servosystems: Arms, Motors, MoveController;
– computational engine: StorageMemory, VolatileMemory, AI, Handler.

We assume that the number of sensors is fixed at 2 (i.e. visual and temperature input
sensors) and the robot-friends number can instead vary from 1 up to 13. Besides, we
defined the following performance requirements:

1. the robot must react in no more than4.5 seconds from the moment in which an
event is classified as dangerous;

2. the mean processing and reaction time for an event, from the moment in which it
starts its path from the computational engine, must not exceed 11 seconds.

We associate the first requirement, in the LQN model, to the mean service time of
the isDangerousentry. The second requirement is associated to the mean service time
of thecheckEvententry. Both entries belong to theAI task.

Environment
λ=0.0889,µ=2

Events
22.5

OtherROBOTS
λ=0.0387,µ=1

Friends
25.8

P1
µ=0.000638

Sensors
λ=0.0889,µ=1.82

getEvent
20.5

NetRX
λ=0.0387,µ=0.806

receiveAlert
20.8

AI
λ=0.128,µ=1.59

checkEvent
12.5

whichType
0

endElab
0.0205

memElab
0.0782

memGetElab
0.041

memPutElab
0.0115

isRegular
14.9

+

+

isDangerous
6.36

Handler
λ=0.128,µ=0.862

handleDangerous
0.792

handleRegular
9.3

MoveController
λ=0.351,µ=0.657

haltHere
0.66

goThere
2.34

takeThat
1.78

NetTX
λ=0.0383,µ=0.0566

sendAlert
1.48

StorageMemory
λ=0.744,µ=0.0157

getInfo
0.0204

storeInfo
0.0229

VolatileMemory
λ=1.39,µ=0.0216

exec
0.0155

Motors
λ=0.78,µ=0.318

motorStatus
0.0829

setSpeed
0.531

setDirection
1.53

Arms
λ=1.16,µ=0.296

armStatus
0.0829

moveDX
0.531

moveSX
0.531

P2
µ=0.211

Figure 5. The LQN model for the robot case study

In Appendix all the parameters used for the initial LQN model are shown. The per-
formance analysis of the initial model produces the results reported in Table 1. It is
evident that the initial architecture does not satisfy the performance requirements. Our
approach, basing on the system-level interpretation matrix of Figure 2, suggests to iden-
tify subsystems, in one of the previously described ways, for a finer grain performance
analysis. In this case study we have both types of requirements, as classified in Sec-
tion 2.1. The first one is service specific whereas the second one is related to the whole
system (i.e. a flat requirement). At this point we have chosen to adopt a type2 system
splitting, even though type1 could be used as well. Of course, depending on the type of
splitting, the appropriate interpretation matrix has to be used in the next step.

Target Value Current Value
isDangerous (req1) ≤ 4, 5 ≈ 9, 25

checkEvent (req2) ≤ 11 ≈ 15, 5

Table 1.Requirements and Performance Results - Iteration0

SubS_dangerousis the first analyzed subsystem, and it is composed by all the sys-
tem tasks with the exception of theArmstask.

The subsystem type2 interpretation matrix of Figure 9 has to be referred for actions
to take.

In this case, high mean response time and a good throughput level (4) suggest to
search for any known antipattern in the considered subsystem.

By observing theHandlertask and the type of requests that run over the system, the
“Unbalanced Extensive Processing” antipattern can be retrieved on it (see left side of
Figure 6. In fact the considered task has a sufficiently high utilization level (i.e. about
86.2%) and it receives two different request types: one relates to the regular events
processing (and consequently with potentially heavy environmental interactions), and
the other one relates with the dangerous events which need a faster processing.

Figure 6. Unbalanced Extensive Processing antipattern in robot system

4 Note that no requirement has been imposed on the throughput, hence any value can be consid-
ered as feasible.

By applying the suggested solution to the retrieved antipattern, the refactored archi-
tecture, as shown in the right side of Figure 6, achieves the performance levels summa-
rized in Table 2. Indices have been improved, the first requirement has been satisfied
but the second one has still not been met.

Target Value Current Value
distance from the
previous iteration

isDangerous (req1) ≤ 4, 5 ≈ 3, 3 −64, 32%

checkEvent (req2) ≤ 11 ≈ 13, 75 −11, 29%

Table 2.Requirements and Performance Results - Iteration1

The analysis should proceed with the goal of reducing the mean system response
time for a generic event while considering that, in accordance with performance model
parameters, the70% of the captured events are classified as regular. Thus we will an-
alyze theSubS_regularsubsystem because its performance affects the global system
performance more than the other subsystems.

In the new considered model theHandler2 task belongs to theSubS_dangerous
subsystem but theHandler task, that now does not offer any service for the dangerous
events processing, only belongs to theSubS_regularsubsystem, as shown in table 3.

Software Resources
SubSystem

SubS_dangerous
SubSystem

SubS_regular

Sensors
√ √

NetRX
√ √

NetTX
√

StorageMemory
√ √

VolatileMemory
√ √

AI
√ √

Handler
√

Handler2
√

MoveController
√ √

Motors
√ √

Arms
√

SubSystem
performance target

R≤ 4,5
(on isDangerous)

—

System
performance target

R≤ 11 (on checkEvent)

Table 3.SubSystems - Iteration2

The subsystem type2 interpretation matrix used with theSubS_regularsubsystem
suggests to search for antipatterns in this case as well. Here the interactions among the

tasksMoveController, Motors andArmsannounce for a “Blob” antipattern, as shown
in the left side of Figure 7.

The refactoring of the system due to the latter antipattern identification does not
modify the model structure, but only the distribution of load, as shown in the right side
of Figure 7.

Figure 7. Blob antipattern in robot system

This allows the software architecture to achieve the performance values summarized
in Table 4.

Target Value Current Value
distance from the
previous iteration

isDangerous (req1) ≤ 4, 5 ≈ 3, 15 −4, 54%

checkEvent (req2) ≤ 11 ≈ 12 −12, 73%

Table 4.Requirements and Performance Results - Iteration2

The second requirement is still slightly over the desired level, so the analysis should
make one more step. Now the subsystems do not contain any known antipattern, and
the interpretation matrix suggests to go for a lower level of granularity and use the
“software resource” interpretation matrix.

The first analysis consists of examining the utilization level for the resources be-
longing to the considered subsystem to find the one in the worst state. As shown in
the left side of Figure 8, theHandler resource has the highest utilization value and the
“software resource” interpretation matrix suggests to clone it. Thus we have raised its
resource multiplicity in the LQN model.

This change has positive effects on the generic event processing performance al-
though it is not enough to satisfy the requirements. Thus we can consider theAI re-
source that is the current most used resource in theSubS_regularsubsystem, as shown
in the right side of Figure 8. However, the raise of its multiplicity has negative effects,
very likely because the number of requests in the queues of other system resources
becomes too high. For this reason, we did not apply this change.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14

U
til

iz
at

io
n

Robot-friends number

AI (2)
Handler

MoveController
 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14

U
til

iz
at

io
n

Robot-friends number

AI (2)
Handler (2)

MoveController

Figure 8. Resource Utilization Graphs

Handler is the second highly used resource in the subsystem and its utilization level
is over80%, as shown in the right side of Figure 8. Raising its multiplicity, as suggested
by the proper interpretation matrix, is in this case useless because the performance
levels remain unchanged, so we did not apply this change either.

At this point, considering that the hardware (like CPU and memories) which is di-
rectly used by the software components can support the current workload with medium
utilization levels, we can try to improve the hardware related with the servosystems, i.e.
theMotorsandArmstasks that are the slowest components of the whole robot system.

Thus, basing on the hardware resource interpretation matrix, we decided to drop the
delay of each servosystems activity by 0.1 seconds. This leads to a considerable perfor-
mance increase. In fact, at the end of the process the performance goals are achieved,
as shown in table 5.

Target Value Current Value
distance from the
previous iteration

isDangerous (req1) ≤ 4, 5 ≈ 4 +26, 98%

checkEvent (req2) ≤ 11 ≈ 10, 3 +14, 17%

Table 5.Requirements Summary - Iteration3

4 Conclusions

We have presented an approach to interpret performance analysis results and generate
architectural feedback on the basis of result interpretation. The lack of support for this
task practically prevents the software developers to introduce performance analysis in
the software lifecycle. Using our approach, guidelines for interpretation and a thorough
process can be followed to break the adversary design choices that negatively affect the
system performance. We have applied our approach to the model of a robot system, and

we have shown that the process eventually drives to a software architecture that satisfies
the performance requirements.

Although we have implemented a prototyped tool that may guide the developers
along the whole process, it is still necessary some human experience in several steps.
For example, the detection of antipatterns in a subsystem is a task whose complexity
heavily depends on the structure of the subsystem and the definition of the antipattern
itself. However, at the best of our knowledge, this is the first work that embeds in the
same process the interpretation of performance results and the formulation of architec-
tural alternatives. In addition, we have given a contribution to structuring the knowledge
necessary for such task.

As future work we intend to consolidate the antipattern definitions and retrieving.
Consequently, we can improve the tool support to the whole process. Besides, we plan to
extend our approach by considering possible architectural constraints that may prevent
from applying suggested changes (e.g. a certain load cannot be distributed on other
components due to "narrow" connectors). As a long-term goal, we plan to introduce cost
issues in the choice of architectural alternatives, exactly like CBAM process suggests
[4].

References

1. S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni (2004)Model-based Performance Predic-
tion in Software Development: A Survey, IEEE Trans. on Soft. Eng., 30(5): p. 295-331.

2. S. Barber, T. Graser, J. Holt (2002)Enabling Iterative Software Architecture Derivation Using
Early Non-Functional Property Evaluation, Proc. of the 17th IEEE ASE conference.

3. L. Dobrzanski, L. Kuzniarz (2006)An Approach to Refactoring of Executable UML Models,
Proc. of ACM SAC.

4. Kazman, R. et al. “Quantifying the Costs and Benefits of Architectural Decisions”,Proc. of
ICSE01, 2001.

5. E. Lazowska et al. (1984)Quantitative System Performance - Computer System Analysis Us-
ing Queueing Network Models, Prentice-Hall Inc.

6. G. Franks et al. (2005)Layered Queueing Network Solver and Simulator User Manual,
Tech. Report, Department of Systems and Computer Engineering, Carleton University,
http://www.sce.carleton.ca/rads.

7. L. Frittella (2006)Feedback Architetturale Basato su Sistematica Interpretazione di Software
Performance Analysis(in italian), Master Thesis, Università degli Studi dell’Aquila, Italy.
http://www.di.univaq.it/cortelle/docs/TesiLaurento.pdf

8. P. Sancho, C. Juiz, R. Puigjaner (2005)Automatic Performance Evaluation and Feedback for
MASCOT designs, Proc. of the 5th ACM WOSP.

9. C. Smith, L. Williams (2000)Software Performance AntiPatterns, Proc. of 2nd ACM WOSP.
10. C. Smith, L. Williams (2002)New Software Performance AntiPatterns: More Way to Shoot

Yourself in the Foot, Proc. of CMG international conference.
11. C. Smith, L. Williams (2003)More New Software Performance AntiPatterns: Even More

Ways to Shoot Yourself in the Foot, Proc. of CMG international conference
12. L. Williams, C. Smith (2002)PASA: An Architectural Approach to Fixing Software Perfor-

mance Problems, Proc. of CMG international conference.
13. M. Woodside, G. Franks (2005)Tutorial Introduction to Layered Modeling of Software Per-

formance, Tech. Report, Department of Systems and Computer Engineering, Carleton Uni-
versity, http://www.sce.carleton.ca/rads.

Appendix

Other interpretation matrices. In Figure 9 we show the other four matrices that we
have defined, that are (from top to bottom): a matrix for interpretation at the subsystem
level for each type of subsystem splitting (i.e. Type1 and Type2 defined in Section 2.1);
a matrix for interpretation at the resource level for each type of resource (i.e. software
and hardware).

We discuss here general issues on the matrices, that represent the main data struc-
tures for result interpretation. A thorough interpretation process that lays on these ma-
trices will be described in more detail in Section 2.2.

First of all, we like to remark that the utilization index has been considered only
at the resource level, because we retain quite unrealistic in many domains to study the
utilization at higher level of granularity (e.g. what does it mean the utilization of a
certain subsystem?). Therefore, at the level of system and subsystem we assume that a
performance analysis will provide values of throughput and response time and, at the
same time, we assume that requirements on these indices have been specified at the
system level (5). The actions that are taken depend on the range of values in which
those indices fall. As said above, a pair of index value will determine a cell of a matrix
that, among other, will provide suggestions for the next step to take in the interpretation
process.

Note that at the resource level of granularity we introduce theutilization that will
be compared to pseudo-objective thresholds rather than to a fixed required value. This
is because it is generally hard to determine in advance the maximum utilization desired
for a certain resource. In general, indeed, a resource can be considered as optimized if
its utilization is very close to 1, but never reaches this value. If the maximum utilization
of 1 is reached, then the resource is in saturation and its waiting queue might grows
indefinitely.

A scenario of the robot case study.The UML Sequence Diagram in Figure 10
shows an interaction example among the main resources that take part in a generic
regular event handling.

Parameters of the intial LQN model. Table 6 contains the parameters used for
the initial LQN model shown in Figure 5. The table contains all the entries included in
tasks of the model. In addition, for each entry we provide: either the mean service time
or the average delay (when appropriate, e.g. for mechanical devices such as Arms and
Motors); the mean number of calls for services required to other resources. In addition
to that, we assume that70% of events are classified as regular and30% as dangerous.

5 Note that the performance analysis may be void in absence of clear performance requirements.

Figure 9. Interpretation Matrices

Tasks
Entries

Mean Service Time (S)
or Delay Time (Z)

Required Services (average
number of calls)

CPU-
ID

Environment 1
Events 2.0 (Z); 0.005 (S) getEvent(1.0)

OtherROBOTS 1
Friends 5.0 (Z); 0.005 (S) receiveAlert(1.0)
Sensors 2
getEvent 0.05 (S) checkEvent(1.0)
NetRX 2

receiveAlert 0.05 (S) checkEvent(1.0)
NetTX 2

sendAlert 0.2 (S); 1.25 (Z)
AI 2

endElab 0.005 (S)
memGetElab getInfo(2.0)
memPutElab storeInfo(0.5)

isRegular handleRegular(1.0)
isDangerous handleDangerous(1.0)

VolatileMemory 2
exec 0.00005 (S)

StorageMemory 2
getInfo 0.005 (S)

storeInfo 0.0075 (S)
Handler 2

handleRegular 2.0 (S)
exec(8.0); getInfo(3.0); storeInfo(1.5);

goThere(1.5); takeThat(2.0)

handleDangerous 0.1 (S)
exec(1.0); getInfo(0.5); storeInfo(0.1);

sendAlert(1.0); haltHere(1.0)

MoveController 2

goThere 0.05 (S)
motorStatus(3.0); setSpeed(1.5);

setDirection(0.75)

takeThat 0.005 (S)
armStatus(4.0); moveSX(1.5);

moveDX(1.0)

haltHere 0.0005 (S) motorStatus(1.0); setSpeed(1.0)

Arms 2
armStatus 0.002 (S); 0.05 (Z)
moveSX 0.000001 (S); 0.5 (Z)
moveDX 0.000001 (S); 0.5 (Z)
Motors 2

motorStatus 0.002 (S); 0.05 (Z)
setSpeed 0.000001 (S); 0.5 (Z)

setDirection 0.000001 (S); 1.5 (Z)

Table 6. Initial LQN model parameters

AI Handler MoveController Motors Arms

HandleRegular

goThere

takeThat

motorStatus

setSpeed

setDirection

motorStatus

motorStatus

armStatus

moveSX

armStatus

moveDX

armStatus

Figure 10.Sequence Diagram - Regular Event

