
Dipartimento di Informatica
Universit̀a di L’Aquila

Via Vetoio, I-67100 L’Aquila, Italy

http://www.di.univaq.it

Dissertation

Model-based Performance Analysis of Software
Architectures

Antinisca Di Marco

2005

Advisor: Prof. ssa P. Inverardi

c© Antinisca Di Marco, 2005. All rights reserved

To Vittorio,
the man who gave
me back the smile.

ABSTRACT

Over the last decade, research has addressed the importance of integrating quantitative validation in the
software development process, in order to meet performance requirements. Performance problems may be
so severe that they can require considerable changes at any stage of software life cycle. Especially at the
earlier phases inaccurate decisions may imply an expensive rework, possibly involving the overall software
system structure.

The validation and verification of performance requirements is an important task that should be accom-
plished at any stage of the software life cycle. To this purpose, many approaches have been proposed.
Although several of these approaches have been successfully applied, we are still far from considering per-
formance analysis as an integrated activity into software development which effectively supports all phases
of the software life cycle. We believe that model-based performance analysis techniques facilitate such an
integration, since models represent tools that can be refined during the software life cycle while the devel-
opment progresses, and also at run time they provide fast and suitable support in dynamic management of
the system performance.

The aim of this thesis is to achieve model-based performance analysis of software architecture of
component-based systems. We consider performance models that describe the software system at the ar-
chitecture level. The thesis deals with the usage of such analysis at two different phases of the software
life cycle: at the design level and at run time. The former, called predictive performance analysis, helps
the designers during the software architecture definition step. The latter is used to dynamically manage the
performance attributes when the system runs.

We devise a new predictive performance analysis methodology (approach, etc.) that can be applied at the
software architecture level when information on the hardware platform is still missing.

To evaluate the applicability of existing approach to predictive performance analysis, we apply two existing
software performance analysis approaches, one based on Stochastic Process Algebras and one based on
the simulation models, to a real telecommunication software system. This study allows us to identify their
suitability to real complex software system and to define the main suitable features an approach to predictive
analysis should have to be accepted by software designers.

We also introduce a framework to cope with the integration of functional and non-functional analyses at
the software architecture level. Such a framework allows to deal with inter-relationships between func-
tional and non-functional aspects that would not necessarily emerge from separate analysis. The integration
framework is still a working progress and we aim to implement it in the next future.

Finally, we define a framework to dynamically reconfigure a component-based application in order to man-
age its performance while it runs. The framework monitors the application performance and, when some
problem occurs, it chooses the next configuration for the software system. Such decision is taken on the
basis of feedback provided by the on-line evaluation of performance models of several pre-defined and
feasible reconfiguration alternatives.

ACKNOWLEDGMENTS

It is hard to sum up in one page all the support received from people for my PH.D. studies.

Undoubtedly, I learned a lot under the supervision of Paola Inverardi. First of all the ability to overcome
unpredictable problems and to be flexible to the many exigencies can occur in the real life. She has always
treated me and my colleagues at an even level, giving us the opportunity to emerge and to meet important
people in our research fields. I want to thank her for all of this.

I want to thank the reviewers of this thesis, Dorina Petriu and Jeff Maggee for their great job and valuable
advices that allowed me to improve the quality of this manuscript. In particular, I find Dorina Petriu a
special woman able to express great humanity.

I want to thank the researchers I collaborated with in the past three years: Simonetta Balsamo, Benedetto
Intrigila, Marta Simeoni, Giuseppe Della Penna, Alfonso Pierantonio, Francesco Lo Presti, Connie Smith,
Catalina Llad́o, Lloyd Williams, Mauro Caporuscio, Moreno Marzolla, and Igor Melatti.

In particular, Marta Simeoni was very closed to me at the beginning of my Ph.D. program, when everything
seems to be big and insurmountable. She gave me many useful and meaningful advices.

I want to say thank to the Software Engineering Group of the Computer Science Department of University
College London that gave and still today gives me the great opportunity to work with. This group was
closed to me in the last, and even more difficult, part of the Ph.D. program, when all the work of three years
had to be compressed and organized in this manuscript. In particular, I want to thank Cecilia Mascolo and
Wolfgang Emmerich that show me every day their deem and credit in my work and my skills.

Special acknowledgments go to Vincenzo Grassi and Raffaela Mirandola that are two special persons whom
I had not chance to work with, even if they were and are always available to give me (technical and human)
support.

The SEA Group with which I shared my experience and troubles. All of you are special. In particular, I want
to thank Fabio Mancinelli because he shared with me many thinks and opinions, and Mauro Caporuscio
hoping that he never changes his mind and behavior.

In my department in L’Aquila, I want to give special thanks to Michele Flammini who spent considerable
time to encourage me.

To Dora that was my ray of hope and thoughtlessness in my dark days. To Fernanda which is the mirror
where my soul reflects itself. To Valeria for her continuous presence and human support.

To Monica and Romano which always feel myself part of the family as if I was since long time. Even if we
meet each other few times in this three years, they always dedicate a lot of time to reassure myself.

Last, but not least, to Vittorio to exist. He has the ability to feel myself close to him even when there are
thousands of miles among us.

TABLE OF CONTENTS

Abstract i

Acknowledgments iii

Table of Contents iii

List of Figures vii

List of Tables xi

1 Introduction 1

2 Software Models and Performance Models 5
2.1 Software Specification Models . 6

2.1.1 Automata . 6
2.1.2 Process Algebras . 8
2.1.3 Petri Nets . 8
2.1.4 Message Sequence Charts . 10
2.1.5 Unified Modeling Language . 11
2.1.6 Use Case Maps . 12

2.2 Performance Models . 12
2.2.1 Markov Processes . 13
2.2.2 Queueing Networks . 14
2.2.3 Stochastic Process Algebras . 15
2.2.4 Stochastic Timed Petri Nets . 16
2.2.5 Simulation Models . 17

2.3 Performance Model Comparison from a Software Designer Perspective 18
2.3.1 On Stochastic Process Algebra Modeling . 20
2.3.2 On Generalized Stochastic Petri Net Modeling 21
2.3.3 On Queueing Network Modeling . 22
2.3.4 Models at Work: Results and Comments . 23
2.3.5 Summing up: Model Comparison . 25

2.4 Summary . 28

I Predictive Performance Analysis: From Software Models to Performance
Models 29

3 Software Performance Engineering: State of the Art 31
3.1 Software Performance Engineering . 31
3.2 The Schedulability, Performance and Time UML Profile (SPT) 33
3.3 Queueing Network Based Methodologies . 38

3.3.1 Methodologies Based on the SPE Approach . 38
3.3.2 Architectural Pattern Based Methodologies . 39
3.3.3 Methodologies Based on Trace-Analysis . 41
3.3.4 UML-Based Modeling Approach . 42
3.3.5 Approaches for Component-Based Software Systems 42

TABLE OF CONTENTS v

3.4 Process Algebras Based Approaches . 43
3.5 Petri Net Based Approaches . 44
3.6 Methodologies Based on Simulation Methods . 45
3.7 Methodology Based on Stochastic Processes . 45
3.8 Classification of the Existing Approaches . 46

3.8.1 Comparison and Classification . 47
3.9 Final Considerations and Summary . 53

4 A new Approach for Predictive Performance Analysis of Component-based Software Archi-
tectures 57
4.1 Premises . 57
4.2 An Introductory Approach to Software Architecture Performance Analysis 59

4.2.1 MSC Features used in MSC2QN Step . 60
4.2.2 Limits of MSC2QN Technique . 62

4.3 Software Architecture Performance Analysis: an Advanced Approach 63
4.3.1 UML 2.0 Diagrams . 65
4.3.2 Usage of SPT to Annotate UML 2.0 Diagrams 67
4.3.3 Annotation in the Sequence Diagrams . 67
4.3.4 Overview of the Approach . 68
4.3.5 Chains Generation: a Compositional Approach 70
4.3.6 Basic Rules . 70
4.3.7 QN Patterns for the Fragment Operators in Sequence Diagrams 74
4.3.8 Further Considerations . 79

4.4 The Electronic Commerce System . 80
4.4.1 QN model generation for the case study . 83

4.5 Summary . 87

5 Application of two Predictive Performance Analyses to a Complex Case Study 89
5.1 Predictive Performance Analysis and Real Industrial Context 89
5.2 An Industrial Case Study: The Naval Integrated Communication Environment 91
5.3 Performance Analysis Based on Stochastic Process Algebras 93

5.3.1 Æmilia: an Architectural Description Language 95
5.3.2 System Modelling . 96
5.3.3 Analysis . 101
5.3.4 Considerations on the Used Approach . 102

5.4 Performance Analysis Based on Simulation . 104
5.4.1 Simulation Models . 104
5.4.2 Simulation Modeling . 105
5.4.3 Analysis . 107
5.4.4 Consideration on the Approach . 108

5.5 Combined Usage of Tools . 109
5.6 Summary . 110

II Integration of Predictive Functional and Non-Functional Analyses 113

6 A Tool Integration Framework 115
6.1 Motivations and Goals . 115
6.2 XML Technologies as Integration Support . 117

6.2.1 The eXtensible Markup Language . 117
6.2.2 The eXtensible Schema Definition . 117

6.3 A framework for Software Analysis Integration . 119
6.3.1 Architecture of the XMLIntegration Core. 121

6.4 First Implementation of the XML Integration Core . 122
6.4.1 The Considered Software Analysis Methodologies 122

vi TABLE OF CONTENTS

6.4.2 An Example: the Set-Counter Application . 123
6.5 The Eclipse Platform . 124

6.5.1 Designing the Framework in Eclipse . 125
6.6 Summary . 126

7 Integration of a Software Performance Engineering Methodology in the Tool Integration
Framework 127
7.1 Towards a Fully Automation of the SPE Process . 127
7.2 SPE Meta-Model . 130

7.2.1 SPE Meta-Model 2.0 . 130
7.2.2 Adjustments to the Meta-Model . 132
7.2.3 S-PMIF XML Schema . 133

7.3 SPE Model Interchange Process . 135
7.4 Experimental results . 138
7.5 The SPE Approach in the Tool Integration Framework 141
7.6 Summary . 143

III Model-based Performance Analysis in System Dynamic Reconfiguration 145

8 Dynamic Reconfiguration to Manage theSIENA Middelware Performance 147
8.1 Background . 147
8.2 The Reconfiguration Process . 148
8.3 SIENA . 149
8.4 The LIRA Framework . 150
8.5 Reconfiguring Siena . 151

8.5.1 Siena Reconfiguration Alternatives . 152
8.5.2 Trade-off Analysis . 153

8.6 Performance Model and Evaluation Technique . 154
8.6.1 Performance Indices . 155
8.6.2 Traffic Re-modulation . 156

8.7 Framework Implementation . 156
8.7.1 Monitoring . 157

8.8 Experiments . 159
8.9 Final Considerations and Future Works . 160
8.10 Summary . 162

9 Conclusions and Future Work 163
9.1 Future Work . 166

A Æmilia Textual Description for the Maximal Configuration 167

B Formulae Used in ReconfiguringSIENA 171
B.1 Monitored Data . 171
B.2 Derived Measures . 171
B.3 Performance Indices . 172

References 173

L IST OF FIGURES

2.1 Static Description of XT system . 6
2.2 Behavioral Description of XT system . 6
2.3 State Transition Graph for the XML Translator Automaton. 7
2.4 Process Algebra Model for the XML Translator. 9
2.5 Petri Net Model of the XMLTranslator. 10
2.6 Sequence Diagram of the XMLTranslator. 12
2.7 Basic Symbols of the UCM Notation. 12
2.8 UCM Model for the XMLTranslator. 13
2.9 QN Model for the XMLTranslator. 15
2.10 TIPP Process Algebra Model for the XMLTranslator. 16
2.11 STPN Model of the XMLTranslator. 17
2.12 Architecture Design Process . 19
2.13 Fast StructureBuilder Performance Indices. 24
2.14 Petri Net Refinement. 25
2.15 Performance indices of Fast StructureBuilder refinement. 26
2.16 Fast Marker Performance Indices. 27

3.1 The Performance Analysis Domain Model. 34
3.2 The Relationship Between Performance Concept and the General Resource Model 34
3.3 Generic software life cycle model. 46
3.4 Classification Dimensions of Software Performance Approaches. 47
3.5 Classification of Considered Methodologies. 52
3.6 Tools and Performance Process. 54

4.1 Software Performance Analysis Process and its Integration into the Software Life Cycle. . 58
4.2 QN Generation in MSC2QN Methodology. 60
4.3 State Information and Interaction Types in MSC Notation. 61
4.4 MSC with a Repeat Block. 62
4.5 Some Patterns the MSC2QN Approach does Not Deal with. 62
4.6 UML Diagrams Contribution in QN Model Generation. 63
4.7 SAP•one Customer Types Identification Step. 68
4.8 SAP•one Service Centers Identification Step. 69
4.9 SAP•one Chains Identification Step. 69
4.10 Translation Patterns for Synchronous and Asynchronous Interaction. 71
4.11 Component Diagram. 71
4.12 Translation Patterns for Synchronous Signals. 72
4.13 Translation Patterns for Asynchronous Signals. 73
4.14 Translation Patterns for Synchronous Call Actions. 74
4.15 Translation Patterns for Asynchronous Call Actions. 75
4.16 ReferenceSequence Operator translation rule. 75
4.17 AlternativeSequence Operator translation rule. 76
4.18 OptionSequence Operator translation rule. 76
4.19 BreakSequence Operator translation rule. 77
4.20 Parallel Sequence Operator translation rule. 77

viii LIST OF FIGURES

4.21 LoopSequence Operator translation rule. 78
4.22 Classification of our Approach. 80
4.23 SA components of the Electronic Commerce System. 81
4.24 UML Use Case Diagram. 81
4.25 Component diagram of the considered portion of the e-commerce system. 82
4.26 E-commerce Scenarios. 82
4.27 E-commerce Scenarios. 83
4.28 Place Order Scenario. 84
4.29 Chain in the QN model corresponding to BrowseCatalog Scenario. 84
4.30 Chain in the QN model corresponding to BrowseCart Scenario. 85
4.31 Chain in the QN model corresponding to InsertItem Scenario. 85
4.32 Chain in the QN model corresponding to DeleteItem Scenario. 86
4.33 Chain in the QN model corresponding to PlaceOrder Scenario. 86

5.1 NICE Static Software Description . 91
5.2 Recovery Scenario . 93
5.3 Used Approach . 94
5.4 Structure of an Æmilia Textual Description . 95
5.5 Basic Flow Graph . 96
5.6 CTS PROXY AGENT Component Statechart . 97
5.7 Component Statecharts . 98
5.8 Flow graph of Considered Scenario . 99
5.9 Statechart and Flow Graph of the CTS PROXY AGENT Component 100
5.10 Textual Description of CTS PROXY AGENT Component 101
5.11 Recovery Scenario . 106
5.12 Structure of the Simulation Model. 108

6.1 A Complex Type Definition . 118
6.2 A Simple Type Definition . 118
6.3 A Complex Type Derived by Extension . 119
6.4 The Framework Architecture. 120
6.5 Structure of the Integration Core . 121
6.6 Architecture of Set-Counter Application . 124
6.7 Rules Instance for the Set-Counter Application in TwoTowers-CHARMY Integration 125
6.8 EclipsePlatform and its Instantiation for Our Framework 125

7.1 The SPE process. 129
7.2 SPE Meta-Model Diagram. 130
7.3 Meta-model Attributes. 131
7.4 Portion of the XML schema corresponding to the S-PMIF meta-model. 134
7.5 Drawmod Sequence diagram. 137
7.6 Generated SPE•ED Model. 138
7.7 First Mapping between the SPE Approach Components and the Tool Integration Framework. 141
7.8 Second Mapping between the SPE Approach Components and the Tool Integration Frame-

work. 142
7.9 Third Mapping between the SPE Approach Components and the Tool Integration Framework.142

8.1 The Reconfiguration Process. 148
8.2 SIENA Architecture . 149
8.3 A Possible Configuration for theSIENA Network . 149
8.4 L IRA Architecture . 150
8.5 Software Architecture of the Reconfiguration Framework UsingL IRA. 152
8.6 Monitored and derived data for aSIENA Router k . 154
8.7 Software Architecture . 157
8.8 The Configuration Schema. 157

LIST OF FIGURES ix

8.9 The AspectJ Weaving Process . 158
8.10 DispatcerMonitor Aspect Source Code . 158
8.11 Service Rate . 159
8.12 Total Arrival rates of SRs . 160
8.13 Utilization of Siena Routers . 160
8.14 Reconfiguration Actions . 160
8.15 L IRA Reconfiguration Script . 160
8.16 The reconfiguredSIENA Network . 161
8.17 Predict Utilization of Siena Routers after Reconfiguration 161

L IST OF TABLES

2.1 Classification of the Considered Notations . 26

3.1 Summary of the Methodologies. 49
3.2 Performance Information Required by the Methodologies. 51

5.1 Subsystem Decomposition . 92
5.2 Mean Execution Times for the Actions in the Recovery Scenario 94
5.3 Performance Evaluation Results of the Simplified Æmilia Model 102
5.4 Computed mean execution times for the Recovery scenario, for different numberN of

equipments. The last column on the left reports the execution time of the simulation program 109
5.5 Summary of the Comparison between the Simulation-based and the Analytical Approach. . 111

CHAPTER 1

INTRODUCTION

Over the last decade, research has addressed the importance of integrating quantitative validation in the
software development process, in order to meet non-functional requirements. Among these, performance
is one of the most influential factors to be considered since performance problems may be so severe that
they can require considerable changes at any stage of software life cycle, in particular at the software
architecture level or design phase and, in the worst cases, they can even impact the requirements level.
Independently of the software process, the early design phases may heavily affect the software development
and the quality of the final software product. Therefore inaccurate decisions at early phases may imply
an expensive rework, possibly involving the overall software system. Traditional software development
methods focus on software correctness, and deal with performance issues later in the development process.
But this development style called “fix-it-later” approach, brought large-sized projects to fail[89].

In the research community there has been a growing interest in the (early) validation of performance re-
quirements and many approaches have been proposed. Although several of these approaches have been
successfully applied, we are still far from seeing performance analysis as an integrated activity into soft-
ware development which effectively supports all phases of the software life cycle. We believe that model-
based performance analysis techniques facilitate such an integration, since models represent tools that can
be refined during the software life cycle while the development progresses.

In the software practice, it is generally acknowledged that the lack of performance requirement validation
during the software development process is mostly due to the knowledge gap between software engineer-
s/architects and quality assurance experts (as special skills required) rather than to performance foundational
issues. Moreover, short time to market constraints make this situation even more critical. In this scenario
software modeling notations and tools may play a crucial role to fill this gap as well as to shorten the
performance validation time.

With the growing complexity and size of modern distributed software systems the need of tools to support
design decisions and manage performance of a software system at run time are becoming a critical issue.

Software development teams often have to decide among different functionally equivalent design alterna-
tives relying only on their own skills and experience. This choice is driven by non-functional factors such
as performance, reliability, and topological/economical constraints. The criticality of these attributes is
high even in software systems where non functional requirements are not explicitly expressed. Even in a
component-based distributed software system the attributes such as performance, dependability, maintain-
ability determine the quality of the product and the success of a software development. Component-based
software systems are developed by assembling existing components. Software components are indepen-
dent, compositional and deployable units which interact each others to provide services to the user. On one
side, the problem of assessing the quality of single components is an active research area, on the other side
even if it could be possible to assume ”good quality” of components the quality of the assembled software
system would not always be guaranteed. Hence it is mandatory to pursue further investigation, especially
in the early development phases, on how components interact each other and with the environment.

For software systems whose performance requirements are strict, in addition to performance validation

1

2 Chapter 1. Introduction

at the design time, performance attributes should be monitored during their execution, in order to react
opportunely every time performance degradations are experienced. In this direction, recently, growing at-
tention has been focused on run-time management of Quality of Service of complex software systems. In
this context, self-adaptation of applications based on run-time monitoring and dynamic reconfiguration is
considered a useful technique to manage QoS in complex systems. Many frameworks for dynamic reconfig-
uration have been recently proposed for this aim. These frameworks lay on monitoring, reconfiguration and
on–line model-based analysis to manage/negotiate QoS level of software systems at run time. They share
the idea of modifying the application configuration when the threshold of a critical QoS index is crossed.
The choice of the new configuration for improving the QoS of the system is based on the current status of
the managed software application.

We believe that the combined action of predictive analysis at the early phases of the software development
process, and adaptation at run time, are the key points to assure the fulfilment of the performance constraints
for the software systems.

MOTIVATIONS AND CONTRIBUTIONS

The aim of this thesis is to achieve a deep insight in model-based performance analysis of software archi-
tecture of component-based systems. We consider performance models that describe the software system
at the architecture level even if the analysis can be carried on at any stage of the software life cycle. The
thesis will deal with the usage of such analysis at two different phases of the software life cycle: design
level and run time. The former, called predictive performance analysis, helps the designers during the soft-
ware architecture definition step. Errors in such development phase could prevent the success of the whole
project. The latter instead is used to dynamically manage the performance attributes when the system runs.
The choice of the software architecture level is not casual: the performance analysis is strongly based on the
dynamics of the software system and, at the design level, the software architecture is the first software arti-
fact describing the dynamics of the software system. Indeed, at run time we have represented the managed
software system at the software architecture level to remove unnecessary details that can make the target
model not tractable. The on–line model evaluation in fact imposes strict requirements on the analysis that
has to be performed as quickly as possible to guarantee timely reactions when some performance problems
occur.

The contributions of this thesis can be summarized as follows:

Predictive Performance Analysis.On the basis of a study on the state of the art, we devise a new predic-
tive performance analysis methodology that can be applied at the software architecture level, when
information on the hardware platform on which the final system shall run is still missing. The step
we here focus on is the definition of an automated transformation from software model into a perfor-
mance model. To achieve this goal several decisions should be taken at the beginning of the realiza-
tion: the software notation, that is the entry data for the analysis process, the target notation that is the
performance model that has to be generated, the additional information needed to carry on the analy-
sis (such as for example operational profile and workload) , and where and how such an information
should be specified. The thesis will address all such points. Making automated such a transformation
helps to fill the gap among the software and performance experts and to integrate the validation of the
performance requirements in the software life cycle without delaying the development process.

Recently, many approaches to performance analysis of software systems at the software architecture
level have been defined. However, their application to real and complex case studies is still limited
even if it helps understanding the capabilities, complexity and limits of such approaches. The thesis
will discuss the application of two existing software performance analysis approaches, one based on
Stochastic Process Algebras and one based on the simulation models, to a real telecommunication
software system. Thanks to this experiment we are able to point out, for each used methodology,

3

different figure of merits in terms of performance modeling, analysis and feedbacks at the design
level that can derive from the performance results interpretation. Moreover the use of different tech-
niques can provide the software designer of a more precise and comprehensive picture on the soft-
ware architecture. Thus, the concurrent/complementary application of several analysis techniques
will overcome the problems of the single techniques and conduct to more faithful analysis results.

We also introduce a framework to cope with the integration of functional and non-functional analysis
at the software architecture level. Such a framework allows to deal with inter-relationships between
functional and non-functional aspects that would not necessarily emerge from separate analysis. We
also present how a fully automated software performance approach can be properly integrated into
the framework.

Performance Management of the Software System at Run-time.We define a framework able to dy-
namically reconfigure an application in order to manage the performance of the software system
at run-time. The framework monitors the performance of the application and, when some problem
occurs, decides the new application configuration on the basis of feedback provided by the on–line
evaluation of performance models of several, pre-defined feasible alternatives. The choice of the
new system configuration might consider several factors, such as, for example resources needed to
implement the new configuration.

OUTLINE OF THE THESIS

Chapter 2 reviews the main software and performance notations, and gives for each notation an example of
modelling a simple case study. The chapter concludes with a study on the three main performance notations
usually adopted in software performance engineering, i.e. Queueing Networks, Stochastic Process Algebras
and Generalized Stochastic Petri Nets. This study originates from our interest to determine which notation
may be more acceptable for a software designer to carry on a performance analysis, and under which
assumptions on the designer skills and on the software development environment this is true. To this extent
we consider the three major notations at work on a simple example.

After the above chapters containing background notions, the thesis is composed by three parts.

Part I- Predictive Performance Analysis: From Software Models to Performance Models.This part
is composed by the Chapters 3, 4 and 5 and deals with the predictive performance analysis under different
points of views. In the Chapter 3 the principal approaches to performance model generation from the
software models are surveyed. The approaches start from a description of the software system at different
level of abstraction and generate a ready-to-validate performance model. The reviewed methodologies are
finally classified with respect to several dimensions. In Chapter 4 we present our approach to performance
model generation. The approach defines rules to generate a Queueing Network model from a set of UML
2.0 diagrams describing the software architecture of a component-based software system. The application
of such approach is shown on a simplified e-commerce system. Finally, in Chapter 5 two different existing
predictive performance analyses are applied to a real telecommunication system. The aim of this chapter
is twofold: to study the applicability of such approaches on real software systems in order to identify their
limits. In particular, we are interested on how they can be improved, and to discuss the advantages and the
disadvantages of the applied techniques and how to take advantage of the simultaneous usage of different
methodologies to easily integrate the predictive performance analysis in real industrial contexts.

Part II- Integration of Predictive Functional and Non-Functional Analyses. This part is composed by
the Chapters 6 and 7. In the first one a tool integration framework (namely TOOL•one)is presented. This
framework copes with the integration of functional and non-functional analysis at the software architecture
level. Chapter 7 presents an automated software performance engineering approach that can be integrated
in the TOOL•one framework.

4 Chapter 1. Introduction

Part III- Model-based Performance Analysis in System Dynamic Reconfiguration.This part copes
with the work done during the last period of the Ph.D. program. It is composed by Chapter 8 where we
discuss the usage of the model-based performance analysis in dynamic reconfiguration of component-based
software system. In this chapter a new reconfiguration process is devised. The next configuration of the
software system is chosen among the possible ones on the basis of the performance indices. The process
has been used up today to dynamically manage the performance of theSIENA event publish/subscribe
middleware.

RELATED PUBLICATIONS

Part of this thesis comes from published papers, as follows. Chapter 2 and Chapter 3, on the Software
and Performance models and on the state of the art of the Predictive Analysis of Software System, can be
considered the evolution of two papers: [61] where we compare three different performance notations from
a software designer perspective, and [27] where the most relevant early performance analysis approaches
have been reviewed and classified according to several dimensions. Chapter 4 extends two papers, [72] and
[73], which describe our proposed approach to predictive performance analysis at the software architecture
level. This approach is defined upon to component-based software systems and it generates a Queueing Net-
work model from UML 2.0 diagrams describing the software architecture of the software system. Chapter
5 extends the papers [58] and [31], which present the application of two different predictive performance
analyses on a real telecommunication system. Chapter 6 and 7 extend the papers in [62] and [146], re-
spectively. The first one introduces a framework allowing integrated functional and non-functional analysis
on software systems during the design phase. The second one presents our effort to make a predictive
performance analysis approach fully automated. Chapter 8 refines the work in [55] and [51]. In [55] it is
defined a reconfiguration process to dynamic manage performance attributes of component-based software
systems. This process is based on the evaluation of performance models representing the software system
at the architectural detail. In [51], this process is used to dynamically reconfigureSIENA middleware when
performance constraints are not satisfied.

During my Ph.D. program, I published two more papers [71] and [70], that, for sake of brevity, are not
part of this thesis. Both of them deal with a technique called Xere (XML Entity RelationshipExchange) for
the XML–DBMS integration and describe a mapping algorithm that allows anatural translation of XML
Schemas into Entity-Relationship diagrams. We also discuss the soundness and completeness of the Xere
mapping and we show its implementation in XSLT and Java.

CHAPTER 2

SOFTWARE MODELS AND PERFORMANCEMODELS

In the software practice, it is generally acknowledged that the lack of performance requirement validation
in the software life cycle is mostly due to the knowledge gap between software engineers/architects and
quality assurance experts rather than to foundational issues. Software specialists use specific notations to
describe software systems, since the first phases of the software life cycle, that are far from the ones used
by performance experts. In fact, while the software notations emphasize the structure and the dynamics
of the software system in an abstract and general way, the performance notations provide capabilities in
modelling performance specific aspects of the software system needed to validate the software system with
respect to the performance requirements. In this scenario software modeling notations and tools may play
a crucial role to fill this gap as well as to shorten the performance validation time. The more close the
software modeling notation to performance one is the more little the gap is.

This chapter briefly reviews the most used software and performance modelling notations. For each nota-
tion, both software and performance one, an example of modeling over the XML Translator system intro-
duced in the following is shown.

Moreover we here report a study about the three main performance notations usually used in software
performance engineering, i.e. Queueing Network, Stochastic Process Algebra and Stochastic Timed Petri
Net. This study originates from our interest to investigate the impact that a performance model notation
may have on the software development when this is integrated with a performance analysis approach. In
particular, we would like to determine which notation may be more acceptable for a software designer and
under which assumptions on the designer skills and on the software development environment this is true.
To this extent we consider the three major notations at work over the XML Translator system.

The work this chapter discusses has been outlined in [61] and it is described here in details.

CASE STUDY: A XML T RANSLATOR - In this section it is presented the simple system used to show
the software and performance modeling and the performance notation comparison. We decided to use a
common and simple case study in order to show similarities and differences among the reviewed nota-
tions. Moreover, it helps in emphasizing the expressiveness of each notation, especially in the performance
notation study that concludes the chapter.

The software system we consider is called XML Translator (XT). It automatically builds an XML document
from a text document with respect to a given XML schema [156]. The text document has a fixed structure
to allow the automatic identification of its specific parts that are then emphasized by using the XML tags
defined in the given XML Schema.

The XT system reads a text document, and it creates a new XML file with the information content of the
text document suitably formatted with respect to the considered XML syntax [154] and the XML Schema.
The system builds the new file by iterative steps in which it identifies useful information and marks it up.
Multiple users can concurrently connect to the system and request its services.

5

6 Chapter 2. Software Models and Performance Models

Figure 2.1: Static Description of XT system

Figure 2.2: Behavioral Description of XT system

From this first description of the system we can identify two distinct software components:

• aStructureBuilder, that preprocesses the text file to create its XML related content (i.e. XML special
characters) conform to the XML syntax rules. The output of this step is a new text file semantically
equivalent to the former, but syntactically different. It also creates an XML file according with the
established XML Schema, containing only XML tags that describe the structure of the document.

• a Marker that, by using a heuristic approach, localizes useful information in the text document,
singles out it by significant tags from the XML Schema and inserts this chunk of information in the
XML file. This component works iteratively on the XML version of the document for an unknown
number of times until it is not acceptable (i.e., it does emphasize most of the useful information under
certain heuristic conditions).

A static description of XT system is shown in Figure 2.1, whereas its behavior is defined by means of the
UML Sequence Diagram [6] in Figure 2.2, which shows that all the interactions among XT components are
asynchronous.

2.1 SOFTWARE SPECIFICATION MODELS

Software engineers describe static and dynamic aspects of a software system by using ad-hoc models. The
static description consists of the identification of software modules or components and of their interconnec-
tions, e.g. see Figure 2.1. The dynamics of a software system concerns its behavior at run time. There exists
many notations to describe the behavior of a software system. In the following we shortly review Automata
[99], Process Algebra [120], Petri Nets [132], Message Sequence Charts (MSC) [137], Unified Modeling
Language (UML) Diagrams [6] and Use Case Maps (UCM) [15]. We also show how the XT system could
be modelled by means of such tools.

2.1.1 AUTOMATA

Automaton [99] is a simple mathematical and expressive formalism that allows to model cooperation and
synchronization between subsystems, concurrent and not. It is a compositional formalism where a system

2.1 Software Specification Models 7

is modelled as a set of states and its behavior is described by transitions between them, triggered by some
input symbol.

More formally an automaton is composed of a (possibly infinite) set of statesQ, a set of input symbolsΣ
and a functionδ : Q × Σ → Q that defines the transitions between states. InQ there is a special state
q0 ∈ Q, the initial state from which all computations start, and a set of final statesF ⊂ Q reached by the
system at the end of correct finite computations [99]. It is always possible to associate a direct labelled
graph to an automaton, called State Transition Graph (or State Transition Diagram), where nodes represent
the states and labelled edges represent transitions of the automata triggered by the input symbols associated
to the edges.

Automata can also be composed through composition operators, notably the parallel one that composes two
automataA andB by allowing the interleaving combination ofA andB transitions.

There exist many types of automata, among which we consider:deterministic automatawith a deterministic
transition function, that is the transition between states is fully determined by the current state and the input
symbol; non deterministic automatawith a transition function that allows more state transitions for the
same input symbol from a given state;stochastic automatawhich are non deterministic automata where the
next state of the system is determined by a probabilistic value associated to each possibility.

XML T RANSLATOR AUTOMATON - The state transition graph of the XML Translator automaton is shown
in Figure 2.3 (c). States are pairs of elements, that model the Structure Builder component state and the
Marker-up component state respectively. The initial state of the automaton is< q0, q

′
0 > where both com-

ponents are inactive. This state is also the final one where the system correctly terminates the computation.
Since the XML Translator automaton is obtained by the parallel composition of the Structure Builder and
of the Marker-up components automata (Figure 2.3 (a) and (b) respectively), we analyze their behavior
separately.

The Structure Builder component transits from the stateq0 to the stateq1 when it receives a markup request
and it starts the preprocessing phase. At the end of its elaboration it sends the event markup to the Marker-up
component and returns to the initial stateq0 where it waits for new requests.

When the Marker-up component receives the markup event, it moves from its initial stateq′0 to stateq′1
where it remains until the refinement processing has been completed. Eventually the component moves
back to its initial state.

Figure 2.3: State Transition Graph for the XML Translator Automaton.

8 Chapter 2. Software Models and Performance Models

2.1.2 PROCESSALGEBRAS

System behavior generally consists of processes which are the control mechanisms for the manipulation
of data. System behavior tends to be composed of several processes that are executed concurrently, where
these processes exchange data in order to influence each other’s behavior.

For the purpose of mathematical reasoning, it is often convenient to represent the system behavior alge-
braically in the form of terms. The formalism used for this representation is the Process Algebra.

Process Algebras, such as CCS [120] and CSP [96], are a widely known modeling technique for the func-
tional analysis of concurrent systems. These are described as collections of entities, orprocesses, executing
atomicactions, which are used to describe concurrent behaviors which synchronize in order to communi-
cate. Processes can be composed by means of a set of operators, which include different forms of parallel
composition.

Process algebras provide a formal model of concurrent systems, which is abstract (the internal behavior
of the system components can be disregarded) and compositional (systems can be modelled in terms of
the interactions of their subsystems). The semantics of these calculi is usually defined in terms of Labelled
Transition Systems (LTS) following the structural operating semantics approach. Moreover Process Algebra
formalism is used to detect undesirable properties and to formally derive desirable properties of a system
specification. Notably, process algebra can be used to verify that a system displays the desired external
behavior, meaning that for each input the correct output is produced. T

Process Algebras can describe systems at different levels of abstraction. Many notions of equivalence or
pre-order are defined to study the relationship between different descriptions of the same system. Behavioral
equivalences allow one to prove that two different system specifications are equivalent when ”uninteresting”
details are ignored, while pre-orders are suitable for proving that a low level specification is a satisfactory
implementation of a more abstract one.

A PROCESSALGEBRA MODEL FOR THE XML T RANSLATOR SYSTEM - The process algebra model
for the XML Translator system consists of two main processes, a StructureBuilder process and a Marker
process, that perform actions to satisfy the requests. To model the asynchrony in the system we introduce
two further processes representing two queues. The first queue,Queue1, buffers the requests from the users
and generates text formatting requests for the StructureBuilder. The second queue,Queue2, models the
asynchronous connection point from the StructureBuilder to the Marker component.

The specification we present also defines aUserprocess that models the user behavior. A user does some
work, then enqueues a service request inQueue1and waits for the results from the XML Translator.

The behavior of the whole system is specified by putting in parallel all the processes. Figure 2.4 shows the
specification of the XML Translator system with three concurrent users and queues of capacity three, mod-
elled by using the TIPP Process Algebra [93]. The behavior of the StructureBuilder process is recursively
defined by a sequence of three actions:deq1, the process dequeues a request from its buffer (if any),pre-
processing, the process does its work, andenq3, the process forwards a request to the Marker process. For
what concerns the Marker process, it dequeues a request, if any, from its buffer (deq2action), it executes
themarkupaction and then, in a non deterministic way, it can decide to make a refinement or to return the
control to the User. Eventually it restarts its execution.

2.1.3 PETRI NETS

Petri Nets (PN) are a formal modeling technique to specify synchronization behavior of concurrent sys-
tems. A PN [132] is defined by a set ofplaces, a set oftransitions, an input functionrelating places to

2.1 Software Specification Models 9

Figure 2.4: Process Algebra Model for the XML Translator.

transitions, anoutput functionrelating transition to places, and amarking function, associating to each
place a nonnegative integer number where the sets of places and transitions are disjoint sets.

PN have a graphical representation: places are represented by circles, transitions by bars, input function
by arcs directed from places to transitions, output function by arcs directed from transitions to places, and
marking by bullets, calledtokens, depicted inside the corresponding places. Tokens distributed among
places define the state of the net. The dynamic behavior of a PN is described by the sequence of transition
firings that change the marking of places (hence the system state). Firing rules define whether a transition
is enabledor not.

Petri nets could be considered an extension of Finite State Automata giving a new definition of state and
transition: each state in Petri Nets is a set of partial and independent states of automata and, in general, a
transition does not consider the global state of the system, but only a part. Moreover, two events that can
happen independently are represented by two concurrent net transitions, instead in an automata a transition
prevents from concurrently verifying other ones. Petri Nets may also model asynchronous systems, where
events must take place under a defined frequency.

The main characteristics of PN are the following:(i) causal dependencies and interdependencies among
events may be represented explicitly. A non-interleaving, partial order relation of concurrency is intro-
duced for events which are independent of each other; (ii) systems may be represented at different levels of
abstraction; (iii) PN support formal verification of functional properties of systems.

A PETRI NET FOR THEXML T RANSLATOR - Figure 2.5 shows the initial configuration of the PN model
corresponding to the XML Translator system. Each user is represented by a sub-net consisting of two
places and two transitions, shown as a shaded area at the top of the figure. When two tokens are present
in P2i−1, the Useri is in its initial state and it is ready to produce a request to the XT system. Moreover,
theworki transition is enabled. Whenworki fires, the two tokens inP2i−1 are consumed (they disappear
from P2i−1) and one token is transferred inP2i and the other is enqueued inQ1. The first indicates that
the useri is waiting for the processing result and the second represents the service request forwarded to the
StructureBuilder component. Theti transition in the user sub-net will fire when the XT system returns the
service response (one token is inQ0) and the Useri transits in its initial state.

Similarly, the two system components are modelled by the corresponding sub-nets identified by the shaded
area at the bottom of the figure. The StructureBuilder is composed by two transitions (deq1 modeling

10 Chapter 2. Software Models and Performance Models

the service request receiving, and thePreproc for its pre-processing operation) and two places (SB1 and
SB2). One token inSB1 means that the StructureBuilder is waiting for a request whereas a token in the
SB2 means that the component is busy. Similar modeling is done for the Marker component that has one
place (M3) and two transitions (refinement andback) more needed to model the decision to refine or to
send back the users the result of the work. Places labelledQ0, Q1, Q2 model the queues for asynchronous
communication. Dynamically, user requests enterQ1 to access the Structure Builder. Then its output is
enqueued inQ2 to access Marker. Eventually the processed request returns to the User.

Figure 2.5: Petri Net Model of the XMLTranslator.

2.1.4 MESSAGESEQUENCECHARTS

Message Sequence Charts (MSC) is a language to describe the interaction among a number of independent
message-passing instances (e.g. components, objects or processes) or between instances and the environ-
ment. This language is specified by the International Telecommunication Union (ITU) in [137]. MSC is
a scenario language that describes the communication among instances, i.e., the messages sent, messages
received, and the local events, together with the ordering between them. One MSC describes a partial
behavior of a system.

Additionally, it allows for expressing restrictions on transmitted data values and on the timing of events.
MSC is also a graphical language which specify two-dimensional diagrams, where each instance lifetime
is represented as a vertical line, while a message is represented by a horizontal or slanted arrow from the
sending process to the receiving one. MSC supports complete and incomplete specifications and it can
be used at different levels of abstraction. It allows to develop structured design since simple scenarios
described by basic MSC can be combined to form more complete specifications by means of high-level
MSC.

In connection with other languages, MSC are used to support methodologies for systems specification,
design, simulation, testing, and documentation.

MSC FOR THE XMLT RANSLATOR - Since the presented case study is very simple, given the similarity
of the MSC description with UML Sequence Diagram one, we omit the case study description here and we
refer to Section 2.1.5.

2.1 Software Specification Models 11

2.1.5 UNIFIED MODELING LANGUAGE

All the above discussed notations (except MSC) are formal specification languages so they have an exact
semantics, but as a drawback, most of them are hard to use in ordinary software engineering practice. This
is overcome by less precisely defined formalisms like the Unified Modeling Language [6].

UML, specified by the Object Management Group (OMG), is a notation to describe software at different
levels of abstraction. It defines several types of diagrams that can be used to model different system views.
Models are usually described in a visual language, which makes the modeling work easier. Even if their
semantics is not formally defined, UML diagrams are well accepted because they are flexible, easy to
maintain and to use. However, not everything is suitable for a visual description, some information in
models is best expressed in ordinary text.

UML diagrams allow us to describe systems either statically or dynamically in an object-oriented style.
Use case diagramsemphasize the interaction between a user and a system.Class diagramsshow the
logical view of the system by means of classes and their relationships.Interaction diagramsrepresent
system objects and how they interact. UML defines two types of interaction diagrams: sequence diagrams
and collaboration diagrams. Analogously to MSC, the former emphasizes the lifetime of each object and
when interaction between objects occurs, the latter focuses on the system layout to indicate how objects
are statically connected. Moreover, sequence diagrams allow us to specify conditions on message sending,
to use iteration marking (that identifies multiple sending of a message to receiver objects), and to define
the type of communication (synchronous or asynchronous).State diagramsshow the state space of a given
computational unit, the events that cause a transition from one state to another, and the actions that result.
Activity diagramsshow the flow of system activities,Component Diagramsspecify the decomposition of
the system in software components by highlighting their dependencies in terms of required and provided
interfaces, andDeployment diagramsshow the configuration of runtime processing elements associating
the software components with hardware platform.

Recently OMG has improved the UML notation releasing a new version of the language that is UML 2.0
[148] that strengths the expressiveness of some diagrams (such as Sequence diagrams), better specifies other
ones (such as Component diagrams) and introduces new ones (such as Timing diagrams).

We do not introduce other UML diagrams, since they are not used in our context.

As listed above, UML provides many features to describe system behavior. The dynamics of a software sys-
tem can be specified by using interaction diagrams which describe the message exchange among instances,
or by using state diagrams to specify the internal behavior of each software entities, or by using activity
diagrams to show the flow of the activities performed by all the components involved in the computation of
interest or by using any combinations of the above diagrams.

UML FOR THE XML T RANSLATOR - The behavior of the XML Translator is described by the UML
Sequence diagrams shown in Figure 2.6. It is worthwhile noting that this representation is extremely syn-
thetic thanks to the different semantics associated to the graphical notation of the arrows representing the
communication. For example, the open arrow head denotes asynchronous communication (such as for ex-
ample theMarkup interaction between theStructureBuilder and theMarker-up components),
the filled arrow head denotes synchronous communication (such as for example the interaction between the
Users theStructureBuilder component), and the dashed arrow denotes return of control. The user
requests a service to the XML Translator system bymarkuprequest method invocation.StructureBuilder
component catches the request and processes it. When it has finished it calls themarkup method on the
Marker-upcomponent, that, after somerefinement steps, returns the control to the user.

12 Chapter 2. Software Models and Performance Models

Figure 2.6: Sequence Diagram of the XMLTranslator.

2.1.6 USE CASE MAPS

Use Case Maps (UCM) [49] is a graphical notation allowing the unification of the system use (Use Cases)
and the system behavior (Scenarios and State Charts) descriptions. UCM is a high-level design model to
help humans express and reason about system large-grained behavior patterns. However, UCM does not aim
at providing complete behavioral specifications of systems. At requirement level, UCM models components
as black boxes, and at high-level design refines components specifications to exploit their internal parts.

Path
 A path may have any shape, it may cross itself, to avoid ambiguity the

crossing must be distinguished by a small crossover arc or a break in one of

the crossed lines.

Waiting Place
 A filled circle represents a waiting place along the path where

the execution waits for some events from other paths. This symbol is used to

represent the start point since it is a waiting place for stimulus to start the path.

Timer
 A timer is a generalized waiting place expressing the idea that there is

a time limit on waiting. It may be used anywhere a waiting place is used.

Bar
 A bar ends a path or marks a place where concurrent path segments

begin or end.

Basic Path
 The most basic , complete unit of a map is a path with a start

marked by a waiting place and an end marked by a bar.

Direction
 (optional) A path direction is usually indicated by the positioning of

the start and end points but sometimes it is useful to show local direction in a

complicated map or in an incomplete fragment of a large map.

Figure 2.7: Basic Symbols of the UCM Notation.

Figure 2.7 shows the basic elements of UCM notation. UCM represent scenarios through path scenarios.
The start point of a map corresponds to the beginning of a scenario. Moving through the path, UCM
represents the scenario in progress till its end. Paths may traverse components and are routes along chains
of causes and effects propagate through the system.

UCM FOR THE XMLT RANSLATOR - Figure 2.8 shows the UCM model of the XML Translator. A user,
that is represented as a component, triggers the path scenario by formulating a request. Then the path
traverses the component that represents the XML Translator and eventually returns to the user where it has
its end point. The two system components are contained in the XML Translator. The UCM model shows
their responsibilities and how the path scenario traverses them.

2.2 PERFORMANCEMODELS

In this section we briefly introduce three main classes of stochastic performance models: Queueing Network
(QN) models [109, 111, 151], Stochastic Timed Petri Nets (STPN)[17, 22, 16] and Stochastic Process
Algebras (SPA) [41, 94, 91].

2.2 Performance Models 13

XML Translator

User

StructureBuilder
 Marker-up

Mark-up Request

Preprocessing

Mark-up/

refinement

Figure 2.8: UCM Model for the XMLTranslator.

Each type of performance model can be analyzed by analytical methods or by simulation in order to eval-
uate a set of performance indices such as resource utilization, throughput and customer response time.
Simulation is a widely used general technique whose main drawback is the potential high development and
computational cost to obtain accurate results. On the other hand, analytical methods require that the model
satisfies a set of assumptions and constraints. These models are based on a set of mathematical relationships
that characterize the system behavior. The analytical solution of the performance models relies on stochas-
tic processes, usually discrete-space continuous-time homogeneous Markov chains (MC) [104]. Hence, we
also present a short description of Markov processes.

Besides being a solution technique for performance models, simulation can be a performance evaluation
technique itself [34]. It is actually the most flexible and general analysis technique, since any specified
behavior can be simulated. This technique is based on simulation models that we describe at the end of this
section.

Performance analysis of complex systems feasible can be based on structuring or factorizing techniques
in order to simplify the analysis. Several decomposition and aggregation techniques [103, 22, 104] and
hierarchical modeling methodologies [47, 56] have been defined for various classes of performance models.

In line with hierarchical modeling in engineering context, describing a complex system with a hierarchical
performance model means applying a top-down decomposition technique: starting from an abstract model
of the system, each step defines a more detailed model of the same system, which is composed of interact-
ing submodels that can be further refined in successive steps. The performance analysis of a hierarchical
model starts instead from the most detailed model and requires the application of a bottom-up aggregation
technique. In other words, the model of each level is analyzed by first solving all its submodels in isolation,
and then by aggregating them with respect to the model of the preceding level.

Having specific techniques for the hierarchical definition of performance models allows for the use of a
hybrid approach to the solution of submodels:hybrid modelsare obtained when mixed (analytical and
simulation) techniques are applied. Moreover, some authors propose also the combined use of different
performance models for describing submodels of a given system [23, 24].

In this section we do not deal with hierarchical and hybrid models, and the performance modeling on the
three main and basic performance notations that are QN, SPA and STPN.

2.2.1 MARKOV PROCESSES

A stochastic process is a family of random variablesX = {X(t) : t ∈ T} whereX(t) : T × Ω → E
defined on a probability spaceΩ, an index setT (usually referred as time) with state spaceE. Stochastic
processes can be classified according to the state space, the time parameter, and the statistical dependencies
among the variablesX(t). The state space can be discrete or continuous (processes with discrete state space

14 Chapter 2. Software Models and Performance Models

are usually calledchains), the time parameter can also be discrete or continuous, and dependencies among
variables are described by the joint distribution function.

Informally, a stochastic process is a Markov process if the probability that the process goes from states(tn)
to a states(tn+1) conditioned to the previous process history equals the probability conditioned only to the
last states(tn). This implies that a process is fully characterized by these one-step probabilities. Moreover,
a Markov process is homogeneous when such transition probabilities are time independent.

Due to the memoryless property, the time that the process spends in each state is exponential or geometri-
cally distributed for the continuous-time or discrete-time Markov process, respectively.

Markov processes can be analyzed and under certain constraints it is possible to derive the stationary and
the transient state probability. The stationary solution of the Markov process has a time computational
complexity of the order of the state spaceE cardinality.

Markov processes play a central role in the quantitative analysis of systems, since the analytical solution of
the various classes of performance models relies on a stochastic process which is usually a Markov process.

2.2.2 QUEUEING NETWORKS

Queueing Network (QN) models have been widely applied as system performance models to represent and
analyze resource sharing systems [109, 111, 103, 151]. A QN model is a collection of interactingservice
centersrepresenting system resources and a set ofcustomersrepresenting the users sharing the resources. Its
informal representation is a direct graph whose nodes are service centers and edges represent the behavior
of customers’ service requests.

The popularity of QN models for system performance evaluation is due to the relative high accuracy in
performance results and the efficiency in model analysis and evaluation. In this setting the class of product-
form networks plays an important role, since they can be analyzed by efficient algorithms to evaluate av-
erage performance indices. Specifically, algorithms such as convolution and Mean Value Analysis have
a computational complexity polynomial in the number of QN components. These algorithms, on which
most approximated analytical methods are based, have been widely applied for performance modeling and
analysis.

Informally, the creation of a QN model can be split into three steps:definition, that include the definition
of service centers, their number, class of customers and topology;parameterization, to define model pa-
rameters, e.g., arrival processes, service rate and number of customers;evaluation, to obtain a quantitative
description of the modeled system, by computing a set of figures of merit or performance indices such as re-
source utilization, system throughput and customer response time. These indices can belocal to a resource
or global to the whole system.

Extensions of classical QN models, namely Extended Queuing Network (EQN) models, have been intro-
duced in order to represent several interesting features of real systems, such as synchronization and concur-
rency constraints, finite capacity queues, memory constraints and simultaneous resource possession. EQN
can be solved by approximate solution techniques [111, 103].

Another extension of QN models is the Layered Queuing Network (LQN) which allows the modeling of
client-server communication patterns in concurrent and/or distributed software systems [133, 163, 77]. The
main difference between LQN and QN models is that in LQN a server may become client (customer) of
other servers while serving its own clients requests. A LQN model is represented as an acyclic graph
whose nodes are software entities (ortasks) and hardware devices, and whose arcs denote service requests
(through synchronous, asynchronous or forwarding messages). A task has one or moreentriesproviding
different services, and each entry can be decomposed in two or more sequentialphases. A recent extension

2.2 Performance Models 15

of LQN allows for an entry to be further decomposed intoactivitieswhich are related in sequence, loop,
parallel (AND fork/join) and alternative (OR fork/join) configurations forming altogether an activity graph.
LQN models can be solved by analytic approximation methods based on standard methods for EQN with
simultaneous resource possession and Mean Value Analysis or they can be simulated.

Examples of performance evaluation tools for QN and EQN are RESQ/IBM [135, 134], QNAP2 [153] and
HIT [37], and for LQN the LQNS tool [163, 78].

Figure 2.9: QN Model for the XMLTranslator.

QN MODEL FOR THE XMLT RANSLATOR - Figure 2.9 shows a QN consisting of three service centers
corresponding to the Structure Builder, the Marker components and the users. We assume exponential
service time distribution and FCFS queueing discipline in order to have a product-form QN. The workload
of the QN is a closed one produced by the infinite servers center namedUsers where N indicates the number
of service requests (or QN customers) present in the system. The QN topology represents the routes that
a user request follows to accomplish its task, where label1 − p represents the probability that the Marker
component has completed the iterative marking of the text. Service ratesmui, 1 ≤ i ≤ 2, lambda and
number of customersN are the QN parameters.

2.2.3 STOCHASTIC PROCESSALGEBRAS

Stochastic Process Algebra (SPA) are extensions of Process Algebras, aiming at the integration of
qualitative-functional and quantitative-temporal aspects into a single specification technique [41, 94, 91].
Temporal information is added to actions by means of continuous random variables, representing activity
durations. Such information enriches the Label Transition System (LTS) semantic model, hence making it
possible the evaluation of functional properties (e.g. liveness, deadlock), temporal indices (e.g. through-
put, waiting times) and combined aspects (e.g. probability of timeout, duration of action sequences) of the
modeled systems.

The quantitative analysis of the modeled system can be performed by constructing, out of the enriched
LTS, the underlying stochastic process. In particular, when action durations are represented by exponential
random variables, the underlying stochastic process yields a Markov Chain. Various attempts have been
made in order to avoid the Markov Chain state space explosion, which soon makes the performance analysis
unfeasible. Some authors propose a syntactic characterization of process algebra terms whose underlying
Markov Chain admits a product-form solution that could allow more efficient solution algorithms [90, 95,
138].

Example of performance evaluation tools for SPA are the TIPP tool [93], Two Towers [39, 40], and PEPA
Workbench [82].

16 Chapter 2. Software Models and Performance Models

AN SPA MODEL FOR THEXMLT RANSLATOR - Figure 2.10 shows a SPA model defined by using TIPP
process algebra [91]. This model has been obtained from the model presented in Section 2.1.2 by adding
performance related information to some actions. Therefore we have simple actions (e.g., enq1) and rated
actions, whose rates can be used to express their execution times (e.g., (markup,mu2)) and their relative
execution frequencies (e.g., (refinement,p)).

specification System

behaviour

(User|||User|||User)|[enq1,arrival]|(Queue1(0,3)|[deq1]|

StructureBuilder|[enq3]|Queue2(0,3)|[deq2,enq2]|Marker)

where

process User := (work,lambda); enq1; arrival; User endproc

process Queue1(n,k) := [n>0] -> (deq1; Queue1(n-1,k)) []

 [n<k] -> (enq1;Queue1(n+1,k)) endproc

process Queue2(n,k) := [n>0] -> (deq2;Queue2(n-1,k)) []

 [n<k] -> (enq3;Queue2(n+1,k)) []

 [n<k] -> (enq2;Queue2(n+1,k)) endproc

process StructureBuilder := deq1; (processing,mu1); enq3; StructureBuilder
 endproc

process Marker := deq2; (markup,mu2); (((refinement,p); enq2; Marker) []

 ((backtousers,100000-p); arrival; Marker))

endproc

endspec

Figure 2.10: TIPP Process Algebra Model for the XMLTranslator.

2.2.4 STOCHASTIC TIMED PETRI NETS

Stochastic Timed Petri Net (STPN) are extensions of Petri nets. Petri nets can be used to formally verify the
correctness of synchronization between various activities of concurrent systems. The underlying assump-
tion in PN is that each activity takes zero time (i.e. once a transition is enabled, it fires instantaneously).
In order to answer performance-related questions beside the pure behavioral ones, Petri nets have been ex-
tended by associating a finite time duration with transitions and/or places (the usual assumption is that only
transitions are timed) [16, 103, 22].

Thefiring timeof a transition is the time taken by the activity represented by the transition: in the stochastic
timed extension, firing times are expressed by random variables. Although such variables may have an
arbitrary distribution, in practice the use of non memoryless distributions makes the analysis unfeasible
whenever repetitive behavior is to be modeled, unless other restrictions are imposed (e.g. only one transition
is enabled at a time) to simplify the analysis.

The quantitative analysis of a STPN is based on the identification and solution of its associated Markov
Chain built on the basis of the net reachability graph. In order to avoid the state space explosion of the
Markov Chain, various authors have explored the possibility of deriving a product-form solution for spe-
cial classes of STPN. Non polynomial algorithms exist for product-form STPN, under further structural
constraints. Beside the product-form results, many approximation techniques have been defined [22].

A further extension of Petri Nets is the class of the so called Generalized Stochastic Petri Nets (GSPN),
which are continuous time stochastic Petri Nets that allow both exponentially timed and untimed (or im-
mediate) transitions [17]. Immediate transition fires immediately after enabling and have strict priority
over timed transitions. Immediate transitions are associated with a (normalized) weight, so that, in case of
concurrently enabled immediate transitions the choice of the firing one is solved by a probabilistic choice.
GSPN admit specific solution techniques [22].

2.2 Performance Models 17

There are many performance evaluation tools for STPN and other extended classes: a database on (stochas-
tic) Petri net tools can be found at [4].

AN STPN MODEL FOR THEXMLT RANSLATOR - Figure 2.11 shows a STPN model for the XML Trans-
lator system, obtained from the PN model of Section 2.1.3 by introducing performance related information.
In particular we are here considering a GSPN model. We assign a time attribute to all the transitions mod-
eling the service of each component. Hence the timed transitions are:worki, 1 ≤ i ≤ n, representing
that thei− th user is formatting a text;Preproc, theStructureBuildercomponent is processing a request;
Mark − up, theMarker component is processing a request. All the remaining transitions are immediate.
The transitions outgoing placeM3 have a probability associated, in order to model the relative frequency
of therefinement andback alternatives.

Marker

. . .
 . . .

1

1

1
1
1

1

1

1
1

1

1
1

1

1
1

1

1

1
1
1

1

1

1

1

2

2
 2

2

2

2

2

2

2

2

SB
1

P
2n
P
2i

P
2

P
2n-1

P
2i-1
Q
0

P
1

Q
1

SB
2

M
1

M
2

Q
2

M
3

.
.
 .
.
 .
.

.
.

t
1
 work
1
 t
i
 t
n

deq
1

deq
2

refinement
 back

Mark-up
Preproc.

...
...

User 1
 User i
 User n

Structure Builder

work
i
 work
n

lambda
lambda
 lambda

mu1
 mu2

p
 1-p

Figure 2.11: STPN Model of the XMLTranslator.

2.2.5 SIMULATION MODELS

Besides being a solution technique for performance models, simulation can be a performance evaluation
technique itself [34]. It is actually the most flexible and general analysis technique, since any specified
behavior can be simulated. The main drawback of simulation is its development and execution cost.

Simulation of a complex system includes the following phases:

• building a simulation model (i.e., a conceptual representation of the system) using aprocess oriented
or anevent orientedapproach;

• deriving a simulation program which implements the simulation model;

• verifying the correctness of the program with respect to the model;

• validating the conceptual simulation model with respect to the system (i.e. checking whether the
model can be substituted to the real system for the purposes of experimentation);

• planning the simulation experiments, e.g. length of the simulation run, number of run, initialization;

18 Chapter 2. Software Models and Performance Models

• running the simulation program and analyzing the results via appropriate output analysis methods
based on statistical techniques.

A critical issue in simulation concerns the identification of the system model at the appropriate level of
abstraction.

Existing simulation tools provide suitable specification languages for the definition of simulation models,
and a simulation environment to conduct system performance evaluation, e.g., CSIM [2], C++Sim [1] and
JavaSim [3].

2.3 PERFORMANCEMODEL COMPARISON FROM A SOFTWARE

DESIGNERPERSPECTIVE

To deal with performance analysis of software systems at the early phases of the software life cycle, several
model notations can be used. Except for the simulation models, these model notations fall into two main
categories: notations like Queueing Networks that were initially proposed to represent performance features
of actual systems, typically hardware or manufacturing systems; notations like (Stochastic) Petri Nets or
Process Algebras that were first proposed in the software specification field and then exported in the whole
performance domain.

Early in the lifecycle, the choice of the performance model notation is still open. From the software designer
perspective, there can be a relevant difference between the above choices. For example, while Queueing
Networks are apparently quite far from the software developer knowledge, Process Algebras (or Petri Nets)
they seem to be closer to the developer viewpoint. Nevertheless, it can be observed that, in the last few
years, Queueing Networks constitute the favorite target for performance assessment [27], even in the early
lifecycle phases where the software model is still based on abstract interacting components. Moreover,
“Queuing Network modeling is a top-down process. The underlying philosophy is to begin by identifying
the principalcomponentsof the system and the ways theyinteract, then supply any details that prove to be
necessary” (quoting from [111]). This suggests a very intuitive and natural mapping of Queueing Network
with early in the software lifecycle artifacts, like software architectures descriptions.

On the other hand PA and PN have the advantage of importing performance analysis almost for free in their
modeling, thus making the performance model construction straightforward at the expense of the behavioral
model construction.

Based on these observations, the study described in this section originates from our interest to investigate
the impact that a performance model notation may have on the software development. The lack of studies
in this direction has been outlined recently in [123]. To this extent we consider the three major notations at
work on the XT case study, namely Queuing Networks (QN), Generalized Stochastic Petri Nets (GSPN),
Stochastic Process Algebras (SPA). The question we would like to answer is: which notation may be more
acceptable for a software designer? and under which assumptions on the designer skill and on the software
development environment is this true?

To address these questions,we discuss these model notations, by means of the modeling and the analysis of
a simple case study, along two dimensions:

1. adequacy to embed and manage performance relevant aspects (e.g., workloads) at the design archi-
tectural level;

2. easiness to model, adjust and modify the architectural aspects (e.g., number and type of components)
taking into account the possible feedback obtained by means of performance validation.

2.3 Performance Model Comparison from a Software Designer Perspective 19

The aim is to highlight the suitability of such notations from a software designer perspective basing on the
case study modeling and analysis. Even from the analysis of a simple case study, relevant differences can
be devised among performance models along the sketched dimensions.

The comparison of the considered notations relay on the experience of six people with not a deep knowledge
of any of the notations but with good software engineering principles. They used the three tools to model
the case study, and they reported on the dimensions above.

In Figure 2.12 the design process of a software architecture considered in the experiment is shown; it is en-
riched by the feedback coming out from the performance validation. At this level, performance is estimated
with low knowledge of the hardware platform where the software system will be executed. Therefore, the
expected performance feedback consists of the identification of “critical” software components/subsystems
whose design needs to be revised.

The primary step consists of building, from an abstract description of the software system, a software archi-
tecture model that embeds performance aspects. The output of the performance assessment on the software
architecture consists of a set of indices of interest (e.g., component throughput, mean queue length). From
the output analysis, some issues may come out.

Abstract

description

Software

Architecture

(SPA,GSPN,QN)

Performance

indices

Architectural

feedback

modelling

performance

assessment

index

analysis

checkpoint

software

architecture

refinement

exit

(1,2)

(1,2)

Abstract

description

Software

Architecture

(SPA,GSPN,QN)

Performance

indices

Architectural

feedback

modelling

performance

assessment

index

analysis

checkpoint

software

architecture

refinement

exit

(1,2)

(1,2)

Figure 2.12: Architecture Design Process

In response to these performance issues, a range of alternative solutions can be suggested, and these con-
stitute thearchitectural feedbackof Figure 2.12. Being at the architectural level, the techniques to produce
alternatives may affect either the components or the communications between them. The techniques we are
interested to are the ones closely affecting the components and their workload, which essentially may fall
in three categories: splitting, merging and duplication.

• Splittingan overloaded component in two or more components means to distribute the set of services
provided from the component over a set of newly introduce components. The way of splitting such
component is driven by several criteria, including the operational profile. For example, let us suppose
that the component provides three services, namelys1, s2 ands3, and their operational profile (1) is
expressed by the tuple(f1, f2, f3), wheref1

∼= f2 +f3. In this scenario a natural alternative could be
splitting the component in two new ones, one providing just thes1 service, and the other providing
s2 ands3 services.

• Merging means to distribute the set of services provided from an underloaded component over a
set of existing components. For example, let us suppose that the utilization of each component
(2) is among the indices analyzed in the performance assessment step, and let us suppose that one

1By operational profile, for this specific case, we mean the distribution of frequencies of service invocations.
2By utilization we mean the percentage of time the component is busy.

20 Chapter 2. Software Models and Performance Models

component utilization is under a certain threshold (e.g.,40%). In this scenario a natural alternative
could be distributing the services of this component over other ones whose utilizations allow such an
overhead.

• Duplication of a component trivially means to create one or more new occurrences of the same
component. This type of technique may be used every time the component can not be split, for
example because it is a minimal component (i.e. it provides only one basic service) or because of
some design constraints that force the software structure.

At the checkpoint in Figure 2.12 the choice among alternatives is performed considering all software pro-
duct/process requirements. In practice, the developer must make a tradeoff analysis in order to decide
whether and how it is worth to refine the architecture according to the performance feedback.

The numerical labels on the edges of Figure 2.12 refer to the above introduced dimensions (i.e., adequacy
and easiness) and indicate the steps we concentrate to observe and compare the three model notations. The
remaining steps may be affected from those dimensions as well, but for the scope of this work we are more
interested in the designer viewpoint rather than to the performance evaluator one.

To compare the three notations we use the XT system introduced at the beginning of the chapter and its
modeling in the considered frameworks. The QN, SPA, GSPN and models of the case study (XT) introduced
in Section 2.2 are the ones reported before in Figure 2.9, Figure 2.10 and Figure 2.11, respectively.

Across the three models we use a set of common parameters, that are introduced to characterize performance
aspects. In particular:

• lambda represents the inverse of the user average thinking time, that is the average interval of time
between a system response and the following user request;

• mu1,mu2 are the service rates of theStructureBuilderandMarker components, respectively;

• p models the probability of document refinement (namely the heuristic condition in Section 2).

Note thatmu1 andmu2 are intrinsic parameters of the software system (i.e. they depend on the internal de-
sign of the software components), whereaslambda models the types of users andp the types of documents
to be processed. All of them assume the same meaning, independently of the notation adopted to model the
system. So, they were used as reference values to configure the made experiments.

In the following three Sections specific considerations about the tool used as well as general thoughts
about the notations are summarized. In Section 2.3.4 we show the application of the design process of
Figure 2.12 by considering the three performance models separately in order to compare the three notations.
Consideration on the model comparison are reported in Setion 2.3.5.

2.3.1 ON STOCHASTIC PROCESSALGEBRA MODELING

We modeled our case study by using theTIPP stochastic process algebra [92], which fits our modeling
requirements and is supported by a stable design and evaluation tool (namelyTIPPtool[108, 93]). TIPPtool
is a free downloadable software, which allows to edit the model and perform qualitative and quantitative
analysis. These tasks are supported by a user-friendly GUI.

The TIPP specification of the XT system is shown in Figure 2.10. As discussed in Section 2.2.3, it includes
two processes, one for each software component, i.e. theStructureBuilderprocess and theMarker process.

2.3 Performance Model Comparison from a Software Designer Perspective 21

To properly model the whole system, we introduce two additional processes,Queue1andQueue2, that
represent buffers to store asynchronous service requests addressed respectively toStructureBuilderand to
Marker. An external user is modeled by a special process,User, that generates text formatting requests for
the system.

The internal behavior of each process is modeled using a standard process algebra semantics. Process
actions are nondeterministically composed by the[] operator, and each action may be guarded with a
boolean expression (e.g.,[n>0]); action sequencing is expressed by the semicolon operator.

We have simple actions (e.g.,enq1) and rated actions, whose rates can be used as measures of either their
execution times (e.g.,(markup,mu2)) or their relative execution frequencies (e.g.,(refinement,p)). The
execution time is straightforwardly obtained from inverting the rate value (e.g.,markupexecution time is
given by1/mu2). The same rate may be also used to transform a nondeterministic choice among actions
into a stochastic one. For example, in Figure 2.10,refinementandbacktousersare rated actions, but since
they are placed as heads of two nondeterministic alternatives, their rates also give (besides the standard
time meaning) the relative frequency of each alternative. In other words, therefinementalternative will be
selected with ap/(p + (100000− p)) frequency (while its execution time will be1/p), and thebacktousers
alternative will be selected with a(100000 − p)/(p + (100000 − p)) frequency (while its execution time
will be 1/100000− p).

Finally, the whole system behavior is specified in the topmost part of Figure 2.10, where the basic
system processes are composed by using the parallel operator||| and the synchronization actions (e.g.,
[enq1,arrival]). For the sake of the example, we show in Figure 2.10 a system configuration with 3 users.

TIPP Tool Specific Considerations The particular choice of ratesp and100000− p is due to the need of
introducing relative frequencies over two alternatives introducing almost no further delays to their execution
times. In fact, by varying the interval of values forp from 10000 to 90000 by 10000, we are able to model
different stochastic distributions with negligible delays. This artifice is strictly related to the semantics
underlying the TIPP Process Algebra. It can be overcome by using a different algebra/tool. For example,
theEMPAgr Process Algebra [44] permits to associate priorities and execution frequencies to immediate
actions (corresponding to the simple ones of the TIPP algebra).

Process Algebras general thoughts PA allow a natural mapping between processes and architectural
components. This helps the software designer to describe the software architecture. However, in order
to quantify the component behavior the PA specification requires more details on the internal behavior
of the components (in terms of the actions each process performs) often not available in the early stages
of a development process. With regard to component interactions, PA allow one to easily specify syn-
chronous interactions. In order to introduce asynchronism in communication some additional structures
(e.g. processes) are needed, one example is processes that model waiting queues and scheduling policies
over queues. On the positive side, SPA allow the specification of a performance model with a notation that
is not distant from the one used for software specification, hence attaining the feature of easiness to use
from software designers.

2.3.2 ON GENERALIZED STOCHASTIC PETRI NET MODELING

We modeled the XT system by using a GSPN, and we used for performance analysis the HiQPN tool [36].
HiQPN is a free downloadable software, which (likeTIPPtooldoes for SPA) permits the model definition
and certain types of analysis, also supported by a user-friendly GUI.

Our GSPN model of the XT system is shown in Figure 2.11. As discussed in Sectionsec:STPN, the lower

22 Chapter 2. Software Models and Performance Models

shaded areas highlight the sub-nets modeling theStructureBuilderand theMarker components. The higher
shaded areas represent the system users that provide text formatting requests to the system.

The generici− th user is made up of two places:P2i−1 represents a busy user (formulating a request), and
P2i represents an idle user (waiting for a reply). With the user busy two tokens appear inP2i−1; upon a
worki transition firing, one token goes intoP2i to move the user in a waiting state, and one token enqueues
to Q1. Q1 models the waiting queue of theStructureBuildercomponent.

The same logic applies to theStructureBuilder(Marker) component, since a token intoSB1 (M1) repre-
sents the idle state of the component, whereas a pair of tokens intoSB2 (M2) models its busy state. Service
requests processed byStructureBuilderenqueue toQ2, which models the waiting queue of theMarkercom-
ponent. Service requests processed byMarker may be either refined from the same component (enqueued
in Q2) or sent back to the users as replies of accomplished service (enqueued inQ0).

We assigned a time attribute to every transition modeling the service execution of a component. The timed
transitions of the model are:worki, thei− th user is formatting a text;preproc, theStructureBuildercom-
ponent is processing a request;markup, theMarker component is processing a request. All the remaining
transitions are immediate. A probabilistic selection rule is applied to the transitions outgoingM3, in order
to model the relative frequency of therefinement andback alternatives.

HiQPN Tool Specific Considerations Since our intent is to consider basic modeling notations, the model
of Figure 2.11 has been built using a minimal Petri Net notation that allows the modeling of performance
related features, that are timed transitions and stochastic distributions on nondeterministic behaviors. How-
ever, the HiQPN tool permits to build models in extended Petri Net notations, such as Colored PN and
Hierarchical Queueing PN [36].

The complexity of our model would be lower by using extended notations, but this would mean also a
higher PN skill in the software designer that we want instead to keep minimal. However, the choice of
adopting such a powerful PN tool (i.e., HiQPN) leaves open the possibility, in future, of considering more
complex and demanding models.

Petri Nets General Thoughts With basic Petri Nets (PN) the system is modeled from a functional view-
point, making it difficult to identify components within the model. Indeed there is no direct mapping be-
tween PN facilities (places, transitions and tokens) and software components, rather a software component
may correspond to a Petri sub-net. The PN notation was originally created to model concurrent systems,
so it is especially suited for modeling systems with several loosely coupled components. In cases of highly
interacting components, synchronous interactions are obviously modeled, whereas asynchronous ones may
require (as for Process Algebras) additional structures. For example a simple priority based scheduling on
a waiting queue requires the usage of an extended PN notation, such as Colored Petri Nets. As for PA, out
of the above limitations, extensions of PN (such as GSPN) allow to specify a performance model with a
notation that is not distant from the one used for software specification.

2.3.3 ON QUEUEING NETWORK MODELING

Queueing Networks are a well-known notation for modeling system performance [111].

In Figure 2.9 we have shown the Queueing Network Model of XT system. It reflects very closely the SA
description in Figure 2.1. Each component is modeled as a queued service center, while the group of users
is modeled as anInfinite Serverscenter. Timing attributes are assigned in a straightforward manner to the
service centers. A probabilistic selection rule is applied to the paths outgoing theMarker service center to
model the relative frequency of therefinement andback − to− users alternatives.

2.3 Performance Model Comparison from a Software Designer Perspective 23

To solve the QN model of the XT system we used the Mean Value Algorithm (MVA [111]), since the model
is in product form. Our MVA implementation takes as input a text file containing all the parameters needed
to the computation (such as number of users, service rates and the QN topology) and gives as output four
text files, each containing values of a performance index: utilization, throughput, mean queue length and
response time, respectively.

MVA specific considerations We just like to remark that the possibility of evaluating the QN model by
means of the MVA algorithm is due to the simple nature of our case study, which results in a product form
model.

Queuing Networks General Thoughts Queuing Networks embed an intuitive mapping between compo-
nents and service centers. For software modeling at the architectural level, they also provide an immediate
way to connect components, that is by means of connections among service centers. Of course, commu-
nications among service centers are all asynchronous, based on the queues associated to service centers.
Being queues explicitly modeled, different scheduling policies are easy to introduce. Limitations arise in
QN when synchronous interactions have to be modeled. In these cases, QN modeling has to add atypical
features such as null length queues and service blocking policies for the servers, and their evaluation may
become much more complex. Besides, QN are not well suited to describe details of internal behavior of the
components in terms of the actions each component performs. Therefore, in late lifecycle phases, when the
software modeling requires more details, QN may not be powerful enough to support software design, so
resulting far from common software notations.

2.3.4 MODELS AT WORK: RESULTS AND COMMENTS

We apply the architecture design process (shown in Figure 2.12) to the XT system. This experiment is aimed
at comparing the ability of the three considered notations to embed feedback coming from performance
validation. We remind that, in response to performance issues, a range of alternative solutions can be
suggested from the three techniques presented in Chapter 1: splitting, merging and duplication.

We have used two different configurations of model parameters, that in this section we identify respectively
as (3):

• Fast StructureBuilder: lambda = 1.5, mu1 = 1.0, mu2 = 0.5;

• Fast Marker: lambda = 0.5, mu1 = 1.0, mu2 = 1.5.

For both configurations we assume that other software systems represent the users of the XT system, and this
assumption allows such low values forlambda. Each configuration has been evaluated with the probability
of document refinement assuming the following values:p ∈ {0.1, 0.5, 0.9}.

The comparison is carried on two performance indices that are the mean queue length (i.e. average number
of documents waiting to be processed) and the throughput (i.e. average number of documents processed
per time unit) of each software component building up the XT system. We study the index trends while
growing the number of XT users.

We like to remark that the complexities of the model evaluation processes may sensibly differ from each
other, and they may also introduce some approximation errors in the index values. It is out of the scope of

3All the parameter values are expressed indocuments/msec.

24 Chapter 2. Software Models and Performance Models

Fast StructureBuilder (lambda=1.5 mu1=1.0 mu2=0.5)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1
 2
 3
 4
 5
 6
 7

Number of Users
Th
ro

ug
hp

ut
 o

f S
tru

ct
ur

eB
ui

ld
er

 p=0.1

p=0.5

p=0.9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1
 2
 3
 4
 5
 6
 7

Number of Users

Th
ro

ug
hp

ut
 o

f M
ar

ke
r

0

1

2

3

4

5

6

7

8

1
 2
 3
 4
 5
 6
 7

Number of Users

M
ea

n
Q

ue
ue

 L
en

gt
h

of

 M
ar

ke
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 2
 3
 4
 5
 6
 7

Number of Users

M
ea

n
Q

ue
ue

 L
en

gt
h

of

 S
tru

ct
ur

eB
ui

ld
er

Figure 2.13: Fast StructureBuilder Performance Indices.

this study to compare the model notations along this dimension, because many other factors would enter
into the picture (e.g. product forms, solution tool features).

Due to the low complexity of the XT system, full convergence has been experienced over the performance
index values obtained for the considered notations. The result values are shown in the following sections.
Observe that the full convergence of the results validates the three models of XT system and assesses their
semantic equivalence.

Fast StructureBuilder Figure 2.13 shows the performance indices for the Fast StructureBuilder config-
uration. The results analysis in this case brings the straightforward consideration that the workload of the
Marker component is too high. In fact, overall the document types (modeled byp), the Marker throughput
saturates for a number of users that goes from 2 to 5.

Note that the Marker component is minimal that is it provides only one basic service. Therefore the only
suitable feedback alternative consists of duplicating the component itself. At the checkpoint of the archi-
tecture design process (see Figure 2.12), we suppose that the developer opts to refine the architecture by
duplicating the Marker component.

The refinement implementation obviously depends on the model notation (i.e. SPA, GSPN, QN). The
modifications required to duplicate the Marker component are shown in the following, and all of them
require the duplication of the Marker waiting queue as well.

SPA - No new process definition is introduced. The only modification concerns thebehaviourpart of
the specification shown in Figure 2.10, where the subsystem composed by theQueue2andMarker
processes has been duplicated. The new instance of this subsystem runs in parallel to the existing
one, and it also synchronizes with the remaining part of the XT system by means of theenq3action.
The service requests sent to the subsystem are now routed to each instance with a probability of0.5.

GSPN - To model the new XT architecture, the subsystem composed by theQ2 place and the Marker sub-net

2.3 Performance Model Comparison from a Software Designer Perspective 25

Figure 2.14: Petri Net Refinement.

(i.e. the one in the Marker shaded area in Figure 2.11) must be duplicated. As shown in Figure 2.14,
in order to connect these subsystems with the remaining part of the system, a new place (namelyP)
and two new transitions (namelyT1 andT2) have to be introduced in the GSPN model. ThePreproc
transition now goes into the new placeP instead of going in theQ2 place.T1 andT2 outgo the placeP,
and each one enters an instance of theQ2 place.T1 andT2 are immediate transitions and we associate
a0.5 relative frequency to each one in order to model the same workload for each subsystem instance.

QN - The Marker service center with its waiting queue has to be duplicated. The paths outgoing the
StructureBuilder service center enter with0.5 probability each Marker instance.

New results (shown in Figure 2.15) are obtained from evaluating the new models. From a quick analysis we
observe that the throughput of any Marker instance has decreased and the performance of the whole system
has improved, because no evident bottleneck appears over the range of values considered for the number of
users. The StructureBuilder component shows a quite high throughput which is still far from saturation.

We judge these results satisfactory for the software designer, thus exiting the process at the checkpoint.

Fast Marker Figure 2.16 shows the performance indices for the Fast Marker configuration. Even here
the StructureBuilder and Marker components experience some saturation phenomenon for extreme values
of p (i.e., p = 0.1 for the former component andp = 0.9 for the latter one). The designer may consider
acceptable, in this case, the XT behavior since for all the intermediatep values the system seems to perform
sufficiently well, thus he/she exits the architecture design process.

2.3.5 SUMMING UP: MODEL COMPARISON

In this section we discuss the lessons learned from the experiment. In Table 2.1 we show the results that
come out from the general thoughts on the considered performance notations, and from the experiment re-
port. Of course, the interpretation of the results also take into account the limitations derived from the case
study we used. In fact, the case study presents some peculiar aspects, such as all asynchronous communi-
cations, small architectural size (i.e., limited number of components), and lack of external sources/sinks of
requests (i.e., it is a closed system), that might promote a notation versus the other ones.

26 Chapter 2. Software Models and Performance Models

Fast StructureBuilder - refinement (lambda=1.5 mu1=1.0 mu2=0.5)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1
 2
 3
 4
 5
 6
 7

Number of Users

Th
ro

ug
hp

ut
 o

f S
tru

ct
ur

eB
ui

ld
er

 p=0.1

p=0.5

p=0.9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1
 2
 3
 4
 5
 6
 7

Number of Users

Th
ro

ug
hp

ut
 o

f M
ar

ke
r

0

0.5

1

1.5

2

2.5

3

3.5

4

1
 2
 3
 4
 5
 6
 7

Number of Users

M
ea

n
Q

ue
ue

 L
en

gt
h

of

 M
ar

ke
r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1
 2
 3
 4
 5
 6
 7

Number of Users

M
ea

n
Q

ue
ue

 L
en

gt
h

of
 S

tru
ct

ur
eB

ui
ld

er

Figure 2.15: Performance indices of Fast StructureBuilder refinement.

Notation Easiness Adequacy
To model To resize

SPA Medium High Medium
GSPN Medium Low Medium

QN Medium High High

Table 2.1: Classification of the Considered Notations

In Section 2.3 we devised the capability of each modeling notation as a combination of ability to describe
and refine typical architectural aspects and adequacy to embed and manage performance relevant aspects.
In Table 2.1 these two macro-dimensions are identified aseasinessandadequacy. Easiness divides into
easiness to modelwhich considers the difficulty to provide the initial model and its refined versions (in terms
of their topology), andeasiness to resizewhich considers the difficulty to change the system configuration,
i.e. to change the number of instances of a component. Adequacy refers to the capability of the model to
embed and manage performance aspects, e.g. to express service times. We use a coarse grain numerical
scale for these dimensions, with only three ordered values: low, medium and high.

Easiness to model holds medium for QN because although they are quite distant from commonly used
design notations, in the early software lifecycle phases there is a natural correspondence with architectural
concepts (4). Easiness to model holds medium also for SPA and GSPN even though they may be considered
notations familiar to software designers. Their drawback is that as soon as the system architecture becomes
more complicated the complexity of the models sensibly increases.

Generalized Stochastic Petri Nets result difficult to resize. Let us consider, for example, the users issue. In
order to modify the number of considered users the sub-net corresponding to the user has to be singled out,
duplicated and suitably connected to the network. Stochastic Process Algebras and Queueing Networks are
instead easy to resize. In SPA it is sufficient to compose new user (process) instances in parallel, and in QN

4This value is not set as high in order to mitigate the particular suitability of our case study to be modeled with QN, due to its
asynchronous nature.

2.3 Performance Model Comparison from a Software Designer Perspective 27

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
 2
 3
 4
 5
 6
 7

Number of Users
Th
ro

ug
hp

ut
 o

f S
tru

ct
ur

eB
ui

ld
er

 p=0.1

p=0.5

p=0.9

Fast Marker-up (lambda=0.5 mu1=1.0 mu2=1.5)

0

0.5

1

1.5

2

2.5

3

3.5

4

1
 2
 3
 4
 5
 6
 7

Number of Users

M
ea

n
Q

ue
ue

 L
en

gt
h

of
 S

tru
ct

ur
eB

ui
ld

er

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1
 2
 3
 4
 5
 6
 7

Number of Users

Th
ro

ug
hp

ut
 o

f M
ar

ke
r

0

1

2

3

4

5

6

7

1
 2
 3
 4
 5
 6
 7

Number of Users

M
ea

n
Q

ue
ue

 L
en

gt
h

of
 M

ar
ke

r

Figure 2.16: Fast Marker Performance Indices.

only an input parameter needs to be changed.

Adequacy is high for QN where performance indices, input parameters and routing probabilities are explic-
itly considered and managed. GSPN and SPA instead provide performance information less directly. For
example, in both cases in order to represent the routing probability, notational tricks needed to be adopted:
in the PA two extra actions were introduced, while in GSPN an extra place and two immediate transitions
were introduced.

In summary QN seemed to behave better with respect to all the considered dimensions despite their perfor-
mance analysis aptitude. This should not surprise, as sketched at the beginning of this section, since we are
using the QN notation at the architectural level, where behavioral details can be hidden. The limitation of
QN lays in their potential distance from the behavioral model. The more behavioral details (possibly inter-
nal to components) the software model requires, the more lack of expressiveness the QN notation suffers.

CONSIDEREDDIMENSIONS VSREFINEMENT TECHNIQUES- The feedback obtained from a performance
analysis consists in several suggestions of architectural refinements. In the design process we have devised
three categories of architectural refinements, i.e.splitting, mergingand duplication. From a practical
viewpoint the characteristics of the adopted notation (i.e., easiness and adequacy) affect the complexity of
the implementation of the architecture refinements suggested from the performance results.

Let us separately consider the three refinement techniques. Each component splitting changes the architec-
ture topology, therefore a notation with a high value ofeasiness to modelwould be suited to this goal. A
similar consideration can be made for merging operations, whereas it is evident that component duplications
are better supported from notations with high values ofeasiness to resize. Besides, the application of any
refinement technique leads to changes in performance aspects such as workload distribution and routing
probabilities among components. Therefore theadequacyof the notation is better being high in any case.

Of course these considerations cannot affect our classification of the considered notations. In fact, before
starting the architecture design process (Figure 2.12) it is virtually unattainable to predict what types of

28 Chapter 2. Software Models and Performance Models

refinements will be suggested from the performance results, so the choice of the modeling notation cannot
be affected from these considerations.

FINAL CONSIDERATION - The three performance model notations (and their variants) we presented, have
been and are largely used. Normally the choice of one of them, as basis of a performance validation
approach, is due to several factors which do not consider the user/software-designer perspective. The aim
of our experiment was to look at these model notations in order to assess their suitability to support software
designers.

From the software designer point of view, QN provide the most abstract/black-box notation, thus allowing
easier feedback and model comprehension, especially in a component-based software development frame-
work. For QN the problem remains to easily obtain the model from the behavioral descriptions, especially
when a certain level of behavioral detail is required. This is not a problem in the other two models once
the designers use the same notations for the behavioral descriptions. Therefore in cases where performance
and behavioral analyzes are both needed PA and PN notations evidently take advantage.

If we assume a standard development process, with standard software artifacts, like UML-based ones, the
effort to produce the performance model from the behavioral description is comparable for all the three
notations. In this context, it becomes relevant the existence of algorithms and tools that allow the creation
of performance models from standard software artifacts at whatever level of detail. Several automated
methodologies have been recently introduced for QN [27] but, to our knowledge, do not yet exist complete
methodologies for GSPN and SPA, even if several approaches have been outlined (see Chapter 3). In
order to make performance analysis widely used, future research must focus on the automatization and
engineering of existing approaches which integrates standard behavioral modeling with performance model
generation, and on the availability of user-friendly frameworks to carry on the analysis.

2.4 SUMMARY

In this Chapter we have briefly review the main software and performance notations. For all of them we
showed an example of modeling by considered the XML Translator system. We also compared three perfor-
mance notations, that are Queuing Networks, Stochastic Process Algebras and Stochastic Timed Petri Nets,
through an experiment that involved six people expert in software engineering but having not experience in
performance modeling and analysis.

The motivations for such an experiment come from the work in the field of software performance and
software architectures we carried on in the last few years. The three performance model notations (and
their variants) we considered, have been and are largely used. Normally the choice of one of them, as basis
of a performance validation approach, is due to several factors which do not consider the user/software-
designer perspective. The aim of our experiment was to look at these model notations in order to assess
their suitability to support software designers. From the reported results we do not intend to induce general
assessments on this field, due to the limitations of the case study and the experimental setting. We rather
aim at setting a framework for a campaign of significant experiments in this direction.

Part I

Predictive Performance Analysis: From
Software Models to Performance

Models

29

CHAPTER 3

SOFTWARE PERFORMANCEENGINEERING: STATE OF THE ART

Software performance aims at integrating performance analysis in the software domain. Historically the
approach was to export performance modeling and measurements from the hardware domain to software
systems. This was rather straightforward when considering the operating system domain, but it assumed
a new dimension when the focus was directed towards software applications. Moreover, with the increase
of software complexity it was recognized that software performance could not be faced locally at the code
level by using optimization techniques since performance problems often result from early design choices.
This awareness pushed the need to anticipate performance analysis at earlier stages in software development
[139, 111].

In the research community there has been a growing interest in the subject and several approaches to early
software performance predictive analysis have been proposed. Although several of these approaches have
been successfully applied, however, we are still far from seeing performance prediction integrated into
ordinary software development. Economic reasons (such as short time to market and special skills required)
and practical reasons (specific information that is often available in the late in the software life cycle)
contribute to the reluctance of the software development to adopt an engineered approach to validate the
performance requirements.

In this Chapter we review the main approaches in literature which fall into the category that proposes the
use of performance models to characterize the quantitative behavior of software systems. These approaches
aim at filling the gap between the software development process and the performance analysis by generating
performance model ready to be validated, from the software models. The review we carry out analyzes
the approaches with respect to a set of relevant dimensions such as software specification, performance
model, evaluation methods and level of automated support for performance prediction, in order to make a
comparison of the reviewed methodologies.

The work this chapter discusses has been outlined in [27] and it is described here in details.

3.1 SOFTWARE PERFORMANCEENGINEERING

We mean bysoftware performancethe process of predicting (at early phases of the life cycle) and evaluating
(at the end), based on performance models, whether the software system satisfies the user performance
goals.

This definition outlines two basic features of the methods we review: the existence of a performance model
suitably coupled with the system software artifacts, and the evaluation of the performance model as the
means to obtain software performance results. In our opinion these are necessary conditions for a method
to aim at a seamless integration in ordinary software development environments since they both exhibit a
good degree of automation.

31

32 Chapter 3. Software Performance Engineering: State of the Art

From the software point of view, the software performance predictive process is based on the availability
of software artifacts that describe suitable abstraction of the final software system. Requirements, software
architectures, specification and design documents are examples of artifacts. Since performance is a run
time attribute of a software system, performance analysis requires suitable descriptions of the software run
time behavior, from now on referred also to as dynamics. For example finite state automata and message
sequence charts are largely used behavioral models. As far as performance analysis is concerned, we
concentrate on model-based approaches that can be applied to any phase of the software life cycle to obtain
figures of merit characterizing the quantitative behavior of the system. The most used performance models
are queueing networks, stochastic Petri nets, stochastic process algebra and simulation models.

Analytical methods and simulation techniques can be used to evaluate performance models in order to get
performance indices. These can be classical resource-oriented indices such as throughput, utilization, re-
sponse time and/or new figures of merit such as power consumption related to innovative software systems,
e.g., mobile applications.

Consistent efforts have been spent in the last few years in order to fill the gap between software development
and validation versus the performance requirements. Beyond every approach to the problem, two common
issues can be envisaged: (i) determine the amount and the type of missing information to embed in a soft-
ware design in order to enable its validation with respect to the performance requirements; (ii) introducing
algorithms to translate the software description language/notation (enriched by additional information) into
a model ready to be validate.

Various approaches have been recently introduced for both the issues. Two attributes appear today crucial
to make any approach acceptable by the software community, that are: transparency, i.e. minimal affection
on the software notation and the software process adopted (to cope with issue (i)), and effectiveness, i.e.
low complexity algorithms to annotate and transform software models (to cope with issue (ii)).

All the software performance analysis approaches need additional information to carry on the performance
analysis that is generally missing in the software models and has to be annotated in them. Several proposal
on which information and how they should be annotated over the software models have been introduced.
However, the most complete and formal one is the UML profile for Schedulability, Performance and Time
(SPT) [87] by OMG. This profile defines the stereotypes and tag values the designer might use to annotated
UML diagrams with the missing information needed for predictive performance analysis. We introduce
such a profile in Section 3.2.

A key factor in the successful application of early performance analysis is automation. This means the
availability of tools and automated support for performance prediction in the software life cycle. Although
complete integrated proposals to software development and performance prediction are not yet available,
several approaches provide automation of portions of it. From software specification to performance mod-
eling to evaluation, methods and tools have been proposed to partially automate this integrated process.

From Section 3.3 to Section 3.7 we review approaches that propose a general methodology for software per-
formance focusing on early predictive analysis. The approaches we review refer to different specification
languages and performance models, and consider different tools and environments for system performance
evaluation. Besides these, other proposals in the literature present ideas on model transformation through
examples or case studies (e.g., [97, 107, 129, 128]). Although interesting, these approaches are still prelim-
inary thus we will not treat them in the following comparison. Background material concerning notations
to specify software dynamics and performance models is summarized in the previous chapter. The vari-
ous methodologies are grouped together and discussed on the basis of the type of underlying performance
model. In the same logical grouping, approaches are discussed chronologically. For each methodology we
describe the software development phases in which it collects, receives or supplies the information required
for performance analysis. Such information is available in Table 3.2, which is presented and commented in
Section 3.8.1.

3.2 The Schedulability, Performance and Time UML Profile (SPT) 33

3.2 THE SCHEDULABILITY , PERFORMANCE AND TIME UML
PROFILE (SPT)

In this section we introduce the performance modeling allowed by the Schedulability, Performance and
Time UML Profile [87]. This is the OMG response to the transparency issue of the early performance
validation. This profile defines stereotypes and tag values a software designer can use to annotate the
missing information in the UML diagrams. The UML Profile for Scheduling, Performance and Time was
described in [87] and has been adopted as an official OMG standard in March 2002. In general, a UML
profile defines a domain-specific interpretation of UML; it might be viewed as a package of specializations
of general UML concepts that capture domain-specific variations and usage patterns. Additional semantic
constraints introduced by the UML profile must conform to the standard UML semantics. To specify a
profile UML extensibility mechanisms (i.e. stereotypes, tagged values, constraints) are used.

The main aims of the UML Profile for Scheduling, Performance and Time (Real-time UML standard) are
to identify the requirements for enabling performance and scheduling analysis of UML models. It defines
standard methods to model physical time, timing specifications, timing services and logical and physical
resources, concurrency and scheduling, software and hardware infrastructure and their mapping. Hence,
it provides the ability to specify quantitative information directly in UML models allowing quantitative
analysis and predictive modeling. This profile has been defined to facilitate the use of analysis methods
and to automate the generation of analysis models and of the analysis process itself. Analysis methods
considered in the profile are scheduling analysis and performance analysis based on queueing theory.

This profile is based on a performance analysis domain model that defines the main entities in the perfor-
mance analysis.

In the follow, we give details on the the performance analysis domain model and we present the PAprofile
package with the stereotypes and tags used to annotate the UML diagrams.

DOMAIN MODEL

In general, performance analysis is inherently instance-based and it applies to models that capture either
actual or hypothetical execution runs of systems consisting of sets of instances. In Figure 3.1 a general
performance model that identifies the basic abstractions and relationships used in performance analysis is
depicted.

The concepts in this model are fully consistent with the conceptual framework defined in the generic re-
source model. This allows the performance sub-profile to take advantage of the mechanisms (e.g., modeling
styles and stereotypes) that are provided for that framework. The domain model is fully based on the Gen-
eral Resource Modeling (GRM). The relationship of the performance modeling concepts to corresponding
GRM concepts is depicted in Figure 3.2.

As the shown in the Figure 3.1, a performance context specifies one or more scenarios useful to explore
various dynamic situations involving a specific set of resources and whose performance could be critical.
Hence it is composed by a set of scenarios and the relative workloads, and a set of resources. The QoS
values considered here are load intensity and various measures of response delay.

In performance-related models, each scenario is executed by a job class or user class with a load intensity,
and these classes are either open or closed . We call such a class workload. Anopen workloadhas an
infinite arrivals of requests which enter in the system at a given rate in some predetermined pattern (such
as Poisson arrivals), and population that varies over time. Customers that have completed service leave
the model. Aclosed workload, instead, has a fixed number of jobs (population) which cycle between

34 Chapter 3. Software Performance Engineering: State of the Art

Figure 3.1: The Performance Analysis Domain Model.

Figure 3.2: The Relationship Between Performance Concept and the General Resource Model

executing the scenario, and spending an external delay period (called a Think Time) outside the system,
between the end of one response and the next request (externalDelay).

Attributes on the scenario entity are thehostExecutionDemand and theresponceTime representing
the total execution demand of the scenario on its host resource, if defined.

Scenarios are composed by (scenario) steps with predecessor-successor relationships which may include
forks (a step with moresuccessors), joins (a step with morepredecessors) and loops. A step may
be an elementary operation (at the finest granularity), or, it may be defined by a sub-scenario. A scenario
step represent an increment in the execution of a scenario and it may use resources to perform its function.
In general, a step takes finite time to execute (executionTime or delay), it may have a probability to
be executed, a repetition number and an optional time interval between two repetitions. Finally a scenario
step may have QoS properties and may specify the resource demands to the resources involved in the step
achievement (characteristics inherited from the scenario entity).

3.2 The Schedulability, Performance and Time UML Profile (SPT) 35

Resource models an abstraction view of passive or active resource, which participates in one or more
scenarios of the performance context. Resources are modeled as servers and maintain information about
theirutilization , throughput , andschedulingPolicy .

Active resourcesare the usual servers in performance models, and have service times. A
ProcessingResource is an active resource, such as a processor or a storage device. It has a
processingRate indicating its speed factor, it can be preemptive and can require some time to switch
from the execution of one scenario to a different one (contextSwitchTime) and finally it could indicate
a set of valid priorities used to define the scheduling priorities of the resource actions.

Passive resourcesare acquired and released during scenario. Additionally to the characteristics it inherits
from theResource entity, it has acapacity indicating the number of concurrent users and some holding
time (accessTime andwaitingTime).

Performance measures for a system include resource utilizations, waiting times, execution demands and
response time that is the actual or wall clock time to execute a scenario step or scenario. For perfor-
mance analyses to be meaningful, we have to identify the semantics of the provided numerical values for
performance-related characteristics. Each measure may be: a required value, coming from the system re-
quirements or from a performance budget based on them (e.g., a required response time for a scenario);
an assumed value, based on experience (e.g., for an execution demand or an external delay); an estimated
value, calculated by a performance tool and reported back into the UML model; a measured value.

STEREOTYPES ANDASSOCIATEDTAGS OF THEPERFORMANCEANALYSIS PROFILE

Based on the modeling of the performance analysis domain identified before, we here describe how the
domain concepts can be represented in UML by introducing the UML extensions defined for this purpose.
these extension are defined by stereotypes and tags.

For each stereotypes we report the base class they can extend, the list of the tags and the constraints they
must satisfy.

<< PAcontext >> This stereotype models a performance analysis context. The base classes it can
extend are:

Stereotype Base Class
<< PAcontext >> Collaboration

CollaborationInstanceSet
ActivityGraph

This stereotype does not present any tags.

Constraints to be satisfied:

• A performance analysis context must contain at least one element that is stereotyped as a kind of step.

• A performance analysis context based on collaborations must have exactly one model element stereo-
typed as a workload.

• Only a top-level performance context can have a workload defined.

36 Chapter 3. Software Performance Engineering: State of the Art

<< PAclosedLoad >> This stereotype models a closed workload.

In the following two tables it is reported the base classes the stereotype can extend and the definition of the
tags it could have, respectively.

Stereotype Base Class Tags
<< PAclosedLoad >> Message PArespTime

Stimulus PApriority
Action State PApopulation
SubactivityState PAextDelay
Action
ActionExecution
Operation
Method
Reception

Tag Type Multiplicity Domain AttributeName
PArespTime PAperfValue [0..*] Workload::responseTime
PApriority Integer [0..1] Workload::priority
PApopulation Integer [0..1] ClosedWorkload::population
PAextDelay PAperfValue [0..1] ClosedWorkload::externalDelay

Constraint: This stereotype can only be applied to be the first step in a performance context..

<< PAopenLoad >> This stereotype models an open workload.

In the following two tables it is reported the base classes the stereotype can extend and the definition of the
tags it could have, respectively.

Stereotype Base Class Tags
<< PAopenLoad >> Message PArespTime

Stimulus PApriority
Action State PAoccurrence
SubactivityState
Action
ActionExecution
Operation
Method
Reception

Tag Type Multiplicity Domain AttributeName
PArespTime PAperfValue [0..*] Workload::responseTime
PApriority Integer [0..1] Workload::priority
PAoccurrence RTarrivalPattern [0..1] OpenWorkload::population

Constraint: This stereotype can only be applied to be the first step in a performance context.

<< PAhost >> This stereotype models a processing resource.

In the following two tables it is reported the base classes the stereotype can extend and the definition of the
tags it could have, respectively.

Constraint: This stereotype can only be applied to be the first step in a performance context.

3.2 The Schedulability, Performance and Time UML Profile (SPT) 37

Stereotype Base Class Tags
<< PAhost >> Classifier PAutilizzation

Node PAschdPolicy
ClassifierRole PArate
Instance PActxtSwT
Partition PAprioRange

PApreemptable
PAthroughput

Tag Type Multiplicity Domain AttributeName
PAutilizzation Real [0..*] Resource::utilization
PAschdPolicy Enumeration: [0..1] ProcessingResource::schedulingPolicy

{FIFO,HOL,PR,PS,PPS,LIFO}
PArate Real [0..1] ProcessingResource::processingRate
PActxtSwT PAperfValue [0..1] ProcessingResource::contextSwitchTime
PAprioRange Integer range [0..1] ProcessingResource::priorityRange
PApreemptable Boolean [0..1] ProcessingResource::isPreemptable
PAthroughput Real [0..1] Resource::throughput

<< PAresource >> This stereotype models a passive resource.

In the following two tables it is reported the base classes the stereotype can extend and the definition of the
tags it could have, respectively.

Stereotype Base Class Tags
<< PAresource >> Classifier PAutilizzation

Node PAschdPolicy
ClassifierRole PAcapacity
Instance PAaxTime
Partition PArespTime

PAwaitTime
PAthroughput

Tag Type Multiplicity Domain AttributeName
PAutilizzation Real [0..*] Resource::utilization
PAschdPolicy Enumeration: [0..1] PassiveResource::schedulingPolicy

{FIFO,Priority}
PAcapacity Integer [0..1] PassiveResource::capacity
PAaxTime PAperfValue [0..n] PassiveResource::accessTime
PArespTime PAperfValue [0..n] PassiveResource::responceTime
PAwaitTime PAperfValue [0..n] PassiveResource::waitTime
PAthroughput Real [0..1] Resource::throughput

Constraint: This stereotype can only be applied to be the first step in a performance context.

<< PAstep >> This stereotype models a passive resource step in a performance analysis scenario.

In the following two tables it is reported the base classes the stereotype can extend and the definition of the
tags it could have, respectively.

38 Chapter 3. Software Performance Engineering: State of the Art

Stereotype Base Class Tags
<< PAstep >> Message PAdemand

Stimulus PArespTime
Action State PAprob
SubActivitySate PArep

PAdelay
PAexOp
PAinterval

Tag Type Multiplicity Domain Attribute Name
PAdemand PAperfValue [0..*] Step::hostExecutionDemand
PArespTime PAperfValue [0..*] Step::responceTime
PAprob Real [0..1] Step::probability
PArep Integer [0..1] Step::repetition
PAdelay PAperfValue [0..*] Step::delay
PAextOp PAextOpValue [0..*] Step::operations
PAinterval PAperfValue [0..*] Step::interval

3.3 QUEUEING NETWORK BASED METHODOLOGIES

In this section we consider a set of methodologies which propose transformation techniques to derive
Queueing Network (QN) based models —possibly Extended QN (EQN) or Layered QN (LQN)— from
Software Architecture (SA) specifications. Some of the proposed methods are based on the Software Per-
formance Engineering (SPE) methodology introduced by Smith in her pioneer work [139].

3.3.1 METHODOLOGIESBASED ON THESPE APPROACH

The SPE methodology [139, 145] was the first comprehensive approach to the integration of performance
analysis into the software development process, from the earliest stages to the end. It uses two models: the
software execution model and the system execution model. The first takes the form of Execution Graphs
(EG) that represent the software execution behavior; the second is based on QN models and represents the
system platform, including hardware and software components. The analysis of the software model gives
information about the resource requirements of the software system. The obtained results, together with
information about the hardware devices, are the input parameters of the system execution model, which
represents the model of the whole software/hardware system.

M1: The first approach based on the SPE methodology was proposed by Williams and Smith in
[159, 145]. They apply the SPE methodology to evaluate the performance characteristics of a soft-
ware architecture specified by using the Unified Modeling Language (UML) diagrams, that is Class
and Deployment diagrams, and Sequence Diagrams enriched with ITU Message Sequence Chart
(MSC) features. The emphasis is in the construction and analysis of the software execution model,
which is considered the target model of the specified SA and is obtained from the Sequence Dia-
grams. The Class and Deployment diagrams contribute to complete the description of the SA, but
are not involved in the transformation process. This approach was initially proposed in [142], which
describes a case study and makes use of the tool SPE•ED for performance evaluation. In [161] the
approach is embedded into a general method called PASA (Performance Assessment of Software
Architectures) which aims at giving guidelines and methods to determine whether a SA can meet the
required performance objectives.

SPE•ED is a performance modeling tool specifically designed to support the SPE methodology.
Users identify the key scenarios, describe their processing steps by means of EG, and specify the
number of software resource requests for each step. A performance specialist provides overhead

3.3 Queueing Network Based Methodologies 39

specifications, namely the computer service requirements (e.g., CPU, I/O) for the software resource
requests. SPE•ED automatically combines the software models and generates a QN model, which
can be solved by using a combination of analytical and simulation model solutions. SPE•ED eval-
uates the end-to-end response time, the elapsed time for each processing step, the device utilization
and the time spent at each computer device for each processing step.

M2: An extension of the previous approach was developed by Cortellessa and Mirandola in [66]. The pro-
posed methodology, called PRIMA-UML, makes use of information from different UML diagrams
to incrementally generate a performance model representing the specified system. This model gener-
ation technique was initially proposed in [65]. The technique considered OMT-based object-oriented
specification of systems (Class diagrams, Interaction diagrams and State Transition diagrams) and
defines an intermediate model, called Actor-Event Graph, between the specification and the perfor-
mance model.

In PRIMA-UML, SA are specified by using Deployment, Sequence, and Use Case diagrams. The
software execution model is derived from the Use Case and Sequence diagrams, and the system
execution model from the Deployment diagram. Moreover, the Deployment diagram allows for the
tailoring of the software model with respect to information concerning the overhead delay due to
the communication between software components. Both Use Case and Deployment diagrams are
enriched with performance annotations concerning workload distribution and parameters of hardware
devices, respectively.

M3: In [86] the PRIMA-UML methodology was extended in order to cope with the case of mobile SA
by enhancing its UML description to model the mobility-based paradigms. The approach generates
the corresponding software and system execution models allowing the designer to evaluate the con-
venience of introducing logical mobility with respect to communication and computation costs. The
authors define extensions of EG and EQN to model the uncertainty about the possible adoption of
code mobility.

M4: In [60] Cortellessa et at. focus on the derivation of a LQN model from a SA specified by means
of a Class diagram and a set of Sequence diagrams, generated by using standard CASE tools. The
approach clearly identifies all the supplementary information needed by the method to carry out the
LQN derivation. These include platform data, e.g., configuration, resource capacity, and the opera-
tional profile which includes the user workload data. Moreover, in case of distributed software, other
input documents are the software module architecture, the client/server structure, and the module-
platform mapping.

The method generates intermediate models in order to produce a global precedence graph which iden-
tifies the execution flow and the interconnections among system components. This graph, together
with the workload data, the software module architecture and the client/server structure, are used to
derive the extended EG. The target LQN model is generated from the extended EG and the resource
capacity data.

Other SPE-based approaches have been proposed by Petriu and coauthors. Since they are also based on
patterns we describe them in the next subsection.

3.3.2 ARCHITECTURAL PATTERN BASED METHODOLOGIES

The approaches described hereafter consider specific classes of systems, identified by architectural patterns
in order to derive their corresponding performance models. Architectural patterns characterize frequently
used architectural solutions. Each pattern is described by its structure (what are the components) and its
behavior (how they interact).

A first approach based on architectural patterns for client/server systems is presented in [84, 85], where Go-
maa and Menascé investigate the design and performance modeling of component interconnection patterns,

40 Chapter 3. Software Performance Engineering: State of the Art

which define and encapsulate the way client and server components of SA communicate with each other
via connectors. The authors, rather than proposing a transformational methodology, describe the pattern
through Class and Collaboration diagrams and directly show their corresponding EQN models. It is worth
mentioning that the approach has been the first to deal with component-based SA.

M5: In [125, 124, 88] Petriu et al. propose three conceptually similar approaches where SA are described
by means of architectural patterns (such as pipe and filters, client/server, broker, layers, critical section
and master-slave) whose structure is specified by UML Collaboration diagrams and whose behavior
is described by Sequence or Activity diagrams.

The three approaches follow the SPE methodology and propose systematic methods of building LQN
models of complex SA based on combinations of the considered patterns. Such model transformation
methods are based on graph transformation techniques. We now discuss the details of the various
approaches.

• In [125] SA are specified by using UML Collaboration, Sequence, Deployment and Use Case
diagrams. Sequence diagrams are used to obtain the software execution model represented as a
UML Activity diagram. The UML Collaboration diagrams are used to obtain the system execu-
tion model, i.e., a LQN model. Use Case diagrams provide information on the workloads and
Deployment diagrams allow for the allocation of software components to hardware sites. The
approach generates the software and system execution models by applying graph transformation
techniques, automatically performed by a general-purpose graph rewriting tool.

• In [124] the authors extend the previous work by using the UML performance profile [87] to
add performance annotations to the input models, and by accepting UML models expressed in
XML notation as input. Moreover the general-purpose graph rewriting tool for the automatic
construction of the LQN model, has been substituted by an ad-hoc graph transformation imple-
mented in Java.

• The third approach proposed in [88] uses the eXtensible Stylesheet Language Transformations
(XSLT), to carry out the graph transformation step. XSLT is a language for transforming a
source document expressed in a tree format (which usually represents the information in a XML
file) into a target document expressed in a tree format. The input contains UML models in XML
format, according to the standard XML Metadata Interchange (XMI) [121], and the output is
a tree representing the corresponding LQN model. The resulting LQN model can be in turn
analyzed by existing LQN solvers after an appropriate translation into textual format.

M6: Menasće and Gomaa presented in [116, 117] an approach to the design and performance analysis of
client/server systems. It is based on CLISSPE (CLIent/Server Software Performance Evaluation), a
language for the software performance engineering of client/server applications [115]. A CLISSPE
specification is composed of adeclaration sectioncontaining clients and client types, servers and
server types, database tables and other similar information, amapping sectionallocating clients and
servers to networks, assigning transactions to clients, etc., and atransaction specification section
describing the system behavior.

The CLISSPE system provides a compiler which generates the QN model, estimates some model
parameters, and provides a performance model solver. For the specification of a client/server sys-
tem the methodology uses UML Use Case diagrams to specify the functional requirements, Class
diagrams for the structural model and Collaboration diagrams for the behavioral model. From these
diagrams the methodology derives a CLISSPE specification. A relational database is automatically
derived from the Class diagram. The CLISSPE transaction specification section is derived (not yet
automatically) from Use Case diagrams and collaboration diagrams, and references the relational
database derived from the structural model. Moreover, the CLISSPE system uses information on the
database accesses (of the transaction specification section) to automatically compute service demands
and estimate CPU and I/O costs.

In order to complete the CLISSPE declaration and mapping sections, the methodology requires the
specification of the client/server architecture with the related software/hardware mapping annotated
with the performance characteristics such as processor speeds, router latencies, etc.

3.3 Queueing Network Based Methodologies 41

3.3.3 METHODOLOGIESBASED ON TRACE-ANALYSIS

In this subsection we consider approaches based on the generation and analysis of traces (sequence of
events/actions) from dynamic description of the software system.

M7: The first approach we consider proposes an algorithm that automatically generates QN models
from software architecture specifications described by means of MSC [18] or by means of Labeled
Transition Systems (LTS) [19]. A key point of this approach is the assumption that the SA dynamics,
described by MSC or LTS, is the only available system knowledge. This specification models the
interactions among components. This allows the methodology to be applied in situations where
information concerning the system implementation or deployment are not yet available.

The approach analyzes the SA dynamic specification in terms of the execution traces (sequences of
events exchanged between components) it defines, in order to single out the real degree of parallelism
among components and their dynamic dependencies. Only the components that actually can behave
concurrently will correspond to service centers of the QN model of the SA description. In the QN
model the dynamic activation of software components and connectors is modeled by customers’ ser-
vice time. Concurrent component activation of software components is represented by customers’
concurrent activity that possibly compete for the use of shared resources. Synchronous communica-
tion of concurrent software components are modeled by service centers with finite or zero capacity
queues and an appropriate blocking protocol. The analysis of the QN model of the SA leads to the
evaluation of a set of performance indices, like throughput and mean response time, that are then in-
terpreted at the SA level. The model parameter instantiations correspond to potential implementation
scenarios. Performance results are used to provide insights on how to carry out refinements to the SA
design.

M8: Woodside et al. describe in [162] a methodology to automatically derive a LQN model from a com-
mercial software design environment called ObjecTime Developer [10] by means of an intermediate
prototype tool called PAMB (Performance Analysis Model Builder). The application domain of the
methodology is real-time interactive software and it encompasses the whole development cycle, from
the design stage to the final product.

ObjecTime Developer allows the designer to describe a set of communicating actor processes, each
controlled by a state machine, plus data objects and protocols for communications. It is possible to
“execute” the design over a scenario by inserting events, stepping through the state machines, and
executing the defined actions. Moreover, the tool can generate code from the system design. The
approach in [162] takes advantage of such code generation and scenario execution capabilities for
model-building. The prototype tool PAMB, integrated with ObjecTime Developer, keeps track of
the execution traces, and captures the resource demands obtained by executing the generated code in
different execution platforms. Essentially, the trace analysis allows the building of the various LQN
sub-models (one for each scenario) which are then merged into a global model, while the resource
demand data provide the model parameters. After solving the model through an associated model
solver, the PAMB environment reports the performance results by means of performance annotated
MSC and graphs of predictions.

M9: More recently Woodside et al. present in [126] an approach to performance analysis from require-
ments to architectural phases of the software life cycle. This approach derives LQN performance
models from system scenarios described by means of Use Case Maps (UCM).

The UCM specification is enriched with performance annotation. The approach defines where and
how the diagrams have to be annotated and the default values to be used when performance data are
missing.

The derivation of LQN models from annotated UCM is quite direct, due to the close correspondence
between UCM and LQN basic elements. The derivation is defined on a path by path basis, starting
from UCM start points. The identification of the component interaction types, however, is quite
complex since the UCM notation does not allow the specification of synchronous, asynchronous and

42 Chapter 3. Software Performance Engineering: State of the Art

forwarding communication mechanisms. The approach describes an algorithm which derives such
information from the UCM paths, by maintaining the unresolved message history while traversing a
UCM path.

The UCM2LQN tool automatizes the methodology and it has has been integrated into a general
framework called UCM Navigator. This allows the creation and editing of UCM, supports scenario
definitions, generates LQN models, and exports UCM specifications as XML files.

3.3.4 UML-BASED MODELING APPROACH

In this subsection we consider efforts that have been pursued entirely in the UML framework in order to
make performance analysis possible by starting from UML software descriptions.

In this section should be included the SPT Profile that we already presented in Section 3.2. The reader can
refer to such a section for more details on it.

M10: The approach introduced by Kähkipuro in [102] is quite different from the others described in
this section. The proposed framework consists of three different performance model representations
and of the mappings among them. The starting representation is based on UML. The key point of
this approach is the use of UML as a new way to represent performance models. This approach
proposes a UML-based performance modeling notation (i.e., a notation compatible with the UML
design description) which can be used in the UML specification of a system, in order to specify per-
formance elements besides the pure functional ones. The UML representation is then automatically
mapped into a textual representation, which retains only the performance aspects of the system, and it
is further translated into an extended QN model representing the simultaneous resource possessions,
synchronous resource invocations and recursive accesses to resources. Such a model can be solved
by using approximate or simulation techniques, and the results can be translated back to the textual
representation and the UML diagrams, thus realizing a feedback mechanism. The approach has been
partially implemented in a prototype tool called OAT (Object-oriented performance modeling and
Analysis Tool).

Note that this approach does not really propose a transformation methodology from a SA specification
to a performance model, since the three steps (or representations) of the framework just give three
equivalent views of the modeled system with respect to performance. In this approach a designer
must have performance skills, besides UML knowledge, to produce a correct diagram. However, the
approach lifts up the transformation step to the specification level. In fact, in order to obtain a real
model transformation methodology, it would be sufficient to add a further level on top of the whole
framework in order to produce extended UML diagrams annotated with performance information out
of purely functional oriented UML diagrams.

3.3.5 APPROACHES FORCOMPONENT-BASED SOFTWARE SYSTEMS

Component Based Software Engineering (CBSE) is the emerging software development process that aims at
maximizing the re-use of separately developed components. It promise to yield cheaper and higher quality
assemble large systems. The basic principle here is that individual components with own properties are
released once, and the properties of the composed software system can be obtained from the properties of
all involved in a compositional way.

In this section we report two software performance approach for component-based software system.

M11: Mirandola and Bertolino in [45, 46] propose an automated compositional approach for component-
based performance engineering called CB-SPE. This approach is applied at two level, namely the

3.4 Process Algebras Based Approaches 43

component layerand theapplication layermanaged by the component development and by the sys-
tem assembler respectively. At the component layer the goal is to obtain components with predicted
performance properties (to be used later at the application layer) that are explicitly declared in the
component interfaces. This implies that the component developer has to introduce and validate the
performance requirements of the component considered in isolation. Such analysis must be plat-
form independent. Later, at the application level, it will be instantiated on a specific platform. The
component developers is expected to fill a ”component repository” with components whose interface
explicitly declare the component predicted performance properties. The performance analysis of the
assembled system is obtained by combine the performance properties of the pre-selected components,
instantiated over a specific hardware platform.

The approach uses the UML Sequence diagrams to model the SA behavior in terms of component
interactions and the UML Deployment Diagram to describe the specific hardware platform where the
application will run. These diagrams are annotated with performance information by means of UML
SPT profile. Such an information is extracted from the component repository previously filled. The
approach, according to the SPE principles, provides two different models: a stand-alone performance
model namely Execution Graph (derived from the sequence diagrams) and a contention based perfor-
mance model namely a QN model (from the deployment diagram). The authors implemented such a
methodology in a tool, namely the CB-SPE Tool.

M12: Woodside et al. in [164, 69] define an approach to predict the performance of component-based
applications that assumes the existence of performance LQN sub-models for the considered software
components. Such performance sub-models are stored in a library and properly combined to generate
the performance model of the whole application. The way the software components are assembled
to compone the final software system is described by the UML 2.0 component diagram [148]. The
performance sub-models of the software components are combined all together as the component dia-
gram specifies in order to obtain the LQN model of the whole software system. This step is supported
by a new XML-based language, namely Component-Based Modeling Language that Woodside et al.
define in [69]. Such language specifies new features of the Layered Queuing Modeling language that
ease the hierarchical performance modeling of components based on the UML component diagram.

The author implemented the component performance sub-model assembly in a tool called Component
Assembler.

3.4 PROCESSALGEBRAS BASED APPROACHES

M13: Several Stochastic extensions of Process Algebras (SPA) have been proposed in order to describe
and analyze both functional and performance properties of software specifications within the same
framework. Among these we consider TIPP (TIme Processes and Performability evaluation) [93],
EMPA (Extended Markovian Process Algebra) [44, 42] and PEPA (Performance Evaluation Process
Algebra) [94, 82] which are all supported by appropriate tools (the TIPP tool, PEPA Workbench and
Two Towers for EMPA).

All of them associate exponentially distributed random variables to actions, and provide the genera-
tion of a Markov chain out of the semantic model (LTS enriched with time information) of a system.
Beside exponential actions, also passive and immediate actions are considered. The main differences
among PEPA, EMPA and TIPP concern the definition of the rate of a joint activity which arises when
two components cooperate or synchronize, and the use of immediate actions. Different choices on
these basic issues induce differences to the expressive power of the resulting language. We refer to
[91] for an accurate discussion about this topic.

The advantage of using PEPA, EMPA or TIPP for software performance is that they allow the inte-
gration of functional and non-functional aspects and provide a unique reference model for software
specification and performance. However, from the performance evaluation viewpoint, the analysis
usually refers to the numerical solution of the underlying Markov chain which can easily lead to

44 Chapter 3. Software Performance Engineering: State of the Art

numerical problems due to the state space explosion. On the software side, the software designer
is required to be able to specify the software system using process algebras and to associate the
appropriate performance parameters (i.e., activity rates) to actions.

In order to overcome this last drawback, Pooley describes in [128] some preliminary ideas on the
derivation of SPA models from UML diagrams. The starting point is the specification of a SA by
means of a combined diagram consisting of a Collaboration diagram with embedded Statecharts of
all the collaborating objects. The idea is then to produce a SPA description out of each Statechart and
then to combine the obtained descriptions into a unique model.

Balsamo et al. introduced in [24] a SPA based Architectural Description Language (ADL) called
Æmilia (an earlier version called ÆMPA can be found in [42]), whose semantics is given in terms of
EMPA specifications. Æmilia aims at facilitating the designer in the process algebra-based specifi-
cation of software architectures, by means of syntactic constructs for the description of architectural
components and connections. Æmilia is also equipped with checks for the detection of possible archi-
tectural mismatches. Moreover for Æmilia specifications a translation into QN models has been pro-
posed in order to take advantage of the orthogonal strengths of the two formalisms: formal techniques
for the verification of functional properties for Æmilia (SPA in general), and efficient performance
analysis for QN.

3.5 PETRI NET BASED APPROACHES

M14: Like SPA, Stochastic Petri Nets (SPN) are usually proposed as a unifying formal specification
framework, allowing the analysis of both functional and non-functional properties of systems. There
are a lot of stochastic Petri net frameworks (e.g., GreatSPN, HiQPN, DSPNExpress 2000, and many
others which can be found in [4]) allowing the specification and the functional/quantitative analysis
of a Petri Net model.

Recently, approaches to the integration of UML specifications and Petri Nets have been proposed
[107, 38]. In [107] the authors present some ideas on the derivation of a GSPN from Use Cases
diagrams and combined Collaboration and Statecharts diagrams. The idea is to translate the Statechart
associated with each object of the Collaboration diagram into a GSPN (where states and transitions of
the Statechart become places and transitions in the net, respectively), and then to combine the various
nets into a unique model.

M15: In [38] the authors propose a systematic translation of Statecharts and Sequence Diagrams into
GSPN. The approach consists of translating the two type of diagrams into two separate labelled
GSPN. The translation of a Statechart gives rise to one labeled GSPN per unit where a unit is a state
with all its outgoing transitions. The resulting nets are then composed over places with equal labels
in order to obtain a complete model. Similarly, the translation of a Sequence diagram consists of
modeling each message with a labeled GSPN subsystem and then composing such subsystems by
taking into account the causal relationship between messages belonging to the same interaction, and
defining the initial marking of the resulting net. The final model is obtained by building a GSPN
model by means of two composing techniques. In [113] the authors extend the methodology by using
the UML Activity diagrams to describe activities performed by the system usually expressed in a
statechart asdoActivity. Again, the activity diagrams are translated in labeled GSPN. Such targets
model are then combined with the labeled GSPN modeling the statecharts that use thedoActivity
modelled by the activity diagrams.

The authors implemented a java module to implement the GSPN generation.

3.6 Methodologies Based on Simulation Methods 45

3.6 METHODOLOGIESBASED ON SIMULATION METHODS

We shall now consider three approaches based on simulation models. They use simulation packages in
order to define a simulation model whose structure and input parameters are derived from UML diagrams.

M16: The first approach, proposed by de Miguel et al. in [119], focuses on real time systems, and
proposes extensions to UML diagrams to express temporal requirements and resource usage. The
extension is based on the use of stereotypes, tagged values and stereotyped constraints. SA are
specified using the extended UML diagrams without restrictions on the type of diagrams to be used.
Such diagrams are then used as input for the automatic generation of the corresponding scheduling
and simulation models via the Analysis Model Generator (AMG) and Simulation Model Generator
(SMG), respectively. In particular, SMG generates OPNET models [12], by first generating one
sub-model for each application element and then combining the obtained sub-models into a unique
simulation model. The approach provides a feedback mechanism: after the model has been analyzed
and simulated, some results are included into the tagged values of the original UML diagrams. This
is a relevant feature, which helps the SA designer in interpreting the feedback from the performance
evaluation results.

M17: The second approach, proposed by Arief and Speirs in [21], presents a simulation framework named
Simulation Modeling Language (SimML) to automatically generate a simulation Java program (by
means of the JavaSim tool [3]) from the UML specification of a system that realizes a process oriented
simulation model. SimML allows the user to draw Class and Sequence diagrams and to specify the
information needed for the automatic generation of the simulation model. The approach proposes
a XML translation of the UML models, in order to store the information about the design and the
simulation data in a structured way.

M18: The third approach, proposed by Balsamo and Marzolla in [28, 45], generates a process-oriented
simulation model of a UML software specification describing the software architecture of the sys-
tem. The used UML diagrams are Use Case, Activity and Deployment diagrams. The diagrams are
annotated according to a sub-set of the UML SPT profile [87]. Such annotations are used to param-
eterize the simulation model. The approach define an (almost) one-to-one correspondence between
the entities expressed in the UML model and the entities or processes in the simulation model. This
correspondence allows easy report of the performance results back to the software specification that
are annotated by means of UML SPT tag values. The approach has been implemented in the pro-
totype tool UML-Ψ (UML Performance SImulator). In [30] they extended the previous approach
to deal with mobile systems. Here the main contribution is the modelling of the mobility of a user.
They model the physical mobility of a user by means of UML activity diagrams that they called
”high-level” activity diagrams. Each mobility user has associated a set of such ”high-level” activity
diagrams describing their physical mobility behavior.

3.7 METHODOLOGY BASED ON STOCHASTIC PROCESSES

All the approaches presented in this section so far consider QN, SPA, SPN or simulation based performance
models. In this subsection we describe an approach which considers generalized semi-Markov processes,
i.e., stochastic processes where general distributions (and not only memoryless ones) are allowed and the
Markovian property is only partially fulfilled.

M19: The approach in [112] proposes a direct and automatic translation of system specifications given
by UML State diagrams or Activity diagrams, into a corresponding discrete-event stochastic system,
namely a generalized semi-Markov process. The first step of the approach consists of introducing

46 Chapter 3. Software Performance Engineering: State of the Art

Feasibility

Study

Requirement

Analysis

Requirement

Specification

Requirement

Validation

Software

Architecture

Software

Specification

Interface &

Component Design

Data Structure &

Algorithm Design

Implementation &

Integration

Verification &

Validation

Software Design

Figure 3.3: Generic software life cycle model.

extensions to UML State diagrams and Activity diagrams to associate events with exponentially dis-
tributed durations and deterministic delays. The enhanced UML diagrams are then mapped onto a
generalized semi-Markov process by using an efficient algorithm for the state space generation.

The approach has been implemented using the tool DSPNexpress 2000 (information in [4]) which
supports the quantitative analysis of discrete-event stochastic processes. DSPNexpress imports UML
diagrams from some commercial UML design package, and adds the timing information by using a
graphical user interface.

The approach has two main drawbacks, namely, the use of non standard UML notation for the addi-
tional timing information and the possible state space explosion in the generation of the state transi-
tion graph out of the UML diagrams.

3.8 CLASSIFICATION OF THEEXISTING APPROACHES

In this section we classify and compare the reviewed methodologies. We focus on the integration of perfor-
mance analysis at the earliest stages of the software life cycle, namely software design, software architecture
and software specification. We will review the most important approaches in the general perspective of how
each one integrates into the software life cycle.

To carry out the classification and the comparison we consider a generic model of software life cycle as
presented in Figure 3.3.

We identify the most relevant phases in the software life cycle. Since the approaches we consider aim
at addressing performance issues early on in the software development cycle, our model is detailed with
respect to the requirement and architectural phases. Moreover since performance is a system run time
attribute we will focus on dynamic aspects of the software models used in the different phases.

The various approaches differ with respect to several dimensions. In particular we consider the software
dynamics model, the performance model, the phase of the software development in which the analysis is
carried out, the level of detail of the additional information needed for the analysis, and the software archi-
tecture features of the system under analysis, e.g., specific architectural patterns such as client-server, and
others. All these dimensions are then synthesized through the three following indicators: theintegration
level of the software model with the performance model, the level of integration of performance analysis
in the software life cycleand themethodology automation degree, as shown in Figure 3.4. We use them to
classify the methodologies as reported in Section 3.8.1. The level of integration of the software and of the
performance models ranges from syntactically related models to semantically related models to a unique
comprehensive model. This integration level qualifies the mapping that the methodologies define to relate
the software design artifacts with the performance model. A high level of integration means that the perfor-
mance model has a strong semantic correspondence with the software model. Syntactically related models
permit the definition of a syntax driven translation from the syntactic specification of software artifacts to

3.8 Classification of the Existing Approaches 47

Automation

degree

Automation degree

Automation degree
Automation

degree

Integration level

of performance

analysis in the

software lifecycle

Integration

level of the

software model

with the

performance

model

Requirements

Software

Architecture

Software

Design

Software

Implementation

Verification

& Validation

Same

Models

Syntactically

Related Models

Semantically

Related Models

Medium

Automation

High

Automation

Low

Automation

Software

Specification

Figure 3.4: Classification Dimensions of Software Performance Approaches.

the performance model. The unique comprehensive model allows the integration of behavioral and perfor-
mance analysis in the same conceptual framework. With the level of integration of performance analysis
in the software life cycle we identify the precise phase at which the analysis can be carried out. In the
context we are dealing with, the earlier the prediction process can be applied the better the integration with
the development process is obtained. For each methodology we also single out the software development
phases in which the specific information required to perform the analysis is collected, received or supplied.
This information is synthesized in Table 3.2, discussed in Section 3.8.1, and it is used to explicitly state the
requirements that each methodology puts to software designers in terms of additional information required
for performance analysis. It is worth noting that these requirements can be very demanding thus restricting
the general applicability of the methodology. We associate each required information to the phase of the
software life cycle where it would be naturally available. There exist methods that assume the availability
of this information at earlier phases of the software life cycle in order to carry out the predictive analysis. In
this case their underlying assumption is that this information is available somehow, for example through an
operational profile extracted from similar systems or by assuming hypothetical implementation scenarios.
We will mention this kind of assumption for each presented methodology. The last dimension refers to the
degree of automation that the various approaches can support. It indicates the potentiality of automation
and characterizes the maturity of the approach and the generality of its applicability.

The classification schema illustrated in Figure 3.4 is inspired by Enslow’s model of distribution [76].

The ideal methodologies fall at the bottom of the two rightmost columns, since they should have high
integration of the software model with the performance model, high level of integration of performance
analysis with the life cycle, i.e., from the very beginning, and high degree of automation.

3.8.1 COMPARISON AND CLASSIFICATION

In this section we provide a synthesis of the methodologies previously surveyed, in light of the several
features outlined above. The Table 3.1 summarizes all the methodologies and their characteristics. Each
row refers to a methodology. The first column indicates the methodology label that will be used in Fig-
ure 3.5 while the second column refers to the section presenting the methodology. The third and fourth
columns indicate the behavioral and performance models, respectively. The former is the starting point of
the methodology and the latter represents the target model for the analysis. The fifth and sixth columns
indicate potential constraints implied by the methodology. These can be related to the software system

48 Chapter 3. Software Performance Engineering: State of the Art

architecture or to a specific application domain, e.g., real time systems. The life cycle phase column reports
the first software development phase in which the methodology can be applied. The eighth, ninth and tenth
columns are quality attributes that we derive from the study of the various methodologies. Information level
represents the amount of information that has to be provided in order to make the methodology applicable.
This encompasses information like operational profile, resource workloads, as detailed in Table 3.2. Feed-
back indicates that a methodology has explicitly addressed the issue of providing some sort of feedback
from performance analysis to the software designer. This means, for example, that from a bad throughput
figure it is easy to single out which are the software components and/or interactions responsible. Automa-
tion degree refers to the suitability for automation of a methodology. It is worth noting that this does not
indicate the current achieved automation, which is instead considered in the last column. The tool column
mentions the tools that support the automated portion of the methodology, if any.

Note that there is a dependency between the information level and the life cycle phase. The more informa-
tion needed, the later in the software development cycle the analysis is performed. This means that some
methodologies, although starting from abstract software descriptions, are applicable only from the design
level onward, as far as the life cycle phase is concerned. The kind of additional performance information
required by each methodology can be found in the Table 3.2. Note that one could also imagine that this
information do somehow exist, e.g., can be predicted by using execution scenarios. However, for classifi-
cation purposes we consider the development phase in which this kind of information would naturally be
available and relate the methodology to that phase. More precisely, the Table 3.2 depicts the various phases
of the software life cycle in the columns and the considered methodologies in the rows. Each row is relative
to one methodology and reports the information needed for performance analysis purposes, with respect to
the significant phases of the software life cycle.

Looking at Table 3.1 we can make the following observations.

• Most of the methodologies make use of UML or UML-like formalisms to describe behavioral models.
This indicates a general tendency which is driven by the need to integrate with standard practice
development environments.

• QN are the preferred performance models. This depends on two factors: the abstraction level of
the QN formalism which makes it suitable to describe software architecture models and high level
software design and the availability of efficient algorithms and tools to evaluate the model. Moreover
QN models can be extended to better reflect software characteristics like communication patterns and
hierarchical structure (e.g., EQN, LQN).

• Architectural and application domain constraints represent a serious attempt to make an integrated
approach to performance prediction analysis efficient and applicable. Identifying specific application
domains and architectural structures can be the means for achieving scalability and/or modularity
in performance analysis. This research area is even more relevant considering the development of
component-based systems. In this setting, components are plugged into fixed underlying architectural
structures in order to produce different systems.

• As far as the additional information required for performance analysis is concerned, Table 3.2 sum-
marizes the kind of information needed by each approach. Performance requirements are obviously
always assumed to exist. All the methods explicitly based on SPE, see Section 3.3.1, assume to have
available performance related information at each phase of the software life cycle, till the detailed
design is obtained. This obviously prevents their use at early stages. The same consideration applies
to M5, which although based on architectural patterns follows the SPE approach and requires detailed
information such as resource usage and loop repetitions that can only be available at detailed design
level. Differently M6, also working with architectural patterns, requires information on the hard-
ware platform that in many cases can be either available at requirement phase or supplied as possible
alternative platform scenarios.

The three methods based on trace analysis, M7, M8 and M9 see Section 3.3.3, are less demanding in
terms of actual information and two of them, M7 and M9, can be applied at software architecture and

3.8 Classification of the Existing Approaches 49
A

pp
ro

ac
h

R
ef

er
en

ce
in

B
eh

av
io

ra
l

P
er

fo
rm

an
ce

A
rc

hi
te

ct
ur

al
A

pp
lic

at
io

n
Li

fe
cy

cl
e

In
fo

rm
at

io
n

F
ee

db
ac

k
A

ut
om

at
io

n
To

ol
S

ec
tio

n
M

od
el

M
od

el
C

on
st

ra
in

t
D

om
ai

n
P

ha
se

Le
ve

l
D

eg
re

e
M

1
3
.3

.1
A

nn
ot

at
ed

M
S

C
Q

N
M

—
G

en
er

al
D

es
ig

n
H

ig
h

N
o

H
ig

h
S

P
E•

E
D

M
2

3
.3

.1
U

M
L

S
eq

ue
nc

e
E

Q
N

M
—

G
en

er
al

D
es

ig
n

H
ig

h
N

o
H

ig
h

—

M
3

3
.3

.1
U

M
L

D
ia

gr
am

s
E

Q
N

M
—

M
ob

ili
ty

C
od

e
D

es
ig

n
H

ig
h

N
o

H
ig

h
—

M
4

3
.3

.1
U

M
L

S
eq

ue
nc

e
LQ

N
C

lie
nt

/S
er

ve
r

G
en

er
al

D
es

ig
n

H
ig

h
N

o
M

ed
iu

m
/

Lo
w

—

M
5

3
.3

.2
U

M
L

A
ct

iv
ity

C
ol

la
bo

ra
tio

n
LQ

N
A

rc
hi

te
ct

ur
al

P
at

te
rn

s
G

en
er

al
D

es
ig

n
H

ig
h

N
o

H
ig

h
Im

pl
em

en
ta

tio
ns

(n
ot

av
ai

la
bl

e)
M

6
3
.3

.2
U

M
L

C
ol

la
bo

ra
tio

n
Q

N
M

C
lie

nt
/S

er
ve

r
G

en
er

al
D

es
ig

n
H

ig
h

N
o

M
ed

iu
m

C
LI

S
S

P
E

S
ys

te
m

(n
ot

av
ai

la
bl

e)
M

7
3
.3

.3
A

nn
ot

at
ed

M
S

C
Q

N
M

—
G

en
er

al
A

rc
hi

te
ct

ur
e

D
es

ig
n

Lo
w

N
o

H
ig

h
—

M
8

3
.3

.3
R

O
O

M
N

ot
at

io
n:

S
ta

te
M

ac
hi

ne
LQ

N
—

R
ea

l-T
im

e
In

te
ra

ct
iv

e
D

es
ig

n
H

ig
h

Y
es

H
ig

h
P

A
M

B

M
9

3
.3

.3
U

C
M

LQ
N

—
G

en
er

al
R

eq
s

an
d

A
rc

hi
te

ct
ur

al
D

es
ig

n

H
ig

h
N

o
H

ig
h

U
C

M
2L

Q
N

U
C

M
N

av
ig

at
or

M
1
0

3
.3

.4
U

M
L

D
ia

-
gr

am
s

Q
N

(c
lo

se
d

m
ul

tic
la

ss
pr

od
uc

tf
or

m
)

—
G

en
er

al
D

es
ig

n
H

ig
h

Y
es

H
ig

h
O

AT

M
1
1

3
.3

.5
U

M
L

D
ia

-
gr

am
s

E
Q

N
M

C
om

po
ne

nt
ba

se
d

sy
st

em
s

G
en

er
al

A
rc

hi
te

ct
ur

e
D

es
ig

n
H

ig
h

Y
es

H
ig

h
C

B
-S

P
E

to
ol

M
1
2

3
.3

.5
U

M
L

2.
0

C
om

po
ne

nt
D

ia
gr

am

LQ
N

C
om

po
ne

nt
ba

se
d

sy
st

em
s

G
en

er
al

A
rc

hi
te

ct
ur

e
D

es
ig

n
H

ig
h

N
o

H
ig

h
P

ro
to

ty
pe

to
ol

M
1
3

3
.4

P
ro

ce
ss

A
lg

e-
br

a
S

P
A

—
G

en
er

al
S

pe
cs

Lo
w

N
o

H
ig

h
Tw

o
To

w
er

s
P

E
P

A
W

or
kb

.
T

IP
P

To
ol

M
1
4

3
.5

P
et

ri
N

et
G

S
P

N
—

G
en

er
al

S
pe

cs
Lo

w
N

o
H

ig
h

H
iQ

P
N

G
re

at
S

P
N

D
S

P
N

ex
pr

es
s2

00
0

M
1
5

3
.5

U
M

L
D

ia
-

gr
am

s
G

S
P

N
—

G
en

er
al

D
es

ig
n

H
ig

h
N

o
H

ig
h

P
ro

to
ty

pe
to

ol
an

d
G

re
at

S
P

N
M

1
6

3
.6

U
M

L
D

ia
gr

am
s

S
im

ul
at

io
n

—
R

ea
l-T

im
e

S
ys

te
m

s
D

es
ig

n
H

ig
h

Y
es

H
ig

h
S

M
G

an
d

O
P

N
E

T

M
1
7

3
.6

U
M

L
S

eq
ue

nc
e

S
im

ul
at

io
n

—
G

en
er

al
D

es
ig

n
H

ig
h

N
o

H
ig

h
S

im
M

L,
Ja

va
S

im

M
1
8

3
.6

U
M

L
D

ia
gr

am
s

S
im

ul
at

io
n

—
G

en
er

al
M

ob
ili

ty
C

od
e

A
rc

hi
te

ct
ur

al
D

es
ig

n
H

ig
h

Y
es

H
ig

h
U

M
L-

Ψ

M
1
9

3
.7

U
M

L
A

ct
iv

ity
S

ta
te

D
ia

gr
am

s
S

em
i-M

ar
ko

v
P

ro
ce

ss
—

G
en

er
al

D
es

ig
n

H
ig

h
N

o
H

ig
h

D
S

P
N

ex
pr

es
s2

00
0

Ta
bl

e
3.

1:
S

um
m

ar
y

of
th

e
M

et
ho

do
lo

gi
es

.

50 Chapter 3. Software Performance Engineering: State of the Art

requirement level, respectively.

M10 as discussed in Section 3.3.4, suggests a UML-based design to achieve performance modeling.
Therefore all the performance related information is integrated into design artifacts.

M11 and M12 are two approaches dealing with performance analysis of component-based software
systems. They re-design two software performance approaches to integrate the predictive analysis
in the reuse-based software development process. Both the approaches suppose a previous analysis
on the selected components from which the performance properties (in M11) or the performance
model (in M12) of the components are collected. This allows their application since the software
architecture level in a reuse-based software development process.

M13 and M14 fall into a different group, since they apply at software specification time. All the
required information to carry out performance analysis has to be interpreted in terms of action/transi-
tion execution time. Thus either all the performance information is available at specification time or
the specification has to be properly refined in order to reflect further design choices.

M15 is the only complete approach that generate a GSPN model from UML description of the soft-
ware system. Since it requires detailed design of the components it can be used from the design
level.

The last four methodologies, M16, M17, M18 and M19 propose different approaches based on simu-
lation techniques and stochastic processes, respectively. The first two generate the simulation models
based on architectural and design artifacts enriched with temporal information. In order to produce
the stochastic process model the last needs very detailed information at design level, like associating
duration and delays to events. This implies that at design level there must be a clear picture of the
performance effects of high level design concepts.

• Few approaches provide feedback information. In general, this requires a direct correspondence be-
tween the software specification abstraction level and the performance model evaluation results. Note
that the existence of a unique behavioral and performance model does not necessarily imply the exis-
tence of this correspondence. Let us consider a process algebra specification, whose syntax provides
the description of the software structure in terms of processes and their composition, and the behav-
ioral and performance evaluation is carried out the global state transition model. Like in traditional
debugging approaches it is possible to build a direct correspondence between the syntactic and the
execution level, but it can be highly complex and costly. Obviously methods based on simulation
techniques can more easily provide feedbacks, because there can be a direct correspondence between
the software specification abstraction level and the performance model evaluation results.

• Most approaches exhibit high automation potentiality. This clearly indicates that there is a strong
concern about automation as a key factor for the applicability of the approach. In general, automa-
tion is considered at any level of the methodology, from the specification of the software artifacts
to the derivation of performance model to the evaluation phase. It is worth noting that there is a
common trend towards achieving automation through integrating with existing tools both at software
specification level, e.g., UML CASE tools, and at the performance analysis level, e.g., QN analyzers.

From this detailed information we derive the three main indicators introduced before to classify the various
approaches. The integration level of software model with the performance model, takes into account the ar-
chitectural constraints and application domain. The integration of performance analysis in the software life
cycle accounts for life cycle phase, information level and feedback. Automation is kept as an autonomous
dimension which also comprises tool support.

According to the above discussion, in Figure 3.5 we classify the methodologies. In each internal small
cube, label ordering has no meaning. Differently, when a label lies at the intersection of more cubes, like
M4, this indicates that the corresponding methodology has characteristics of both classes.

Most of the methodologies fall in the groups of syntactically or semantically related models and in the
layer referring to software design. Let us recall that the dimension concerning the integration level of

3.8 Classification of the Existing Approaches 51
A

pp
ro

ac
h

R
ef

er
en

ce
in

R
eq

.
R

eq
ui

re
m

en
t

S
of

tw
ar

e
S

of
tw

ar
e

In
te

rf
ac

e
an

d
D

at
a

S
tr

uc
tu

re
S

ec
tio

n
A

na
ly

si
s

S
pe

ci
fic

at
io

n
A

rc
hi

te
ct

ur
e

S
pe

ci
fic

at
io

n
C

om
po

ne
nt

D
es

ig
n

an
d

A
lg

.
D

es
ig

n
M

1
3
.3

.1
P

er
fo

rm
an

ce
R

eq
ui

re
m

en
ts

O
pe

ra
tio

na
lP

ro
fil

e
E

xe
cu

tio
n

E
nv

.,
S

ce
na

rio
s

F
re

qu
en

ci
es

P
ro

ce
ss

V
ie

w
,S

er
vi

ce
R

at
es

,
R

es
ou

rc
e

C
on

te
nt

io
n

D
el

ay
R

es
ou

rc
e

U
sa

ge
,L

oo
p

R
ep

et
iti

on
s,

H
W

C
on

fig
.

M
2

3
.3

.1
P

er
fo

rm
an

ce
R

eq
ui

re
m

en
ts

O
pe

ra
tio

na
lP

ro
fil

e
E

xe
cu

tio
n

E
nv

.,
S

ce
na

rio
s

F
re

qu
en

ci
es

S
er

vi
ce

R
at

es
R

es
ou

rc
e

U
sa

ge
,H

W
C

on
fig

.,
Lo

op
R

ep
et

iti
on

s,
O

cc
ur

re
nc

e
T

im
e

of
In

te
ra

ct
io

n
M

3
3
.3

.1
P

er
fo

rm
an

ce
R

eq
ui

re
m

en
ts

O
pe

ra
tio

na
lP

ro
fil

e
E

xe
cu

tio
n

E
nv

.,
S

ce
na

rio
s

F
re

qu
en

ci
es

,T
im

e
of

In
te

ra
ct

io
n

S
er

vi
ce

R
at

es
R

es
ou

rc
e

U
sa

ge
,L

oo
p

R
ep

et
iti

on
s,

H
W

C
on

fig
.

M
4

3
.3

.1
P

er
fo

rm
an

ce
R

eq
ui

re
m

en
ts

O
pe

ra
tio

na
lP

ro
fil

e
M

od
ul

e-
P

la
tfo

rm
M

ap
pi

ng
P

la
tfo

rm
C

on
fig

ur
at

io
n,

R
es

ou
rc

e
C

ap
ac

ity
M

5
3
.3

.2
P

er
fo

rm
an

ce
R

eq
ui

re
m

en
ts

O
pe

ra
tio

na
lP

ro
fil

e
W

or
kl

oa
d

R
es

ou
rc

e
us

ag
e,

Lo
op

R
ep

et
iti

on
s,

H
W

C
on

fig
.

M
6

3
.3

.2
P

er
fo

rm
an

ce
R

eq
ui

re
m

en
ts

O
pe

ra
tio

na
lP

ro
fil

e
W

or
kl

oa
d

H
W

C
on

fig
ur

at
io

n

M
7

3
.3

.3
P

er
fo

rm
an

ce
R

eq
ui

re
m

en
ts

Im
pl

em
en

ta
tio

n
S

ce
na

rio
A

lte
rn

at
iv

es
M

8
3
.3

.3
P

er
fo

rm
an

ce
R

eq
ui

re
m

en
ts

C
rit

ic
al

P
er

fo
rm

an
ce

S
ce

na
rio

s
E

nv
.

&
D

ep
lo

ym
en

tI
nf

o.
H

W
C

on
fig

ur
at

io
n

M
9

3
.3

.3
P

er
fo

rm
an

ce
R

eq
ui

re
m

en
ts

N
um

be
r

of
C

al
ls

&
Lo

op
Ite

ra
tio

ns
,

S
w

C
om

p.
to

D
ev

ic
es

M
ap

pi
ng

,
F

or
k

P
ro

ba
bi

lit
ie

s,
D

ev
ic

es
S

pe
ed

-u
p

F
ac

to
r,

S
ys

te
m

W
or

kl
oa

d
In

te
ns

ity
,D

ef
au

lt
Va

lu
es

N
um

be
r

of
C

al
ls

&
Lo

op
Ite

ra
tio

ns
,

S
w

C
om

p.
to

D
ev

ic
es

M
ap

pi
ng

,
D

ev
ic

es
S

pe
ed

-u
p

F
ac

to
r,

F
or

k
P

ro
ba

bi
lit

ie
s,

S
ys

te
m

W
or

kl
oa

d
In

te
ns

ity
,D

ef
au

lt
Va

lu
es

M
1
0

3
.3

.4
P

er
fo

rm
an

ce
R

eq
ui

re
m

en
ts

C
la

ss
es

fo
r

R
es

ou
rc

es
W

or
kl

oa
d,

R
un

ni
ng

C
on

fig
.,

S
ch

ed
ul

in
g

P
ol

ic
y

fo
r

re
so

ur
ce

s
S

er
vi

ce
D

em
an

d

M
1
1

3
.3

.5
P

er
fo

rm
an

ce
R

eq
ui

re
m

en
ts

O
pe

ra
tio

na
lP

ro
fil

e
S

ce
na

rio
s

F
re

qu
en

ci
es

,C
om

po
ne

nt
S

er
vi

ce
R

at
es

/T
im

es
an

d
R

es
ou

rc
e

U
sa

ge
,L

oo
p

R
ep

et
iti

on
s

H
W

C
on

fig
.

M
1
2

3
.3

.5
P

er
fo

rm
an

ce
R

eq
ui

re
m

en
ts

O
pe

ra
tio

na
lP

ro
fil

e
S

ce
na

rio
s

F
re

qu
en

ci
es

S
er

vi
ce

R
at

es
/T

im
es

of
C

om
p.

In
te

rf
ac

es
,C

om
p.

R
es

ou
rc

e
U

sa
ge

,L
oo

p
R

ep
et

iti
on

s,
Le

ve
l

of
R

ep
lic

as
an

d
M

ul
ti-

T
hr

ea
di

ng

H
W

C
on

fig
.

M
1
3

3
.4

P
er

fo
rm

an
ce

R
eq

ui
re

m
en

ts
A

ct
io

n
E

xe
cu

tio
n

T
im

e
M

1
4

3
.5

P
er

fo
rm

an
ce

R
eq

ui
re

m
en

ts
T

ra
ns

iti
on

E
xe

cu
tio

n
T

im
e

M
1
5

3
.5

P
er

fo
rm

an
ce

R
eq

ui
re

m
en

ts
T

im
e

R
at

e
of

d
o

a
ct

iv
iti

e
s,

S
to

ch
as

tic
B

eh
av

io
r

on
o

u
tg

o
in

go
n

tr
a

n
si

tio
n

s
M

1
6

3
.6

P
er

fo
rm

an
ce

R
eq

ui
re

m
en

ts
Te

m
po

ra
lI

nf
or

m
at

io
n

Te
m

po
ra

lI
nf

or
m

at
io

n

M
1
7

3
.6

P
er

fo
rm

an
ce

R
eq

ui
re

m
en

ts
P

er
fo

rm
an

ce
In

fo
rm

at
io

n

M
1
8

3
.6

P
er

fo
rm

an
ce

R
eq

ui
re

m
en

ts
O

pe
ra

tio
na

lP
ro

fil
e

W
or

kl
oa

d,
S

te
p

E
xe

cu
tio

n
P

ro
ba

bi
lit

ie
s

D
el

ay
,R

ep
et

iti
on

s
S

er
vi

ce
E

xe
cu

tio
n

T
im

e
H

W
co

nfi
gu

ra
tio

n

M
1
9

3
.7

P
er

fo
rm

an
ce

R
eq

ui
re

m
en

ts
S

er
vi

ce
T

im
e

D
is

tr
ib

ut
io

ns
&

D
et

er
m

in
is

tic
D

el
ay

s

Ta
bl

e
3.

2:
P

er
fo

rm
an

ce
In

fo
rm

at
io

n
R

eq
ui

re
d

by
th

e
M

et
ho

do
lo

gi
es

.

52 Chapter 3. Software Performance Engineering: State of the Art

Figure 3.5: Classification of Considered Methodologies.

software models with the performance models refers to the way the mapping between software models and
performance models is carried out. In the group of syntactically related models we put the methodologies
that integrate the design and the performance models based on structural-syntactical mappings. For example
in M9 there is an explicit correspondence between syntactic elements at the design level and elements of
the performance model, e.g., UCM components and LQN tasks.

The group of semantically related models refers to methodologies whose mapping between design and
performance models is mainly based on the analysis of the dynamic behavior of the design artifacts. For
example, in M8 the mapping is based on the analysis of the state machines model of the system design.

The last group singles out the methodologies that allow the use of the same model both for design descrip-
tion and performance analysis. This group can actually be seen as a particular case of the semantically
related models when the mapping is the identity modulo timing information. However, we have decided to
keep it separate because this ideal integration can be obtained only if the software designer has the skill to
work with sophisticated specification tools.

The analysis of the integration level of software models with the performance models shows from a different
perspective the tendency to use separate formalisms and/or models. As we already pointed out, the rationale
for this choice is to offer software designers tools at the same level as their expertise and skills in order to
increase the acceptance and the use of the methods. The same reason motivates the high automation degree
offered by most of the methods.

The integration level of performance analysis in the software life cycle shows that most of the methods
apply to the software design phase in which a good approximation of the information needed to perfor-
mance analysis is usually provided with a certain level of accuracy. At design level many crucial design
decisions of the software architecture and programming model have already been taken and it is thus pos-
sible to extract accurate information for performance analysis, e.g., communication protocols and network
infrastructure, process scheduling. At a higher abstraction level of the software system design there are
many more degrees of freedom to be taken into account that must be suitably approximated by the analyst

3.9 Final Considerations and Summary 53

thus making the performance analysis process more complicated. Of course there is a trade-off here and
approaches operating at different abstraction levels rather than conflicting can be seen as complementary
since they address different needs. Performance prediction analysis at the very early stages of design al-
lows for choice from different design alternatives. Later on, performance analysis serves the purpose of
validating such choices with respect to non-functional requirements.

Another consideration embracing all the dimensions regards thecomplexityof the methods as far as their
ability to provide a performance model to be evaluated is concerned. In this respect we consider the com-
plexity of the translation algorithms to build the performance model and the information to carry out the
analysis. This notion of complexity does not consider the complexity of the analysis itself, although there
can be a trade-off between complexity of deriving the performance model and complexity of evaluating
the model. For example, highly parameterized models can be easily obtained but very difficult to solve.
Of course the efficacy of a methodology, and therefore its success also depends on the analysis process,
thus this issue should be taken into account as well. We do not consider it now, since an accurate anal-
ysis of the complexity of the analysis process depends on a set of parameters that can require extensive
experimentation and use of the methodologies and this kind of analysis is out of the scope of the present
Chapter.

Roughly speaking, with respect to the three dimensions of Figure 3.5, the possible methods which occur
at the bottom of the second group, on the leftmost side of the automation dimension, exhibit a high com-
plexity. This complexity decreases when moving out along any of the three dimensions. This is due to
different reasons. Towards syntactically related models or towards the same models, the mapping between
behavioral and performance models simplify or disappears. Moving up along the integration level of per-
formance analysis into the software life cycle dimension, the accuracy of available information increases
and simplifies the production of the performance model.

The last issue we discuss concerns the automation of the methodologies and in particular tries to summarize
the portions of the software performance process that have been most automated.

Figure 3.6 shows the three stages of any software performance analysis process and highlights some au-
tomation tools that can be applied in these stages. A tool can support one or more stages as indicated by the
arrow entering the stage or the box enclosing the set of stages. The dashed arrow going from performance
model evaluation to software specification represents the analysis of potential feedback. It is dashed since,
so far, not all the tools pointing to the largest box automatically support this feature.

The picture shows that most of the tools apply to the whole process providing a comprehensive environment.
On the other hand there exist several tools with different characteristics that automate single stages of the
process. This might suggest the creation of an integration framework where the tools automating single
stages of the process can be plugged in, in order to provide a best-fit analysis framework.

Among the tools cited in Figure 3.6 there exist commercial tools and academic tools. In particular, most
of the tools applying to the whole software performance process have been developed by academic insti-
tutions. Some of them are just prototype tools (even not available, in some cases), while others do have
a commercial version, like GreatSPN, TwoTowers, and DSPNexpress 2000. The tool SPE•ED is the only
purely commercial tool. The correspondence between the considered methodologies and their supporting
tools is shown in the last column of Table 3.1. We refer to the presentation of the various methodologies for
a brief description of the main characteristics of their supporting tools.

3.9 FINAL CONSIDERATIONS ANDSUMMARY

In this Chapter we have reviewed the state of the art in model-based software performance prediction.
We have taken a software-designer perspective in order to classify and evaluate the growing number of

54 Chapter 3. Software Performance Engineering: State of the Art

Software

Specification

Performance

Model

Generation

Performance

Model

Evaluation

Rational Rose

ArgoUML
 ...
 UCM2LQN

ResQ

HiQPN-Tool

CSim
 ...

...

SPEED

TwoTowers

PEPA

Workbench

TIPPtool

PAMB

DSPNexpress

2000

HiQPN-Tool

GreatSPN

SimML

AMG

UCM Navigator

Figure 3.6: Tools and Performance Process.

approaches that have lately appeared. Our choice is driven by the generally acknowledged awareness that
the lack of performance requirement validation in current software practice is mostly due to the knowledge
gap between software engineers/architects and quality assurance experts rather than due to foundational
issues. Moreover, short time to market requirements make this situation even more critical. In this scenario
expressive and intuitive notations, coupled with automated tools for performance validation, would allow
quantitative numerical results to be interpreted as design feedback, thus supporting quick and meaningful
design decisions.

This is confirmed by the classification we carried out. Referring to Figure 3.5 it clearly appears that almost
all methodologies try to encompass the whole software life cycle starting from early software artifacts. It
is also meaningful that most methodologies are tightly coupled with tool support that allows the (partial)
automation of them. There is no methodology which is fully supported by automated tools, and at the
same time there is no methodology that does not provide or foresee some kind of automatic support. Most
approaches try to apply performance analysis very early, typically at the software architecture level. So far,
most of them still require much detailed information from the implementation/execution scenarios in order
to carry out performance analysis. Nevertheless there is a growing number of attempts that try to relax
implementation/execution constraints in order to make the analysis applicable at abstract design levels.

Three indications are highlighted from this survey. The first concerns software design specifications, the
second performance models and the third one is related to the analysis process.

For software design specifications we believe that the trend will be to use standard practice software arti-
facts, like UML diagrams. Queuing Networks and their extensions are candidates as performance models.
QN provide an abstract/black-box notation, thus allowing easier feedback and model comprehension, es-
pecially in a component-based software development process. As far as the analysis process is concerned,
besides performance analysis, feedback provision is a key success factor for a widespread use of these
methodologies.

Obviously, several problems still remain to be studied and solved. Software notations should allow for
easily expressing performance related attributes and requirements. The more abstract the software notation,
the more difficult it is to map the performance model. For QN this is a problem that can only be amended by
the existence of algorithms and tools that permit the creation of performance models from standard software
artifacts. This is not a problem for GSPN and SPA provided that the designers use these same notations
for the behavioral descriptions, which, in software practice, is rarely the case. Therefore, if we assume a
standard development process, with standard software artifacts, like UML-based ones, the effort to produce
a performance model from the behavioral description is comparable for all three models.

Another problem concerns the complexity of the obtained performance model. This sometimes might
prevent efficient model evaluation. The existence of a strong semantic mapping between the software

3.9 Final Considerations and Summary 55

artifacts and the performance model may suggest strategies to reduce the performance model complexity
still maintaining a meaningful semantic correspondence. Complexity problems can also be addressed by
using simulation techniques besides analytical ones.

Last but not least the whole analysis process asks for automatic support. How to provide useful feedback is
an important issue that deserves more study and experiments.

Summarizing, we believe that from this survey it emerges that although no comprehensive methodology
is at present available, the field of model-based software performance prediction is mature enough for
approaches that can be profitably put into practice.

CHAPTER 4

A NEW APPROACH FORPREDICTIVE PERFORMANCEANALYSIS OF

COMPONENT-BASED SOFTWARE ARCHITECTURES

Early performance analysis based on Queueing Network (QN) models has been often proposed to support
software designers during the software development process (see Chapter 3). These approaches aim at
addressing performance issues as early as possible in order to reduce design failures. All of them try to
adapt a system performance analysis methodology to software systems and they assume as available, at
design time, information about the hardware platform the software will run on.

Few approaches can be used at the Software Architecture (SA) level, when a first description of statics
and dynamics of the software system is provided. At the time of the software architecture specification,
designers have to take crucial decisions on the design of the developed system. These decisions, mostly
based on their experience, may affect functional and performance (in general non functional) aspects of the
software system. Hence the performance evaluation at the software architectural level becomes an important
task.

In this chapter we present our methodology that permits quantitative reasoning on performance aspects at
the software architecture level. This approach, differently from other methodologies, does not require the
specification of the hardware platform aspects. By filling the knowledge gap between the software and the
performance worlds, our methodology provides the designers an easy and quick validation technique of the
software architecture against the performance requirements. The approach, in fact, systematically generates
a QN model representing the software architecture ready to be evaluated by performance solvers.

When a new performance model generation approach is defined several decisions should be taken: the
software notation, the target notation, the additional information needed to carry on the analysis (such as
operational profile and workload) , and where and how such an information should be specified. We detail
in this chapter each of these issues.

4.1 PREMISES

The methodology we present in this chapter integrates the performance analysis process and the software
life-cycle at the Software Architecture level. The Figure 4.1 shows such an integration. In the Figure, ovals
represent activities of the process whereas rectangles indicate the output of each process step. From the
performance requirements, performance figures of interest and a set of performance scenarios are defined.
This information is an input for the performance evaluation step. From the description of the software ar-
chitecture enriched by additional information a target QN model is generated. After that, the target model
is evaluated and measures for the defined figures are calculated. The designers decide whether and how the
software architecture should be refined from the analysis of the results of the evaluation step. If the design-
ers do not experience any performance problems after the interpretation of the performance results, they
proceed to develop the software system. Otherwise, to meet the performance requirements, they modify the
software architecture and re-iterate the performance analysis process over the new software architecture. In

57

58
Chapter 4. A new Approach for Predictive Performance Analysis of Component-based Software

Architectures

Figure 4.1: Software Performance Analysis Process and its Integration into the Software Life Cycle.

the software architecture modification the designers will consider the insights gained from the performance
analysis. The way the software architecture is modified specifies the feedback the performance analysis
process reports at the software architecture level.

The choice of software architecture as starting point is motivated by the observation that performance is a
run time attribute and the software architecture is the first artifacts describing the behavior of a software
system. Errors in such definition could compromise the success of the whole project (see [89] for an
example). There are several definitions of Software Architecture and we consider as reference definition
the following one (quoted from [35]): ”The software architecture of a program of computing system is the
structure or structures of the system, which comprise software components, the externally visible proprieties
of those components, and the relationships among them”. The architecture description hence defines the
structure of the software system by identifying the software components, its behavior in terms of component
interactions and ”externally visible” properties on the components that refers to assumptions made of an
element, such as its provided services, performance characteristics, fault handling, shared resource usage,
and so on.

Also the choice of QN model is not casual. We guess that the following paragraph,extracted from [111],
leads an ideal support for this choice: ”QNModelling is a top-down process. The underlying philosophy
is to begin by identifying the principalcomponentsof the system and the ways theyinteract, then supply
any details that prove to be necessary”. From this definition and the one for the software architecture we
reported above, it is simple to identify several aspects that the queuing networks and software architectures
have in common.

We anticipated before that our methodology does not consider hardware platform information. Differently
from the existing QN-based approaches, in fact, the QN service centers do not represent hardware devices
(such as disk and processor), but they represent software components. The QN topology describes how
the software components are combined to form the software system and how a system service request is
accomplished through the software components interactions. The underlying assumption is that there exist
some logic devices having particular characteristics/properties and each software component is deployed
on one of such logic devices. All the logical devices have the same processing power but they could
have different waiting queue characteristics (capacity and scheduling policy). This implies that the service
requiring the minimum resource demand (or workload) will always be faster. The device speed factor
cannot reduce the time a request spends to be accomplished. In our approach, hence, we do not distinguish
service time from the service demand for a class of requests (or jobs).

4.2 An Introductory Approach to Software Architecture Performance Analysis 59

The performance analysis we carry on aims at identifying (potential) performance problems due to logi-
cal structure of the functionalities of the software system, and/or identifying critical software components
whose design has to proceed carefully. In other words, the predictive analysis should point out portions in
the software architecture that could raise performance problems.

Our predictive performance analysis fails when the software components are deployed on hardware devices
showing high-variance speed factors. This happens because our assumption about the uniform processing
power of the logical devices is not valid any more. However, in these cases, the predictive analysis we
propose can be useful (i) to support the designers in the software architecture development when compo-
nents are identified, in fact, in this step the analysis can suggest how distribute the functionalities among the
components in order to have good performance, and (ii) to identify critical software components that must
be carefully developed in the subsequent life cycle phases.

The target model obtained can be solved or simulated. There exist many algorithms and tools able to
simulate and solve QN models [153, 134]. A QN model can be solved in an exact way if it is a product-
form QN [111, 109], otherwise several approximate solution techniques are available in literature [26, 13,
136, 9, 7, 163].

Since whenever the QN model is specified well-established techniques are used in the performance evalua-
tion step to solve it, we believe that the automation of the QN model generation is a key point for a wider
usage of the predictive performance analysis. In the following we mainly concentrate on the definition of
the QN model generation step.

The preliminary version of the QN model generation approach [18, 19, 72] we propose allows automatic
specification of a QN model [111] from the representation of a Software Architecture by means of a set of
Message Sequence Charts (MSC) [137]. However, unfortunately, its application to complex case studies
points out that the approach is not able to consider all their aspects. We briefly overview the main aspects
of such approach version in Section 4.2

In a more recent work [73] we extend this methodology to encompass a compositional approach to QN
model generation for a software architecture described by means of UML2.0 diagrams [148]. The new
version of the methodology improves the original one in several directions: it introduces a multi-chain QN
model [111] to deal with software systems that export multiple services and it handles the QN parametriza-
tion. Moreover it is compositional and driven by architectural patterns making easier the architectural
feedbacks generation. The target model here is an Extended QN.

4.2 AN INTRODUCTORY APPROACH TOSOFTWARE ARCHITECTURE

PERFORMANCEANALYSIS

Before to move into the details of the proposed approach in this section we sketch the main characteristics
of the previous work from which the new one derives. In [18, 19] it has been defined a methodology that,
starting from a Software Architecture (SA) description given by means of Message Sequence Charts (MSC)
[137], automatically derives a performance evaluation model, based on a Queueing Network (QN) model
[111]. In the following, we refer to this methodology as MSC2QN.

The MSC2QN step allows the generation of the QN topology. Very briefly we recall that the topology of
a QN model is represented by a set of service centers, which are independent entities, suitably connected.
The translation algorithm aims at deriving a QN model as close as possible to the SA model where the
software components that are strongly synchronized are represented by means of a single service center,
and independent components are, instead, associated to individual service centers. Service centers are then
connected in the QN model depending on how the SA components interact with each other (see [19] for
more details).

60
Chapter 4. A new Approach for Predictive Performance Analysis of Component-based Software

Architectures

Figure 4.2: QN Generation in MSC2QN Methodology.

Figure 4.2 outlines the macro steps of the MSC2QN methodology which are:

1. theTrace Analysis phase that starts encoding the MSC by means of regular expressions. These
regular expressions are analyzed in pair to find out their common prefix and to identify interaction
pairs that can give information on the real concurrency between SA components. These interactions
pairs form the Interaction sets.

2. the QN Generation step that, by analyzing the Interaction sets built previously, identifies the
components or sets of components that should be modelled as service centers of the final QN, and the
interconnections among the service centers, i.e. the topology of the QN.

To apply this methodology, the set of MSC must be representative of major system behaviors and for each
SA component there must exist at least an MSC describing its interactions with other components.

The methodology requires that the MSC description must have state information of each component before
interactions occur. This information on the component state allows the identification of concurrent behav-
iors in a software component. Let us suppose that the methodology identifies two interactionsI1 andI2

having the same sender component. They represent for such a component parallel behaviors only if the
states the component reaches before executingI1 andI2 are not in conflict. Conflict is a relation on states
components that holds when, given a component, two states represent two mutually exclusive component
behaviors. Otherwise the identified pairs of interactions do not give information on the degree of parallelism
of the involved component but they just belong to two not concurrent execution traces.

In this version of the methodology a crucial assumption is made: all the MSC of the SA description start
from the same initial state of the software system. In other words there is no hierarchy among MSC, and
every one can only be triggered, in practice, from an external event. This constraint may be overcome
by making use of HMSC [137]. Moreover, to simplify the approach, the primitive basic communication
between components is supposed to be one to one. This assumption is not restrictive since both multiple-
senders and multiple-receivers interactions can be modelled by a set of one to one communications.

4.2.1 MSC FEATURES USED INMSC2QN STEP

The MSC2QN methodology uses several features of the MSC notation, that we have analyzed in [72] and
that we summarize in Figure 4.3.

4.2 An Introductory Approach to Software Architecture Performance Analysis 61

MSC2QN uses, according to the standard MSC notation, different arrow heads to model synchronous and
asynchronous interactions : full arrow heads for synchronous communications, and half arrow heads for
asynchronous ones.

The MSC setting condition facility, instead, is used to model conditions on the state of each component,
before interactions occur. A setting condition sets or describes either the current system global state or the
components state in order to restrict the traces that an MSC can take. Its graphical representation is an
hexagon placed on one or more instance lifelines. The approach requires that, if a component is designed as
a multi-thread component, state information for that component is specified by a tuple of setting conditions,
one for each thread. Figure 4.3 shows setting condition for single thread component such ascomp1 and the
one for multi-threads component such ascomp3 component that is composed by two threads.

Comp1
 Comp2
 Comp3

l
1
 l
2
 l
3,
l
4

l
9
 l
10
 l
11,
l
12

op2

op1 = Synchronous Interaction

op2 =
Asynchronous Interaction

in_gate

out_gate

Input

op1
l
5

Output

l
6
 l
7,
l
8

Figure 4.3: State Information and Interaction Types in MSC Notation.

Finally, MSC gates are used to model incoming and outgoing requests/data for the software system. The
software system may receive service requests from external software components and it may give back
information. These external entities are called environment. In a QN, the interactions of the system with its
environment are modelled by input and output flows respectively, and in such cases the QN is called open.
Instead, when interactions between the software system and its environment do not exist, the corresponding
QN is called closed. The methodology can build both the QN model typologies. However, to generate
an open QN, the approach needs information on the interactions with the environment. Gates in the MSC
notation represent the interface with the environment. Any message attached to the MSC frame constitutes
a gate. If the arrow starts from the MSC frame and ends in the lifetime line of an object it will correspond to
an input flow. Analogously, if the arrow starts from the lifetime line of an object and ends to the MSC frame
it will correspond to an output flow. Figure 4.3 shows two gates,in gateandout gate, referring respectively
to an input stream and to an output stream.

MSCs permit to represent many aspects of the SA dynamics useful to produce QN models from SA de-
scriptions. However some extensions to the notation must be defined.

First of all, interactions specification must be extended. In general the interactions involve objects. In
our approach the interactions occur between architectural components. Although the difference is mostly
conceptual, in practice our extension allows the designers to abstract from (possibly unknown) behavioral
details. Obviously, on the other hand, we loose notation expressiveness, for example, dynamic creation of
objects can not be modelled with MSC.

Secondly, we require to extend the MSC notation by introducing blocks of interactions that can occur many
times in order to represent iteration cycles, as shown in figure 4.4.

62
Chapter 4. A new Approach for Predictive Performance Analysis of Component-based Software

Architectures

C1
 C2

repeat: n times

endrepeat: n times

interactions block

Figure 4.4: MSC with a Repeat Block.

4.2.2 LIMITS OF MSC2QN TECHNIQUE

This approach has many limits. In fact, by applying it to complex case studies we experienced that the ap-
proach is not able to consider all their aspects. First of all, it is not able to properly manage complex systems
having more than one functionality. The approach loses information about the type of exchanged messages
maintaining information only on the components involved in the communication. Two errors arise when
more software system services are considered: we cannot distinguish different types of communications
having the same sender and receiver and, as a consequence, we do not know the subsequent evolution of
the execution trace and the service rate to be applied when the communications are very different from each
other. This can result in an inconsistency problem in the obtained QN model with respect to the original
software architecture.

Comp1
 Comp2
 Comp3

op1

op2()

Comp1
 Comp2
 Comp3

op1

op2

(a) split/fork communication

(b) join communication

Figure 4.5: Some Patterns the MSC2QN Approach does Not Deal with.

Moreover, the actual approach does not deal with some particular architecture behavioral patterns, such as,
for example, the ones in Figure 4.5 where a component communicates with two different ones (split/fork
communication in the figure) or where it receives two messages from different senders component (join
communication in the figure). Again, it does not cover the QN parameterization phase that requires the
knowledge of domain specific information such as system operational profile and resource workload. To this
aim many efforts have been done to extend scenario notations to allow performance data specifications. For
example, UML profile for Schedulability, Performance and Time has been defined to allow the embedding
of performance related data in the UML diagrams.

Finally, due to its monolithic nature, the approach makes the architectural feedbacks generation difficult.

4.3 Software Architecture Performance Analysis: an Advanced Approach 63

4.3 SOFTWARE ARCHITECTUREPERFORMANCEANALYSIS: AN

ADVANCED APPROACH

In this section we present the new approach to Software Architecture Performance analysis (that we call
SAP•one) that generates a multi-chain QN model from a software architecture description based on UML
2.0 [73]. It deals with the QN parameterization and it is defined over component-based software sys-
tems requiring detailed information about interactions among components. SAP•one derivers from a
re-engineering of the MSC2QN to make it systematic. The approach, in fact, defines translation rules that
map architectural patterns into QN patterns. The target model is generated by composing the identified QN
patterns suitably instantiated to the particular case.

To carry on the performance analysis we need additional information on the software system generally
missing in the software architecture description. Such data are strictly related to the performance aspects
and are used in the QN parameterization and in the workload definition. They are the operational profile of
the system (modelling the way the system will be used by the users), the workload entering the system, the
service demand required by a request (job) to the system components it visits, and performance characteri-
zation of the system components (service rate, scheduling policy, waiting queue capacity). We annotate the
UML Diagrams with such an information by using the UML Profile for the Schedulability, Performance
and Time [87].

We use UML 2.0 as an Architecture Description Language (ADL) to describe the software system architec-
ture (as we reported in [63]). Software Architecture describes the system at a very high level of abstraction
by specifying its (statical) structure and its (dynamical) behavior. We use the component diagram to model
the statics structure of the system in terms of the software components and connectors. The description
of the behavior of the software system is, instead, provided by the sequence diagrams where the lifelines
represents the software component instances and the arrows model their interactions. Finally, we use Use
Case Diagrams to specify the services provided by the software system.

The QN modelling process is composed of three steps: (i)QN topology definitionwhere the service centers
and their interconnection are identified. In this step, also QN chains describing the path crossed by a request
(or a software functionalities) among the QN service centers (the software components) are specified; (ii)
QN parametrizationwhere the characteristics of each service center are specified, such attributes are service
rate, scheduling policy and waiting queue capacity if the center is a queueing center, or the latency if it is
a delay center); (iii)workload intensity definitionthat defines the characteristics of incoming traffics (open,
close or mixed workload).

Figure 4.6: UML Diagrams Contribution in QN Model Generation.

Figure 4.6 shows how the considered UML diagrams contribute in the generation of a QN model. All the
three diagrams are involved in the QN topology definition, sequence and component diagram also provides
information for the specification of the workload and the QN parameterization, respectively.

In the following, motivations about the migration towards UML 2.0 and about the usage of a multi-chain
QN models are given.

64
Chapter 4. A new Approach for Predictive Performance Analysis of Component-based Software

Architectures

M IGRATION TOWARDS UML 2.0

UML has become a standard de fact in software modelling due to its capabilities to represent different
aspects and views of a software system. Its wide diffusion is also due to the proliferation of open source
tools that can be freely used and work on UML representation.

We decided to migrate from MSC notation to UML because the new release of UML specification, that is
UML 2.0 [148], improves the expressiveness of the UML notation providing the definition of all facilities
we need for our QN model generation. In particular, it strengthens the definition of Sequence Diagrams, by
introducing all the facilities we identified and summarized in subsection 4.2.1. Moreover, UML 2.0 defines
new operators on Sequence Diagrams that can facilitate and improve our approach. For example, operators
such asalternatives, parallel andloop make more concise the software behavioral description
allowing the representation of several execution traces in a single Sequence Diagram. The new operator
ignore , instead, allows the slicing of the software system behavior. By means of it the simplification of
the target model can be done by reasoning at the software designers level. This is extremely useful when it
is necessary to simplify the target QN model in order to permit a reasonable performance evaluation. Quite
often, in fact, the software system model describes details that are useless for the performance analysis and
that make the target model too complex to be evaluated in an acceptable time. Details on the considered
sequence operators are reported in Section 4.3.7 where we introduce the translation rule that maps them in
QN patterns.

UML 2.0 better specifics the Component diagram. In such a diagram a component specifies a formal
contract of the services that it provides to its clients and those that it requires from other components or
services in the system in terms of its provided and required interfaces. We use the component diagram to
specify the structure of the software system and we annotate it with service rates for the provided interface
and the scheduling policies of each software components.

Finally, the specification of UML profiles, such as, for example, the UML profile for Schedulability, Per-
formance, and Time [87], provides common facilities to annotate performance information on the UML
diagrams.

MOTIVATIONS OF USING MULTI -CHAINS QUEUING NETWORK

In the new approach, a QN model represents the software architecture we want to analysis and a service
center models an architectural software component. Since in general, the software system provides several
services to its users, as shown by its use case diagram, the requests entering the software system are of sev-
eral types. Hence, the customers entering to the QN model are of different types. Moreover, the software
system has different behaviors according to the different types of requests, and we suppose that these be-
haviors are specified by a set of Sequence diagrams. This implies that the QN customer types representing
the users requests should also have different behavior in the QN model. The behavior of a customer in a
QN model is defined by the chain of services it requires to the service centers.

Informally, a chain in a queueing network model describes how a request type is served by passing through
the QN service centers. Hence, it defines the routing of the request (QN customer) between the service
centers and the time the request spends in them. Since different user requests (QN customers) might re-
quire different works to a software component (QN service center), the software component should provide
several services that can have different complexity and service time.

To cope with this situation we use multi-chains QN model where the service center can be a queueing center
or a delay center. Customers at a queueing center compete for the use of the server. Thus the time spent by
a customer at a queueing center has two components: time spent waiting, and time spent receiving service.
Customers at a delay center are allocated to an own server, so there is no competition for service. Thus the

4.3 Software Architecture Performance Analysis: an Advanced Approach 65

residence time of a customer at a delay center the service demand the customer requires there. In our model
the queueing centers have one non preemptive server able to do different jobs with different service time.
Also delay centers can impose different latencies against different jobs to be executed. The approach maps
a software component into a delay center when it is represent a logical resource dedicated to each system
customer and hence it does not represent a shared resource.

4.3.1 UML 2.0 DIAGRAMS

UML 2.0 is the new release of the OMG for the Unified Modelling Language Specification that improves the
definition of some diagrams (such as Component Diagram), strengths others (such as Sequence Diagrams)
and introduces new ones (such as Timing Diagrams) [148].

As discussed in the previous section, in our methodology we use UML diagrams to model the system at
the software architecture level. In particular, we consider Use Case diagrams to model the system services,
the Sequence Diagrams to describe the software architecture dynamics, and the Component Diagrams to
describe its static structure. UML 2.0 does not modifies the specification of the Use Case diagrams, whereas
it improves the Sequence and Component diagrams. In the following, we consider only the changes UML
2.0 presents for such diagrams.

SEQUENCEDIAGRAMS

Sequence Diagrams describe interactions. An interaction, in an UML terminology, is a unit of behavior that
focuses on the observable exchange of information between elements (such as for example objects) in form
of messages. Interacting elements are represented by means of lifelines and messages through arrows. An
interaction in a Sequence Diagram is represented by a solid-outline rectangle. The keywordSD followed
by the interaction name and parameters, is in a pentagon in the upper left corner of the rectangle. For an
example of interaction described by a sequence diagram please refer to the Figure 4.9 where it is reported a
Sequence Diagram for theusecase1 sequence interaction.

The main evolutions in the interaction specification UML 2.0 introduces are the concepts of
InteractionFragment and CombinedFragment . The former is a piece of an interaction. The
latter, instead, defines an expression of interaction fragments. A combined fragment is defined by an in-
teraction operator and the corresponding interaction operands. Through the use ofCombinedFragment
the user will be able to describe a number of traces in a compact and concise manner.

The semantics of aCombinedFragment dependents on the semantics of its interaction operator. The
introduced interaction operators are:

Alternatives : the interaction fragments represent behavior alternatives;Option: the combined fragment
represents a choice of behavior where either the (sole) operand happens or nothing happens;

Break : the combined fragment designates a breaking scenario in the sense that the operand is a scenario
that is performed instead of the remainder of the enclosing interaction fragment;

Parallel : the combined fragment represents a parallel merge between the behaviors of the interaction
fragments;

Weak/Strict Sequencing: the combined fragment represents a weak/strict sequencing between the behav-
iors of the operands;

Negative : the traces that are defined in this combined fragment are invalid;

66
Chapter 4. A new Approach for Predictive Performance Analysis of Component-based Software

Architectures

Critical Region : this operator models a critical region;

Ignore/Consider : ignore designates that there are some message types that are not shown within this
combined fragment. These message types can be considered insignificant and are intuitively ignored
if they appear in a corresponding execution. Alternatively one can understand ignore to mean that
the messages that are ignored can appear anywhere in the traces. Conversely the interaction operator
considerdesignates which messages should be considered within this combined fragment.

Assertion : this operator representing an assertion;

Loop : this operator designates that the interaction fragment has to be iterated for a number of times.

The notation for a CombinedFragment in a Sequence Diagram is a solid-outline rectangle. The operator is
shown in a pentagon in the upper left corner of the rectangle.

UML 2.0 introduces also the concept of gate that represents the syntactic interface between the combined
fragment and its surroundings, which means the interface towards other interaction fragments.

In Figure 4.9 the sequence diagram is composed by several (nested) combined fragments, that areweak
sequencing, alternativesandloop, and it shows two gates, namelyin gate andout gate .

COMPONENTDIAGRAMS

A Component Diagram in UML 2.0 is defined by a sets of components connected each other by means of
their interfaces. An interface defines a set of operation involving the component. A component is a modular
unit with well-defined interfaces; it can be replaced by any unit that has the equivalent functionalities and
compatible interfaces. The interfaces of a component are classified as provided interfaces and required
interfaces. Provided interfaces defines a formal contract of services that the component provides to other
components while required interfaces have defined the services that it requires from outside in the system
in order to function. These interfaces may optionally be organized through ports. The replacement of a
component may take place at either design time or run-time. The substituting component should be able
to interact with other components or its environment provided that the constraints of the interfaces are
followed.

In UML 2.0, a component can have two different views, external view and internal view. The external view
is also known as a ”black-box” view in which it exhibits only the publicly visible properties and operations
which are encapsulated in the provided and required interfaces. The wiring between components is specified
by dependencies or connectors between component interfaces. The internal view is a sort of ”white-box”
view which shows the component internals that realize the functionality of the component. An external
view is mapped to an internal view by using dependencies which are usually shown on structure diagrams,
or by using delegation connectors that connect to the internal parts which are shown on composite structure
diagrams.

In our work we consider the only external view of the components. The component in UML 2.0 is repre-
sented by a rectangle while the provided interfaces are represented by circle connected to the rectangle by
a line. The required interfaces, instead, are represented by a semi-circle.

Figure 4.8 shows a component diagram with three components an their required and provided interfaces.

4.3 Software Architecture Performance Analysis: an Advanced Approach 67

4.3.2 USAGE OFSPTTO ANNOTATE UML 2.0 DIAGRAMS

We use UML Profile for Schedulability, Performance and Time (SPT) [87] to annotate additional informa-
tion to Sequence and Component diagrams. We use the SPT Profile stereotypes as notes in the diagrams
and the semantics of numerical values annotated in the diagrams wasassumedsince they are based on the
designers’ experience since such information is not available at the software architecture level. We were
able to use this profile without extensions even if it has been defined on UML 1.x.

ANNOTATION IN THE COMPONENTDIAGRAMS

The annotated component diagram provides information on the parameterization of the service centers of
the QN, such as the type of the service center (e.g. servers with waiting queue or a delay), the rates of the
services they provide and the scheduling policies they use to extract jobs from their waiting queues.

We use the<<PAhost>> stereotype to annotate the components in the diagram.<<PAhost>> stereotype
models an active resource. As we introduced before, we assume that each component is deployed on an
own logical active device. Hence there is a strong correspondence between the software components and
the active (logical) resources processing them. This assumption supports our usage of the<<PAhost>>
stereotype to annotate components.

Since we assume that all logical devices have the same processing power, we do not specify any tag values
for it, except for thePAschdPolicy tag value that indicates the scheduling policy of the waiting queue
of the components.

We also annotate the component diagram with the execution time required to a software component by a
service request. This time represents the total execution time required locally to the component in order to
satisfy the request. This information is specified by either<<PAdemand>> or <<PAdelay>> tag values
of the<<PAstep>> stereotype. The approach associates such stereotype to each component interface.

At the moment, for simplicity, we assume that an interface contains just an operation from which it inherits
the name. This assumption eases the annotation of the service demands in component diagram.

See Figure 4.25 for an example of the annotated component diagram.

4.3.3 ANNOTATION IN THE SEQUENCEDIAGRAMS

According to the UML profile, the workload intensity, provided to the system by a customer class, is
specified through the<<PAopenLoad>> or <<PAclosedLoad>> stereotypes. The former is used when
the customer type provides an open workload, whereas the latter is used in case of closed workload. These
stereotypes annotate the first message of the sequence diagram describing the system behavior for such
workloads. For example, in Figure 4.9 the<<PAclosedLoad>> stereotype defines the workload intensity
for the customer class (or system use case)usecase1 . In this case, the workload is defined by the number
of users (PApopulation tag value) and the time needed to generate a request (PAextDelay tag value).

We use thePAprob tag value of the<<PAstep>> stereotype to annotate the probability of execution
an alternative behavior when the sequence diagram presents eitheralt , break or option fragment
operator. Such stereotype annotates the first message of all the interaction fragments that are operands of
the introduced operators.

Sometimes it can be useful to explicitly identify the time a component spends to accomplish partial tasks.
We use the<<PAstep>> stereotype to give such an information. The stereotype is associated to the

68
Chapter 4. A new Approach for Predictive Performance Analysis of Component-based Software

Architectures

interactions in the sequence diagram that identify the start point of such partial task. For an example of this
usage of the<<PAstep>> see the e-commerce case study in Section 4.4.

4.3.4 OVERVIEW OF THE APPROACH

The SAP•one approach extracts from the annotated UML diagrams all the information needed to generate
and parameterize the QN model. It is a three steps methodology:

• Identification of the QN customers. Use Case Diagram describes the software system at a very high
level of abstraction by identifying its functionalities. These functionalities corresponds to the requests
(or customers) entering the system. Thus this type of diagram gives information on the type of
traffics incoming in the system. As required from the approach, for each type of customer the use
case diagram associates a set of sequence diagrams describing the corresponding behavior inside the
system. For each customer type, hence, we know which sequence diagrams describe its behavior.
For example, in Figure 4.7 the diagram shows three use cases that areusecase1 , usecase2 and
usecase3 . It specifies thatusecase1 andusecase3 behaviors are described by a sequence
diagram each, while the behavior ofusecase2 is described by three sequence diagrams. From such
a diagram the approach identifies three customer types and the relative behavior inside the system.

Figure 4.7: SAP•one Customer Types Identification Step.

• Identification of the service centers and their characteristics. This information is stored in the Com-
ponent Diagram: the approach maps to each component a QN service center with one non-preemptive
server, or a delay center. The component interfaces define the classes of job processable by the related
component-service center. Since the software component can provide many interfaces (or services),
the corresponding service center may have several service classes, one for each interface in the com-
ponent diagram. The service time of the identified service class (or job class) is extracted from the
PAdemand/PAdelay tag value of the<<PAstep>> stereotype.

The center is a waiting center if its interfaces are annotated with thePAdemandtag value, otherwise,
if PAdelay tag value is used, the center represents a delay center. Obviously, the interfaces of a
component cannot be annotated by both tag values at the same time.

Finally, from thePAschdPolicy tag value of the<<PAhost>> stereotypes the approach extracts
the scheduling policy of the service centers.

In Figure 4.8 the diagram shows three components:Comp2andComp3are queueing centers with
FIFO scheduling policy, componentcomp1 is a (FIFO) delay center. In fact, the formers show
interfaces with service demand annotation whileComp1has interfaces with delay annotations.

• Definition of the QN chains and the relative workloads. Sequence diagrams show how a customer of
a given type moves among the service centers asking for services when it enters in the system. From

4.3 Software Architecture Performance Analysis: an Advanced Approach 69

Figure 4.8: SAP•one Service Centers Identification Step.

each set of scenarios associated to a customer, the approach generates a QN chain. The sequence
diagrams indicate the workload such chain imposes to the system and report routing probabilities
when there are alternatives in the behavior description. For the sake of simplicity, without loosing
generality, we can assume that the behavior of a customer is described by a single sequence diagram.
Indeed, the new interaction operators UML 2.0 introduces allow the modelling of complex behavior
with several alternatives, in only one scenario. Figure 4.9 shows an example of sequence diagram
the approach deals with. The diagram describes the behavior of theusecase1 customer. The
annotation at the top of the figure specifies that the workload of such type of customer is a closed
one. It specifies for such load the population size (PApopulation tag) and the think time the
source spends to generate the next request (PAextDelay tag). The sequence diagram models an
alternative behavior by using thealt operator. This operator points out a branching point where the
customer can behaves as one of the alternatives indicated, but not both. ThePAstep annotations
bring information on the probability in executing one of the alternatives described.

Figure 4.9: SAP•one Chains Identification Step.

70
Chapter 4. A new Approach for Predictive Performance Analysis of Component-based Software

Architectures

4.3.5 CHAINS GENERATION: A COMPOSITIONAL APPROACH

In this section we present the technique to generate a multi-chain QN topology. As we already said, the
approach introduces a chain for each use case of the system. The use cases are considered separately, one
by one. All the sequence diagrams describing the software system behavior of an use case are considered.

The output of a chain generation is a sub-QN model that describes the behavior of the mapped QN customer
type.

The approach models the software components interaction (arrow in the sequence diagram) according to the
previous approach. It associates a connection in the QN topology from the service center of the component
sender to the one of the receiver. The service center of the receiver has an infinite (or finite with a given
capacity) waiting queue if the interaction is asynchronous, or a waiting queue with zero capacity if the
interaction is synchronous.

As the previous approach does, the new version uses thegate facilities to identify the environment and
the incoming and outgoing system traffic. A gate in a sequence diagram is the point of the most external
interaction fragment crossed by an arrow. The gate is an output gate if the interaction is an outgoing arrow
from the frame. Whereas it is an input gate if the interaction is entering into the frame.

The approach is compositional. Statically, we define a library of architectural patterns (sequence diagram
fragment) the approach deals with and we relate them to QN patterns. Thanks to the new operators for the
sequence diagrams, it is easy to identify and to model architectural patterns of interest. Then, the approach
suitably combines the involved QN patterns by instantiating them to the particular scenario the sequence
diagrams describe.

The compositional feature of the approach helps in the architectural feedbacks derivation. The separation
of system behaviors and the identification of patterns helps to point out software system behavior parts that
result in performance problems.

In the following, we introduce the translation rules for basic interactions (calledbasic rules), and the rules
to translate the UML sequence operators into the QN pattern. The presentation of the identified rules is
supported by figures having all the same two parts structure: the left-hand side part shows the behavioral
pattern (described by UML sequence notation) the rule deals with, and the one at the right hand side reports
the corresponding target sub-model

4.3.6 BASIC RULES

We intend asbasic rulesthe rules we defined to translate a components interaction into a QN sub-model.
From an initial study we identify two types of interaction: the synchronous and the asynchronous one. In
Figure 4.10 it is reported identified translation rules for such interaction types.

A components interaction can be interpreted as a connection from the QN service center representing the
sender component to the one corresponding to the receiver. If the interaction is asynchronous, the waiting
queue of the receiver is infinitive (see the top level of the Figure 4.10) and the request is buffered into the
queue, leaving the sender free to continue its execution on the next request. If the interaction is synchronous,
in order to simulate the blocking in the sender execution until the receiver becomes free, we model the
interaction by using finite waiting queues and appropriate blocking protocols [25, 19].

In QN with finite capacity queues, when a queue reaches its maximum capacity, the flow of customers into
the service center is stopped, both from other service centers and from external sources in open network, and
the blocking phenomenon arises. Various blocking mechanisms have been defined. We model synchronous

4.3 Software Architecture Performance Analysis: an Advanced Approach 71

Figure 4.10: Translation Patterns for Synchronous and Asynchronous Interaction.

interaction with the type called Blocking After Service (BAS). Under this policy when a customer, after
having received the service at the service centerk, tries to enter a saturated centerj, it is forced to wait at
the nodek until the destination service centerj releases a job. When more than one node is blocked by
the same saturated node, a scheduling discipline must be considered to define the unblocking order of the
blocked nodes. We refer to First Blocked First Unblocked (FBFU) discipline to manage this problem.

To model synchronization among software components (see bottom level of the Figure 4.10) we associate
to the receiver a service center with a zero capacity queue and we force a BAS blocking policy to the sender.

Figure 4.11: Component Diagram.

In general, the synchronous and asynchronous interaction could represent a signal or a call action, where
we distinguish a call action from a signal when the component interaction imposes a (control/data) return
from the receiver. From this observation we can characterize four more complex cases that we show in
Figures 4.12, 4.13, 4.14 and 4.15 where the interaction modeling is referred to theop2. In the following, to
describe the basic translation rules we refer also to the information annotated in the Component Diagram
of Figure 4.11.

SYNCHRONOUSSIGNAL

In Figure 4.12 we show the rules to deal with synchronous signal. Synchronous signals are synchronous
interactions which do not required a control/data return. We identify two situations depending on when the
considered interaction occurs: rule(a) that can be applied when theop2 interaction is performed during
the execution of theop1, before its execution timet1 is elapsed; and rule(b) that can be applied when the
op2 interaction is performed at the end of the execution of theop1. In rule (b) (the simpler one) the QN
customer enters in theA service center (software component) by askingop1service. WhenA ends its work,
the customer enters in theB service center to receive theop2service.

72
Chapter 4. A new Approach for Predictive Performance Analysis of Component-based Software

Architectures

The rule(a) instead is more complex, it has to model the parallel provision of a portion of theop1service
(Op1-bin the Figure) and theop2service. This is modelled by means of the fork feature of the QN modeling
that we represent in the figure as a triangle. Of course, due to the synchronous nature of theop2interaction,
op1service is a service with the BAS blocking policy. If the service centerB is busy the BAS policy throws
and the service centerA remains blocked untilB becomes free again. When a job leavesA, it forks into
two new jobs, one enteringB and the other going back toA with a different job type and higher priority.
The usage of low and high priorities for the customer entering inA guarantees thatA terminates the current
request before to serve a new one.

However, the rule(a) can be applied when it is possible to estimate the timest1’ andt1” (such thatt1 =
t1′ + t1′′), otherwise we have to approximate the model by using the second rule. The same approximation
can be fairly done when we plan to use an analytical analysis technique based on MVA algorithm to evaluate
the QN model since all analytical MVA-based techniques implicitly make the same approximation. In fact,
they do not consider the detailed customer routing but only the total workload a customer type imposes to
the service centers.

Figure 4.12: Translation Patterns for Synchronous Signals.

ASYNCHRONOUSSIGNAL

In Figure 4.13 we show the rules to deal with asynchronous signal. Asynchronous signals are asynchronous
interactions which do not required a control/data return. As before, we identify two rules: rule(c) that can
be applied when theop2 interaction is performed during the execution of theop1, before its execution time
t1 is totally spent; and, rule(d) that can be applied when theop2 interaction starts at the end ofop1.

The modeling of both situations follow the same guidelines of the previous ones. In rule(d) the QN
customer enters in theA by askingop1 service. WhenA ends its work, the customer enters in theB to
receive theop2service. The rule(d) models the parallel execution of part of theop1service and theop2
service by means of the fork feature of the QN modeling. Again, whenever a job leavesA, it forks into two
new jobs, one enteringB and the other going back toA with different job type and a higher priority. As
before, this guarantees thatA terminates the current request before to serve a new one. Since the interface
is asynchronous we do not model the wait status of A if B is busy. Indeed, we associate an infinite waiting
queue to B to represent asynchrony.

The rule(c) can be applied when it is possible to estimate the timest1’ and t1” , otherwise we have to

4.3 Software Architecture Performance Analysis: an Advanced Approach 73

approximate the model by using the second rule. The same approximation can be fairly done whenever
we plan to use an analytical analysis technique based on MVA algorithm to evaluate the QN model for the
same reasons reported before.

Figure 4.13: Translation Patterns for Asynchronous Signals.

SYNCHRONOUSCALL ACTION

A call action implies a control/data return to the sender. Due to its characteristics the corresponding QN
sub-model is more complex compared to the one generated for a signal. As shown by the Figure 4.14,
synchronous call action has only one behavioral description. TheA component, during its activation, calls
the actionop2of B and waits for some results or simply for the action termination. When it receives back
the control, it continues its task. The timet1 needed forop1can hence be split into three portionst1′, t1′′,
andt1′′′, representing the time elapsed between theop1receipt andop2 invocation, the waiting phase, and
the time between the control return and theop1 termination, respectively. Let us observe thatt1′′ time is
equal tot2.

The op2 interaction is synchronous and we model this interaction as before by associate a zero capacity
queue to theB service center and the BAS blocking policy toA. Moreover, to model the active waiting ofA,
we fork the job outgoingA into two jobs, one enteringB and the other going back toA. When the waiting
time is elapsed, the job exits the QN. Finally, whenB terminates its task a job is re-directed toA as areturn
request in order to model the control return toA software component. To guarantee the sequence of actions
we introduce three different priorities toop1, wait andreturn actions.

When it is unknown the time fragmentst1’,t1”, and t1”’ , we use the second QN sub-model in the Figure
to model the call action (that is the one shown in rule (b)). The differences here is that the timet1 is spent
by A completely before to send a request toB. WhenB terminates the required task the job exits the QN
sub-net. As before, this approximation can be done every time the QN model is resolved by a MVA-based
algorithm.

74
Chapter 4. A new Approach for Predictive Performance Analysis of Component-based Software

Architectures

Figure 4.14: Translation Patterns for Synchronous Call Actions.

ASYNCHRONOUSCALL ACTION

For this type of interaction we introduce three different corresponding QN patterns. This type of interaction
and the corresponding QN modeling for the first and the third options are the same of before except for
the asynchronous communication mechanism. The componentA continues to work on its task after having
requested some elaborations toB. op1can be split into three parts havingt1′, t1′′ andt1′′′ execution time,
such thatt1 = t1′ + t1′′ + t1′′′. The only difference here with respect to the rule(e) is the asynchronous
nature of theop2 interaction. This implies that B has a non null waiting queue capacity and A is not a BAS
server. We use again different probabilities in A job classes to guarantee the accomplishment of a request
before a new one is served by A.

When it is unknown the time fragmentst1’,t1”, and t1”’ , we use the second QN sub-model in the Figure
to model the call action (that is the one shown in rule (d)). The differences here is that the timet1 is spent
by A completely before to send a request toB. WhenB terminates the required task the job exits the QN
sub-net. As before, this approximation can be done every time the QN model is resolved by a MVA-based
algorithm.

For the asynchronous call action we also introduce a QN pattern of the intermediate complexity and ac-
curacy, where we remove the fork a join facilities (option (ii) in the Figure). We modelling introduce this
modellig that can be used when the A sender can serve other requests while it waits for a B response.

4.3.7 QN PATTERNS FOR THEFRAGMENT OPERATORS INSEQUENCEDIAGRAMS

RE F E R E N C EOPERATOR

The Reference operator allows the definition of a reference to a behavior already defined by another
sequence diagram. In Figure 4.16 areference operator, identified by theref keyword, is used to in-
dicate that the behavior of theScenarioincludes the behavior described inScenario2sequence diagram.
The Reference operator models a change of chain in a multi-chain QN. This means that the chain of
theScenariouse case, has a sub-chain corresponding to the one modelling the behavior of theScenario2
customer type.

4.3 Software Architecture Performance Analysis: an Advanced Approach 75

Figure 4.15: Translation Patterns for Asynchronous Call Actions.

Figure 4.16:ReferenceSequence Operator translation rule.

AL T E R N A T I V E OPERATOR

”The Alternative operator designates that the interaction fragment it represents models a choice of the
behavior. At most one of the operands will executes. The operand that executes must have an implicit
or explicit guard expression that evaluates to true at this point of interaction” (quoted from [148]). An
alternative operator, identified by thealt keyword, models several mutual exclusive alternative behav-
iors. TheAlternative operator models a branching in a QN. The alternative behaviors in the interaction
operator represents the different routings of the customers among the services of the service centers. The
routing probabilities among the alternatives are annotated in the sequence diagram by the<<PAstep>>
stereotype and their sum must be equal to 1. As an example, let us consider Figure 4.17. Thealt operator
has n alternatives each guarded by a condition (cond1 , cond2 ,...,condn). Each alternative behavior has
a probability to be executed (¶1, P2,...,Pn). The alternative behaviors are modelled as different routing in
the QN model (or sub-chains) with the same probabilities.

OP T I O N OPERATOR

The interaction operatoropt designates that the behavioral fragment it delimits represents a choice of
behavior where either the (sole) operand happens or nothing happens. An option is semantically equivalent
to an alternative fragment where there is one operand with non-empty content and the second operand is
empty [148].

76
Chapter 4. A new Approach for Predictive Performance Analysis of Component-based Software

Architectures

Figure 4.17:AlternativeSequence Operator translation rule.

In Figure 4.18 we show at the left-hand side theopt operator inside a generic scenario. To be properly
processed, it should have annotated the probability it will happen. To this aim we use<<PAstep>>
stereotype and thePAprob tag value. The stereotype annotates the first interaction inside theopt frame.
The methodology maps to such operator the sub-model at the right-hand side of the Figure 4.18. The sub-
model presents a branching point in the correspondence of theopt operator. A job can enter in the QN
sub-model with the probabilityP1(that is the probability annotates in the sequence diagram) or not with
1-P1 probability. Either it enters in the sub-model or it does not, it will handle according to the behavior
described in the sequence diagram subsequent theopt fragment.

Figure 4.18:OptionSequence Operator translation rule.

BR E A KOPERATOR

The interaction operatorbreak designates that the fragment represents a breaking scenario in the sense
that the operand is a scenario that is performed instead of the remainder of the enclosing behavior. Thus the
break operator is a shorthand for anAlt operator where one operand is given and the other assumed to be
the rest of the enclosing behavior.Break fragments must be global relative to the enclosing scenario.

The break operator models exceptional behaviors, such as, for example, the behavior the system has to
take in case some errors occur. Thebreak operator has to be annotated with the probability that it happens.
We use the<<PAstep>> stereotype and thePAprob tag value attached to the first interaction inclosed
in the break operand. The similarities with thealt interaction operator are reflected on the QN sub-
model as the right-hand of the Figure 4.19 shows. The only difference is that the two alternatives in the QN
sub-model correspond to the break behavior and to the remainder of the enclosing behavior respectively.

4.3 Software Architecture Performance Analysis: an Advanced Approach 77

Figure 4.19:BreakSequence Operator translation rule.

PA R A L L E L OPERATOR

”The Parallel operator designates that the interaction fragment it represents models a parallel merge
between the behaviors of the operands. The event occurrences of the different operands can be interleaved
in any way as long as the ordering imposed by each operand as such is preserved” (quoted from [148]).
In Figure 4.20 left-hand side aparallel operator, identified by thepar keyword, defines n parallel
behaviors. In a QN model, theparallel operator represents a fork. In the right-hand side of Figure 4.20
there is reported the QN pattern for theparallel operator of the left-hand side of the figure. The QN
sub-model has a fork (the triangle at the left) with n different out-coming sub-chains that occur concurrently.
A join QN feature (the triangle at the right) is used to join the sub-chains at the end of the traces defined in
thepar frame.

Figure 4.20:Parallel Sequence Operator translation rule.

LO O POPERATOR

The loop interaction operator designates that the fragment represents a loop whose operand will be re-
peated a number of times. The number of repetitions is indicated by the guard of the operator that may
include a lower and an upper number of iterations as well as a boolean expression. The semantics is such
that a loop will iterate at least theminint number of times and at most themaxint number of times.
After the minimum number of iterations have executed, and the boolean expression is false the loop will
terminate.

In Figure 4.21 a sequence diagram enclosing aloop operator is shown. Its guard has aminint equals to
k , amaxint equals tomand the boolean expressionexp . The behavior of theloop operator is modelled
as a sequence of the interactions by respecting the basic rules introduced in the previous section. However to
model the repetition of such a behavior, we weigh the service times of the component interactions involved

78
Chapter 4. A new Approach for Predictive Performance Analysis of Component-based Software

Architectures

in it by the repetition numbers (minint, maxint) and the boolean expression (exp) in the guard of theloop
operator. In general we can make a worst case analysis by imposing a weight equal to themaxint , or a
best case analysis where we considerminint as weight, or a mean analysis where we consider the mean
value betweenmaxint andminint .

Figure 4.21:LoopSequence Operator translation rule.

I G N O R E/ C O N S I D E ROPERATOR

The interaction operatorignore designates that there are some message types that are not shown within
this combined fragment. These message types can be considered insignificant and are intuitively ignored
if they appear in a corresponding execution. Alternatively one can understand ignore to mean that the
messages that are ignored can appear anywhere in the traces. Conversely the interaction operator consider
designates which messages should be considered within this fragment. This is equivalent to defining every
other message to be ignored.

The approach deals with only theignore operator. The semantics considered is as follows: the operator
identifies traces or interactions that can be ignored in the performance analysis process. This operator is
useful since it allows the slicing of the software system behavior. By means of it the simplification of the
target model can be done by reasoning at the software designers level. This is extremely useful when it is
necessary to simplify the target QN model in order to permit a reasonable performance evaluation. Quite
often, in fact, the software system model describes details that are useless for the performance analysis and
that make the target model too complex to be evaluated in an acceptable time or with a given accuracy.

NOT CONSIDEREDFRAGMENT OPERATORS

At the moment we do not consider theWeak and theStrict sequencing,Negative , Critical
Region andAssertion interaction operators.

The interaction operatorcritical designates that the fragment represents a critical region. A critical re-
gion means that the traces of the region cannot be interleaved by other event occurrences (on those Lifelines
covered by the region). This means that the region is treated atomically by the enclosing fragment when
determining the set of valid traces. Even if this operator is important for the performance analysis since it
limits the sharing of the resources, at the moment the approach does not deal with it.

TheWeakand theStrict Sequencing are not considered since they give information about the weak or
strict sequencing of the events. The approach we propose does not make such difference. Indeed, to our
aims, we need to know which are the events and the cause-effect relations among them, and we do not mind
if the sequencing is strictly respected or not when several behavior are interleaved.

4.3 Software Architecture Performance Analysis: an Advanced Approach 79

The negative interaction operator represents traces that are defined to be invalid. The performance
analysis takes into account only valid execution traces, hence the approach wastes all the traces defined
invalid.

Finally, the interaction operatorassert designates that the fragment represents an assertion. Performance
analysis cannot take advantages from such information thus it is not considered.

4.3.8 FURTHER CONSIDERATIONS

The new approach, due to the use of the UML profile, requires some knowledge on performance analysis,
and on how to determine the additional information needed to carry on the evaluation of the generated QN
model. This is not trivial. At the moment, do not exist automatic approaches that assist in the whole process
of performance analysis. To this respect a relevant effort is still required to software designers attending in
the process itself.

However, it is not common to find specific performance skills in software designers and, due to the high
level of abstraction of the software architecture description, the additional information to parameterize the
QN model is not easy to determine.

The assumption of using an ideal hardware architecture should help to overcome these drawbacks. As we
already discussed in [18], in our framework we consider QN performance models of SA to evaluate and to
compare SA specifications. The goal is to derive performance results that can be interpreted in terms of SA
design artifacts. Therefore, unlike other approaches that build QN models as a combination of the hardware
platform with software requirements, we consider QN models as performance models at the level of the
SA. The definition of a QN model at the SA level cannot be completely specified because of the high level
of abstraction. If some parameters or characteristics of the QN are not specified, it is then up to the designer
their definition. The model parameter instantiations correspond to potential implementation scenarios, and
the performance evaluation results can provide useful insights on how to carry on the development process.

Due to the high level of abstraction, we do not model software resources other than the software compo-
nents presented in the component diagram. This means that buffers are considered if they are explicitly
modelled as software components. For what concerns other software artifacts, such as semaphores or locks,
in general they are not explicitly modelled in an SA. They contribute in the specification of the communi-
cation protocol used by the software component to interact each other, hence, in a SA specification, they
are embedded in the connectors.

Of course, the methodology deals with all kind of software systems that can be modelled by means of UML
facilities we use to model the software architecture, and that have characteristics that can be modelled by
means of a QN model.

At the moment, as feedback, the approach annotate the UML diagrams with the performance indices
the analysis determines. For this aim the approach uses the tag values<<PAutilization>> and
PAthroughput of the<<PAhost>> stereotypes and the tag valuePArespTime of the<<PAstep>>
stereotypes. More complex feedback provision can be design by considering the techniques we introduced
in Section 2.3 of Chapter 2. Such techniques suggest to the developers possible changes in the software
architecture design that may improve the performance of the whole system.

As final remarks, we want to observe that, even if the new approach allows the generation of a QN model
closer to the software architecture, the obtained performance model is more complex. This complexity
implies that we have to use more complex techniques to evaluate the new QN model. These techniques,
quite often, are not analytic as instead they were in the previous approach. In particular, whenever we have
a parallel operator in a sequence diagram, we have a fork in the QN model. A QN with forks (namely
Extended QN) can be evaluated only through simulation techniques.

80
Chapter 4. A new Approach for Predictive Performance Analysis of Component-based Software

Architectures

Figure 4.22: Classification of our Approach.

Finally, by considering the classification propose in Chapter 3, we classify the proposed approach among
the ones that can be applied at the software architecture level, have high automation degree and present
semantically related models generation technique.

Figure 4.22 shows such a classification.

4.4 THE ELECTRONIC COMMERCE SYSTEM

In the electronic commerce system, there is a supplier that publishes his catalogue on the web [83]. The
supplier accepts customer orders and delivers the ordered items maintaining all the relevant data. He needs
to maintain information on data, on the catalogue and on the orders purchased by his customers. Each
registered customer has a cart where he/she can insert or delete items. The customer can order only if
the cart is not empty. The system also allows the customer to monitor the order status and to confirm the
delivery in order to permit the payment.

In Figure 4.23 we show the Software Architecture of the system, where we identify some databases (Cus-
tomer DB, Cart DB, Order DB,etc.) and four components (CustomerProcess, SupplierProcess, etc.). Each
customer has associated a (individual) CustomerProcess and there is a server for each involved database
that permits to communicate with it. The interactions with these servers are asynchronous.

For the sake of presentation, we consider a simplified version of this system. We focus on the customer
view by considering only the software system services reported in Figure 4.24. In the use case diagram the
association between the use case and the sequence diagram describing the corresponding system behavior is
expressed by means of notes. All the use cases for the e-commerce system have associated only a sequence
diagram, and both InsertItem and DeleteItem use cases use the BrowseCart use case.

In Figure 4.25 we present the UML 2.0 Component Diagram for the portion of the e-commerce system we
consider. This diagram highlights the software components and their required and provided interfaces. The

4.4 The Electronic Commerce System 81

Catalog

DB

Cart DB

Order

DB

Invoice

DB

Bank

DB

Customer

DB

CustomerProcess

DeliveryOrderProcess

SupplierProcess
 InvoiceProcess

Figure 4.23: SA components of the Electronic Commerce System.

Figure 4.24: UML Use Case Diagram.

provided interfaces are represented by a circle whereas the required ones are represented by a semicircle.

In general, an interface is composed by a set of operations provided or required by a software component.
Here, to simplify the presentation of the parameterization phase, we assume that an interface is composed
of a single operation from with the interface derives the name. The Component diagram is annotated,
according to the UML SPT profile, in order to introduce performance aspects of the software components
and of their interfaces. All the values for the execution times are assumed as theassm keyword in the tag
value indicates. Our intent is to carry on a performance analysis at the software architecture level when
such information is not available, whereas it is guessed by the designers on the basis of their experience.

As described by the annotations on the component interfaces, all the components are queuing centers except
the CustomerProces that is a delay center. In fact, all the annotations on its provided interfaces show the
PAdelay tag value.

The Customer Process is a component running at the user side. There is an instance of it dedicated to each
used logged in the system. This design choice makes the CustomerProcess component an unshared resource
and hence its execution times constitute delays.

From Figure 4.26(a) to Figure 4.28 we report the scenarios for the use case considered. The scenarios
are expressed by means of the Sequence Diagrams of UML 2.0, as we detailed before. All the sequence

82
Chapter 4. A new Approach for Predictive Performance Analysis of Component-based Software

Architectures

Figure 4.25: Component diagram of the considered portion of the e-commerce system.

(a) Browse Catalogue Scenario. (b) Browse Cart Scenario.

Figure 4.26: E-commerce Scenarios.

diagrams report annotations for the workload they impose to the system. The workload for each of them is
closed and it is defined by the number of users (PApopulation tag value) and the time needed to generate
a request (PAextDelay tag value). It is worthwhile to observe that the number of users (PApopulation
tag value) can be a function of external variables ($NUSERin the Figure 4.26(b)) and some other values
suitable for the particular case (F cust , P bc values in the Figure 4.26(b), that represent the probability a
customer logs in the system and the probability a customer request the BrowseCart service, respectively).

We choose to model all the workload as closed ones since the only the registered customers can access to
the services and hence the population is fixed. Indeed, the BrowseCatalog is a service available to all the
internet users and not just to the registered ones. Hence its workload should be open. However to simplify
the modelling we assumed it closed.

Both the scenarios in Figure 4.26 has an annotation associated to a return message (CatalogInfo and Cart-
Info, respectively). This annotation models the time the CustomerProcess spends after having received the
return message and before sending the following return interaction. Again, this time is a delay since the
CustomerProcess is a delay center.

InsertItem and DeleteItem uses the BrowseCart use case. This modelling is reported in the sequence dia-

4.4 The Electronic Commerce System 83

(a) Insert Item Scenario. (b) Delete Item Scenario.

Figure 4.27: E-commerce Scenarios.

grams of Figure 4.27 where theref interaction operator referring the BrowseCart scenario is used.

We assume that an item can be removed from the cart only if it is in the cart, otherwise an error occurs.
To model the errors occurring we use in the DeleteItem sequence diagram thebreak operator. the first
interaction in thebreak operand is annotated with the assumed probability under which the error can
happen.

As final scenario we present the PlaceOrder sequence diagram in Figure 4.28. It shows an example of alter-
native behaviors by means of thealt operator. The first interaction of the both alternatives herein modelled,
have associated the assumed probability that the system behaves as one of the alternatives. Observe that the
sum of those probabilities is 1 as required by the approach.

4.4.1 QNMODEL GENERATION FOR THE CASE STUDY

The proposed approach generates a QN model by executing three steps as outlined in Section 4.3.4. In the
following we show the three steps on the e-commerce case study.

IDENTIFICATION OF THE QN CUSTOMERS - The use case diagram in Figure 4.24 has five use cases,
hence the QN customers are of five different types. The behavior of such customers are described by the
corresponding sequence diagrams annotated in the diagram. Such sequence diagrams define five QN chains.

IDENTIFICATION OF THE SERVICE CENTERS AND THEIR CHARACTERISTICS- From the Component
Diagrams we identify six QN centers, five are queuing service centers while one, the CustomerProcess, is a
delay center. All the service centers have a service type for each interface of the corresponding component
in the component diagram. The CustomerProcess component, instead, is modelled by a set of delays, one
for each request type and one modelling the internal actions. This choice is conform to the annotations
in the component diagram where it is specified that the provided interfaces of the CustomerProcess are
delays. We remark here that this modelling respects the architectural constraint concerning the presence of
a CustomerProcess instance for each e-commerce customer.

From the<<PAhost>> stereotypes the approach extracts the scheduling policy of each centers. From the
annotations on the provided component interfaces it extracts the service times or the delays of each service

84
Chapter 4. A new Approach for Predictive Performance Analysis of Component-based Software

Architectures

Figure 4.28: Place Order Scenario.

Figure 4.29: Chain in the QN model corresponding to BrowseCatalog Scenario.

of the components needed to parameterize the QN model.

4.4 The Electronic Commerce System 85

DEFINITION OF THE QN CHAINS AND THE RELATIVE WORKLOADS - In this step, the workloads in-
tensity entering the system is derived by the information annotated in the sequence diagrams. In our case
study all the workload are closed workload. Here the traffic generators are the e-commerce users. A generic
e-commerce user is modelled by a set of infinite server, one for each QN customer type whose parameteri-
zation is extracted by the workload annotations in the sequence diagrams.

In this step, by applying the rules defined in Section 4.3.5 opportunely instantiated, the approach also defines
the QN chains for each customer type. Since all the interactions among components are asynchronous call
message we apply the rule (f), in its simpler fashions (that are option (ii) and (iii)).

Figure 4.30: Chain in the QN model corresponding to BrowseCart Scenario.

A chain is defined through the sequence diagram describing its behavior. A chain does not necessarily
involve all the service centers, but it will visit the centers corresponding to the components involved in
the sequence diagram. If we consider, for an example, the chain for thebrowseCart(see Figure 4.30), it
involves the CartServer and the CustomerProcess service centers only, as specified in the relative sequence
diagram of Figure 4.26.

In Figures 4.29 and 4.30 we show the chains for theBrowseCatalogand BrowseCartcustomer classes
respectively. These chains are the most simple among the ones presented. Both of them are generated by
applying the (iii) and (ii) options to the first and the second asynchronous call actions, respectively. The
chains terminate in the infinite servers (Customers) that generate the job types, as closed workloads specify.

Figure 4.31: Chain in the QN model corresponding to InsertItem Scenario.

In Figure 4.31 we report the chain for theInsertItemrequest type. To generate this chain we used the

86
Chapter 4. A new Approach for Predictive Performance Analysis of Component-based Software

Architectures

translation rule defined for thereference operator since this operator appears in the relative sequence
diagram (see Figure 4.27(a)). This operator indicates that the behavior of thisInsertItemQN customer
type includes the behavior described inbrowseCartsequence diagram. TheReference operator, in fact,
models a change of chain in a multi-chain QN. Thus theInsertItemchain has a sub-chain corresponding
to the one modelling the behavior of thebrowseCartcustomer type. In Figure 4.31 the point where the
InsertItemchain becomes theBrowseCartchain is when the QN customer enters the CustomerProcess
delay center by asking the BrowseCart service.

Figure 4.32: Chain in the QN model corresponding to DeleteItem Scenario.

In Figure 4.32 we report the chain for theDeleteItemrequest type. To generate this chain we used the
translation rules defined forreference andbreak operators since they appear in its sequence diagram
(see Figure 4.27(b)). The treatment for the former is the same of before. Thebreak operator designates
a breaking scenario in the sense that the operand is a scenario that is performed instead of the remainder
of the enclosing interaction fragment. In the DeleteItem scenario, thebreak operator models an error that
can occur in such scenario. To model this semantics the approach introduces a branching point with two
possible routes: one, with probabilityPerror , that breaks the scenario by routing the customer towards
the PreperaOutput service of the CustomerProcess, and the other one with probability1-Perror , that
models the remainder of the scenario, that routes the customer towards the BrowseCart service of the Cus-
tomerProcess, where the change of chain is executed. The probabilities of both routes are extracted from
the sequence diagram.

Figure 4.33: Chain in the QN model corresponding to PlaceOrder Scenario.

Finally, in the Figure 4.33, we report the chain for thePlaceOrderrequest type. Here the translation rule for
thealternative operator is used. As the sequence diagram in Figure 4.28 shows, thealternative

4.5 Summary 87

operator has two alternative behaviors, one withnot empty cartguard expression and the other withempty
cart guard expression. TheAlternative operator models a branching in a QN. The alternative behaviors
in the operator are the possible routings of the customers among the services of the service centers. The
routing probabilities among the alternatives are annotated in the sequence diagram. By considering the
Figure 4.33, thealternative operator defines the branching point having two alternatives one with
1-$Perror probability and the other with$Perror probability to be covered.

4.5 SUMMARY

In this Chapter we have presented the new version of our approach to software system performance analysis.
The approach allows the automatic generation of a performance model based on QN models. This new
version addresses the problems, discovered in the previous version, with respect to the multiple services
software systems, by generating a multi-chain QN model.

Differently to the previous version, the new approach uses UML 2.0 as notation to describe the software
system architecture. The migration has been driven by two factors: the more expressiveness of UML 2.0
diagrams that allows us the definition of a compositional approach, and the presence of an UML profile that
defines suitable capabilities to annotate the diagrams with information on performance aspects.

The new version also deals with the parameterization phase of performance models by assuming that the
software designers suitably label the used UML diagrams with useful information.

Even if the new approach allows the generation of a QN model closer to the software architecture, the
obtained performance model is more complex. This complexity implies that we have to use more complex
techniques to evaluate the new QN model. These techniques, quite often, are not analytic, but can be
approximates or simulative.

CHAPTER 5

APPLICATION OF TWOPREDICTIVE PERFORMANCEANALYSES TO A

COMPLEX CASE STUDY

The approaches on early performance validation recently defined allow software developers to address per-
formance issues since the first phases of software life cycle, when crucial decisions on the software system
are taken. However, the lack of completely automated methodologies and the need of special skills prevent
the introduction of this type of analysis in real industrial contexts. Both automation and transparency of
the approach might, in fact, allow the application of these methodologies on industrial products without
delaying the software development process.

In this direction we have done and we here report our experience in the modelling and analysis of a real
telecommunication system at the design level. The system is the Naval Integrated Communication Environ-
ment (NICE) developed by Marconi Selenia. This system is responsible for managing and monitoring the
heterogeneous equipments composing a naval communication system, by providing several secure commu-
nication facilities. At the beginning we applied a technique based on stochastic process algebra with the
support of the Æmilia Architecture Description Language and the TwoTowers toolset. For some scenarios
of interest this approach suffers of the state space explosion problem, therefore we experimented another
technique based on simulation.

We discuss the advantages and the disadvantages of the applied techniques and we compare them with
respect to a framework specifying suitable characteristics the approaches should have. We also discuss
how to take advantage of the integration usage of different methodologies when applied on complex real
systems.

The work this chapter discusses has been outlined in [58, 31, 57] and it is described here in details.

5.1 PREDICTIVE PERFORMANCEANALYSIS AND REAL INDUSTRIAL

CONTEXT

Recently many approaches on early performance validation of software artifacts have been defined [35, 27].
However it has been experienced that they are not part of the development process in complex industrial
contexts. From this observation we asked ourself which characteristics an approach should show in order
to facilitate its integration in the industrial realties.

We tried to integrate the software performance analysis in the Lab.NMS C2 of Marconi Selenia Commu-
nications software development environment by applying two approaches to the real telecommunication
software system provided. Marconi Selenia Communications is a global communications and information
technology company headquartered in Rome.

When we integrate an analysis to a real context we have several constraints to respect. First of all, the choice
of the software artifacts and relative description notation is imposed by the development process we would

89

90 Chapter 5. Application of two Predictive Performance Analyses to a Complex Case Study

integrate with. In fact, integration means that if a performance analysis is applied, this should not impose
any requirements on the software modeling and on the development. This applies, as a consequence, that we
are not totally free in the choice of the approach to use. Rather, we have to apply a predictive performance
analysis that takes in input the software artifacts described by the industrial process with the same notation.
For example in Marconi Selenia the software development process is based on the UML notation in the first
phases of the software life cycle. Hence the analysis we carried on was at the Software Architecture (SA)
over UML-based SA description.

Moreover, the performance analysis requires additional information, such as for example operational profile
and workloads, that the designer should provide to carry on the analysis. To be used in a real context, the
predictive approach should require small effort in providing and annotating the software models with such
an information.

Since, the industry has strict and short time to market, the analysis should quickly provide insights on the
software models and in an efficient way. To this scope automation is a key factor in the integration of an
approach in a real software development context.

Finally, the performance results interpretation and the consequently feedback provision have to be as ease
as possible in order to allow software designer, with no special skills and deep knowledge in performance
analysis, to pick up and understand the problems the analysis captured. This feature facilitates the feedback
provision at the software architecture level.

In the following we introduce the criteria useful to compare different analysis techniques and to evaluate
their suitability in complex industrial context applications. Such attributes are:

Transparency We refer as transparency the desiderate property of minimal influence of the performance
analysis approach on the development process, preventing also the request to the software designer
of special skills in performance modeling. The absence of such a property might prejudice its appli-
cability in concrete and complex situations. We may define the transparency as a combination of the
following aspects:

Performance Model Derivation The performance model should be easily derived from the software
specification used by the industry. No additional efforts in the software behavioral modelling
should be asked to the design team by the predictive performance analysis.

Software Model Annotation In order to obtain a performance model, it is necessary to provide
quantitative, performance-oriented information which can be used to build the performance
model. There are several ways to provides such an information, but the optimal solution is to
annotate them directly on the software models by using their same features or an its extension in
order to require less efforts to the designers to learn it. Otherwise the software model annotation
task could delay the development process and prevent the usage of the performance analysis.
Same conclusions might be made if the amount of the additional information needed to carry
on the predictive analysis is too high or if it is difficult to estimate.

Performance Indices The performance indices of interest should be easily specified without asking
for the knowledge of the underly theory. The specification of them should be as natural as
possible for the software designer. Again, the analysis should provide the accuracy level of the
derived quantitative figures.

Automation The availability of the automation could allow the application of these methodologies on
industrial products without delaying the software development process. This aspect is fundamental
today due to the short time to market the industry has to respect to improve its business. To allow
the integration of software performance analysis in the industrial software development process it
is required the use of an automated methodology that automatically generates a performance model
of the provided specification of the software system, specifies the performance indices of interest,
resolves the performance model to obtain values for such indices and hopefully reports such analysis

5.2 An Industrial Case Study: The Naval Integrated Communication Environment 91

results on the software models by highlighting (potential) performance problems about the provided
design.

Result Interpretation When performance indices have been calculate, from their interpretation the design
should guess the goodness of the proposed design. A suitable approach comes up with an easy results
interpretation. In contrast to this desiderate characteristic, some approach allows the specification
of the performance indices as a function of others measures that the approach is able to determine.
Hence, whenever the analysis is done, to obtain the values for the performance indices, the designer
has to combine them in a way that could be not intuitive and difficult.

Generality This criteria gives information about the application domains and architectural styles (such
as client/server, layered architectures and others) an approach can be applied. More the approach
is general more it is powerful. Moreover this attribute can indicate if the approach is able to deal
with some particular aspects such as for example to model fork/join systems, simultaneous resource
possession, general time distributions and arbitrary scheduling policies.

Feedback Whenever the performance indices have been calculate it should be extremely useful that the
approach reports them back into the original software description, identifies parts of the design that
could lead to potential performance problem, and suggests some design alternatives to overcome the
identified problems. However, in contrast to this desiderate characteristic, some approach applies
complex rules to generate the performance model such that at the end of the analysis it is hard also
for performance experts to interpret them and derive some feedback upon the software model.

Scalability The selected approach should be scalable, meaning that the complexity of the performance
model should increase linearly with the software model size.

C1

WORKSTATION

CTS PROXY

 AGENT

NICE-MS

EQUIP

CTS

C2

-

 PROXY

 AGENT

Figure 5.1: NICE Static Software Description

5.2 AN INDUSTRIAL CASE STUDY: THE NAVAL INTEGRATED

COMMUNICATION ENVIRONMENT

The Naval Integrated Communication Environment (NICE) is a project developed by Marconi Selenia. It
provides communications for voice, data and video in a naval communication environment. It also provides
remote control and monitoring in order to detect equipment failures in the transmission/reception radio
chain. It manages the system elements and data distribution services, enables system aided message prepa-
ration, processing, storage, retrieval distribution and purging, and it implements radio frequency transmis-
sion and reception, variable power control and modulation and communications security techniques. The

92 Chapter 5. Application of two Predictive Performance Analyses to a Complex Case Study

NICE-MS complexity and heterogeneity (different hardware and operating systems and relative applica-
tions) together with its real time context needs the definition of a precise software architecture to express
its coordination structure. The system involves several operational consoles that manage the heterogeneous
system equipment including the ATM based Communication Transfer System (CTS) through blind Proxy
computers.

SubSystem Component
COORDINATOR

WORKSTATION P1
P2

CTS PROXY AGENT CTS PROXY AGENT
PROXY AGENT PROXY AGENT

EQUIP EQUIP

Table 5.1: Subsystem Decomposition

On a gross grain its Software Architecture is composed of the NICE Management subsystem (NICE MS),
CTS and EQUIP subsystems, as highlighted in Figure 5.1. The WORKSTATION subsystem represents the
management entity, while the PROXY AGENT and the CTS PROXY AGENT subsystems represent the
interface to control the EQUIP and the CTS subsystems, respectively. Subsystems are connected by means
of connectors (C1 and C2) that allow the communication between them.

Each subsystem represented in Figure 5.1 is composed of one or more components. Table 5.1 shows the
identified components. In particular, only the WORKSTATION is modelled by three components, that are
COORDINATOR, P1 and P2. The COORDINATOR component is the control entity that coordinates all the
actions to be performed time by time. Instead, the P1 component interacts with PROXY AGENT subsystem
and the P2 component interacts with CTS PROXY AGENT subsystem.

Actually, the running configuration of the software system will be composed by one instance of WORK-
STATION subsystem, two instances of CTS PROXY AGENT subsystem, ten instances of PROXY AGENT
subsystem and at least twenty EQUIP subsystem instances. In general, a PROXY AGENT instance manages
at least two EQUIP instances.

The more critical component is the NICE MS subsystem. It controls both internal and external communi-
cations and it satisfies the following class of requirements: fault and damage management, system config-
uration, security management, traffic accounting and performance management. Each requirements class
groups a set of functionalities. All these class of requirements must satisfy some particular performance
constraints. For the sake of the presentation, in the following we focusRecoveryactivity. The scenario
is described in Figure 5.2. The estimated execution times of the actions in the scenario are exponentially
distributed random variables; the mean values were provided by the system developers and are reported in
Table 5.2.

RECOVERY SCENARIO - The activity of system recovery belongs to the class of Fault and damage man-
agement requirements. This activity reacts to the failure of a remote controlled equipment. The recovery
consists in a set of actions, part of which are executed on the equipment in fault and the others are executed
on the CTS subsystem.

Figure 5.2 shows the UML sequence diagram relative to the recovery activity in terms of components
interactions.

For the sake of the modeling, as shown in Figure 5.2,the WORKSTATION subsystem is decomposed in
three main components: COORDINATOR, P1 and P2 where P1 and P2 are auxiliary components interact-
ing with PROXY AGENT subsystem and CTS PROXY AGENT subsystem, respectively, while COORDI-

5.3 Performance Analysis Based on Stochastic Process Algebras 93

Trap Set Parameter()

 CTS PROXY

AGENT
 P2 COORDINATOR P1 PROXY

AGENT
 EQUIP

Send Set Parameter()

Display Failure Occurred()

Prepare Deletepp()

Send Set Parameter()

StartRecovery() StartRecovery()

Set Parameter()

Send Deletepp()

Trap Dpp()

Send Createpp()

Trap Cpp()

Deletepp()

Createpp()

Prepare Createpp()

Prepare Set Parameter()

Recovery Completed() Recovery Completed()

Display Recovery Completed()

WORKSTATION

Trap Set Parameter()

Figure 5.2: Recovery Scenario

NATOR represents the control logics of the WORKSTATION subsystem.

When a failure occurs, COORDINATOR actives two parallel executions (a fork takes place), the one
through P1, PROXY AGENT and EQUIP and the other through P2 and CTS PROXY AGENT. When
the recovery procedure is completed, COORDINATOR receives a notification from P1 and P2 (a join takes
place).

The performance requirement for this activity, as required by the system developers, is:”The mean execu-
tion time of the recovery has to be lower than 6 seconds, when a failure occurs..

5.3 PERFORMANCEANALYSIS BASED ON STOCHASTIC PROCESS

ALGEBRAS

In this section we report our experience in using a performance analysis approach based on SPA. The
analysis is carried on at the SA level by specifying a performance model based on the Æmilia Architec-
tural Description Language (ADL). Æmilia is a Stochastic Process Algebra (SPA) based ADL proposed

94 Chapter 5. Application of two Predictive Performance Analyses to a Complex Case Study

Action Mean
Execution
time (sec.)

Display Failure Occurred 0.00
Start Recovery 0.00
PrepareSetParameter 1.00
SendSetParameter 0.01
SetParameter 2.00
GetParameter 0.01
TrapSetParameter 0.01
TrapCreatepp 0.01
TrapDeletepp 0.01
PrepareDeletepp 1.00
SendDeletepp 0.01
Deletepp 1.00
PrepareCreatepp 1.00
SendCreatepp 0.01
Createpp 2.00
RecoveryCompleted 0.00
DisplayRecoveryCompleted 0.50

Table 5.2: Mean Execution Times for the Actions in the Recovery Scenario

by Bernardo [43]. In order to make the approach as transparent as possible, we define a systematic ap-
proach that generates an Æmilia specification from a set of sequence diagrams (and component statecharts)
describing the system dynamics at the SA level. The resulting approach does not require performance spe-
cific skills to software designers by allowing automatic derivation of SPA-based performance model from
standard software artifacts, and the evaluation of performance indices by means of tools.

The approach used in this work is schematized in Figure 5.3. Starting from UML sequence diagrams, an
Æmilia textual description is automatically extracted through the derivation of Statecharts diagrams and
flow graph.

Sequece Diagram in
terms of components

Flow GraphStatecharts Diagrams

Textual description

TwoTowers

 System
Specification

 System
Modelling
 through
 AEmilia

Performance
 Evaluation

Figure 5.3: Used Approach

The Æmilia textual description can be translated into a performance model of the software system architec-
ture. This translation is performed through the TwoTowers tool [40], that allows the model evaluation and
validation against the system performance requirements. The reason for the choice of Æmilia as modelling
notation is twofold: on one side, Æmilia being an ADL facilitates the description of the SA of the system;
on the other side Æmilia inherits the capability to specify and to evaluate performance model from the SPA

5.3 Performance Analysis Based on Stochastic Process Algebras 95

EMPAgr [41] upon which it is defined. This section proceeds to introduce the Æmilia ADL, to sketch
the defined approach for performance modeling step, to present the analysis of the obtained performance
model and it concludes with some consideration on the used technique.

5.3.1 ÆMILIA : AN ARCHITECTURAL DESCRIPTIONLANGUAGE

Æmilia is an ADL based on the SPAEMPAgr [41], introduced by Bernardo et al. in [43] in order to easy
the use of Stochastic Process Algebra [91] as software model notation.

SPA is a modelling technique for the analysis of concurrent systems which are described as collections of
entities, or processes, executing atomic actions. The processes are used to describe concurrent behaviors
and they synchronize in order to communicate. Processes can be composed by means of a set of operators,
which include different forms of parallel composition. Moreover, temporal information is added to actions
by means of continuous random variables, representing activity durations. The quantitative analysis of the
modelled system can be performed by constructing the underlying stochastic process. In particular, when
action durations are represented by exponential random variables, the underlying stochastic process yields
a Markov Chain.ARCHI TYPE <name and numeri
 parameters>ARCHI ELEM TYPES <ar
hite
tural elements types:behaviors and intera
tions>ARCHI TOPOLOGYARCHI ELEM INSTANCES <ar
hite
tural elements instan
es>ARCHI INTERACTIONS <ar
hite
tural intera
tions>ARCHI ATTACHMENTS <ar
hite
tural atta
hments>

Figure 5.4: Structure of an Æmilia Textual Description

Æmilia provides a formal specification language for the compositional, graphical and hierarchical mod-
elling of software systems, which is equipped with suitable checks for the detection of possible architectural
mismatches. A description in Æmilia represents an Architectural Type (AT), that is a family of software
architectures whose members must have the same observable functional behavior and topology, while the
internal behavior and the performance characteristics can vary. The description of an AT starts with the
name of the AT and its numeric parameters, which indicates activity execution rate and action priority
level. Each AT defines a set of Architectural Element Types (AET) modelling the software components and
complex connectors, and the considered architectural topology.

An AET is defined by its behavior (specified either as a family ofEMPAgr sequential terms or through
an invocation of a previously defined AT) and its interactions (specified as a set ofEMPAgr action types
occurring in the behavior). The architectural topology is specified through the declaration of a set of
Architectural Element Instances (AEI) and a set of Directed Architectural Attachments (DAA) among the
interactions of the AEI. Depending on the SA configuration, one or more AEI for each AET can be specified.

Figure 5.4 shows the structure of an Æmilia textual description.

Every interaction in an AET is declared as an input interaction or an output interaction and the DAA must
respect such a classification: every DAA must involve an output interaction and an input interaction of two
different AEI.

All the occurrences of an action type in the behavior of an AET have the same execution rate (exponential
or immediate with the same priority level or passive with the same priority level) and must comply with

96 Chapter 5. Application of two Predictive Performance Analyses to a Complex Case Study

AEI 2

AEI 1

 Architectural

Element Instance

 Local

Interaction

 Directed

Architectural

 Attachment

Figure 5.5: Basic Flow Graph

the synchronization discipline ofEMPAgr. Every chain of DAA contains at most one interaction whose
associated rate is exponential or immediate.

It is possible to specify an Æmilia model by means of the TwoTowers tool [40]. TwoTowers is developed by
Bernardo at University of Urbino and it translates Æmilia textual descriptions inEMPAgr .The semantics
of an AT is obtained by composing in parallel the semantics of its AEI according to the specified DAA [43].
TwoTowers provides functional verifications and performance evaluation capabilities.

Finally, Æmilia provides a helpful graphical notation for the architectural design of complex systems. Such
a graphical notation is based on flow graphs [120]. In a flow graph representing an Æmilia architectural
description (see Figure 5.5), the boxes denote the AEI, the black circles on the box lines denote the local
interactions and the directed edges denote the attachments.

5.3.2 SYSTEM MODELLING

In this section we present the approach to systematically generate an Æmilia textual description from a
set of UML sequence diagrams (and component statecharts). To show the modelling process we use the
recovery activity scenario. For this scenario the sequence diagram of Figure 5.2 is the only artifact we need
in order to derive the Æmilia textual description since it contains also information on the internal actions
executed by the components in the scenario evolution. In general, to specify an Æmilia textual description
also statecharts are needed.

The considered sequence diagram describes the system behavior in terms of software components and how
they interact when a recovery is executed.

The modelling process starts from the sequence diagram and proceeds in three steps. The first step (syn-
thesis) derives the (partial) statechart diagrams for each component present in the sequence diagram. The
second step constructs the flow graph, which is the Æmilia graphical representation. Information on the
software system configuration (in terms of number of component instances) is needed in this phase to spec-
ify the architectural topology. The last step combines information on action service rates (see Table 5.2)
and information from the statecharts and flow graph in order to obtain the Æmilia textual description.

SYNTHESIS

In the literature many synthesis algorithms exist, e.g. Uchitel et al. [152] have defined an algorithm that
translates a scenario specification into a Finite Sequential Processes (FSP) specification. In our synthesis
approach, differently to the existing ones, we do not synthesize the complete behavior specification of
the SA components which would require the use of all the available scenarios. Instead, we consider a

5.3 Performance Analysis Based on Stochastic Process Algebras 97

single scenario aiming at deriving the partial behavior description of all components involved in it. This
simplification is correct for our aim since in the NICE description it is assumed that each SA component is
a multi-thread component and, for each scenario, it has a dedicate thread that manages the scenario. This
assumption allows us to analyze a scenario independently from the others describing the system behavior,
and to synthesize just the part of the components behavior of interest. Thus, from a single scenario our
approach derives the partial statechart of each component involved in it.

 CTS PROXY

AGENT
 P2

Send Deletepp()

Trap Dpp()

Send Creatpp()

TrapCpp()

Deletepp()

Createpp()

? SendDeletepp

? Send Createpp

! TrapCpp
! TrapDpp

Createpp

Deletepp
CTSPA_0 CTSPA_1 CTSPA_2

CTSPA_3CTSPA_4CTSPA_5

(a) Portion of sequence diagram in figure 5 (b) CTS PROXY AGENT Statechart

Figure 5.6: CTS PROXY AGENT Component Statechart

A statechart starts from an initial state in which the component is waiting for taking part to the scenario
execution and it contains one state transition for each message (sent, received, to itself) that occurs in its
scenario lifeline.

The transition label is composed by the message label and an additional symbol which indicate the message
type: the symbol ”?” denotes a received message, the symbol ”!” denotes a sent message, while no symbol
denotes a ”message to itself”. The last state transition ends in the initial state to indicate that the component
has finished its ”work” in the scenario.

In the left-hand side of Figure 5.6 we report the portion of the sequence diagram of Figure 5.2 that involves
the CTS PROXY AGENT component while, in the right-hand side, we show the synthesized CTS PROXY
AGENT statechart. An initial state is introduced. By following the lifeline of the CTS PROXY AGENT
component we add a new state and a new transition for each interaction beginning from or ending in the
CTS PROXY AGENT lifeline, except for the last message that corresponds to a transition going back to the
initial state. The transition labels are created using the conventions introduced above.

Figure 5.7 reports the stateharts of all the components involved in the recovery scenario obtained by apply-
ing the synthesis step.

FLOW GRAPH CONSTRUCTION

Starting from the sequence diagram and the derived statecharts, the flow graph corresponding to the scenario
can be derived through some simple steps:

98 Chapter 5. Application of two Predictive Performance Analyses to a Complex Case Study

! Start Recovery

? Recovery CompletedDisplay Recovery Completed

Display Failure Occurred

COORD_2

COORD_0 COORD_1

? Start Recovery

! Send SetParameter

? Trap Set parameter

! Recovery Completed

Prepare
SetParameter

P1_0 P1_1

P1_2

P1_3P1_4

(a) COORDINATOR and P1 Statecharts

? StartRecovery ! Send Deletepp

? TrapDpp

! Send Createpp? TrapCpp

! Recovery Completed

Prepare Deletepp

PrepareCreatepp

P2_0 P2_1 P2_2 P2_3

P2_7 P2_6 P2_5 P2_4

? Send Deletepp

? Send Createpp

! TrapCpp
! TrapDpp

Createpp

Deletepp
CTSPA_0 CTSPA_1 CTSPA_2

CTSPA_3CTSPA_4CTSPA_5

(b) P2 and CTS PROXY AGENT statecharts

? Send SetParameter

? Trap Sep Parameter

! Send SetParameter

PROXY_2

PROXY_1PROXY_0

PROXY_3

! Trap Sep Parameter

? Send SetParameter

! Trap Set Parameter SetParameter

EQUIP_0 EQUIP_1

EQUIP_2

(c) PROXY and EQUIP statecharts

Figure 5.7: Component Statecharts

1. Identification of component instances: according to the SA configuration, one or more instances
of each component together with their names are identified and a box is created in the flow graph
representation for each of them;

2. Identification of local interactions: for each component, by looking at the transition label in its state-
chart, a set of input (with ”?” prefix in the label) and output (with ”!” prefix in the label) interactions is
identified. These local interactions are represented by black circles on the box line of the component
instance;

3. Attachment generation: according to the interactions in the sequence diagram, the component in-
stances are linked by arrows in the flow graph representation. Such arrows are called attachments.
Since this step depends on the configuration of the system that is not at the moment depicted by
any diagram, this step is made manually by the analyst. This step could be automatized if the SA
configuration is described by a UML 2.0 component diagram.

Local interactions and attachments derive from the messages exchanged by components. For each message
exchanged, two interactions (an output interaction on the sender instance, an input one on the receiver
instance) and an attachment between these instances are identified.

5.3 Performance Analysis Based on Stochastic Process Algebras 99

StartRecovery

StartRecovery StartRecovery

P1:P1_Type P2:P2_Type

C:COORDINATOR_Type

PR:PROXYAGENT_Type
 CTSPA:
CTSPROXYAGENT_Type

 EQUIP1:
EQUIP_Type

 EQUIP2:
EQUIP_Type

 Recovery_
Completed

 Recovery_
Completed

 Recovery_
Completed

 Recovery_
Completed

SendDeletetpp,
SendCreatepp

SendDeletetpp,
SendCreatepp

TrapDpp,
TrapCpp

SendSetParameter

SendSetParameter

 TrapSet
Paramenter

SSP

 where SSP is SendSetParameter

WORKSTATION

 TrapSet
Paramenter

TrapDpp,
TrapCpp

 TrapSet
Paramenter

 TrapSet
Paramenter

 TrapSet
Paramenter

 TrapSet
Paramenter SSP SSP

Figure 5.8: Flow graph of Considered Scenario

In order to initially model our system we consider one instance for COORDINATOR, P1, P2, CTS PROXY
AGENT and PROXY AGENT components and two instances of the EQUIP component.

The complete flow graph is shown in Figure 5.8.

THE ÆMILIA TEXTUAL DESCRIPTION

The Æmilia textual description is derived from the statecharts, which represents the behavior evolution of
components, and from the flow graph, which contains information on the interactions between instances
(see Figure 10). Moreover, information on the software system configuration, such as for example the
number of component instances, is needed to specify the architectural topology.

The textual description is divided in two parts:

1. The description of the behavior and local interactions of each component (AET definition) which are
obtained from the corresponding statechart;

2. The description of the architectural topology, i.e. component instances (AEI) and attachments (DAA)
between them, which is obtained from the flow graph.

The behavior of a component is defined as a set of process terms. A process term is a sequence of actions
conforming to the Æmilia syntax [43].

In our case a process term starts with an input interaction, follows with a sequence (possibly empty) of

100 Chapter 5. Application of two Predictive Performance Analyses to a Complex Case Study

StartRecovery

StartRecovery StartRecovery

P1:P1_Type P2:P2_Type

C:COORDINATOR_Type

PR:PROXYAGENT_Type
 CTSPA:
CTSPROXYAGENT_Type

 EQUIP1:
EQUIP_Type

 EQUIP2:
EQUIP_Type

 Recovery_
Completed

 Recovery_
Completed

 Recovery_
Completed

 Recovery_
Completed

SendDeletetpp,
SendCreatepp

SendDeletetpp,
SendCreatepp

TrapDpp,
TrapCpp

SendSetParameter

SendSetParameter

 TrapSet
Paramenter

SSP

 where SSP is SendSetParameter

WORKSTATION

 TrapSet
Paramenter

TrapDpp,
TrapCpp

 TrapSet
Paramenter

 TrapSet
Paramenter

 TrapSet
Paramenter

 TrapSet
Paramenter SSP SSP

? Send Deletepp

? Send Createpp

! TrapCpp
! TrapDpp

Createpp

Deletepp
CTSPA_0 CTSPA_1 CTSPA_2

CTSPA_3CTSPA_4CTSPA_5

Figure 5.9: Statechart and Flow Graph of the CTS PROXY AGENT Component

internal actions and with an output interaction, and terminates with a new process term or with the first
specified one. In this last case the behavioral description of the component is complete.

In the behavioral description the performance related information of the actions is specified as service rates.
Figure 5.10 shows the behavioral description of the CTS PROXY AGENT component. TheELEMTYPE
keyword indicates the beginning of the CTS PROXY AGENT component type definition. It names
CTSPROXYAGENTtype and it takes as input three parameters that represent the action service rates.
In the following, the behavioral descriptions of the two process terms are specified. In this definition the
input parameters are associated to the internal actions specifying that they have an execution time related
to the indicated rate. The input and the output interactions are also reported in the correspondent part of the
specification.

To specify the architectural topology we have to define instances and attachments. By looking at the flow
graph and considering the software system configuration for each box in the flow graph we insert in the
textual description a number of instances as specified in the configuration. After that, we define the corre-
spondent architectural attachments for each link in the flow graph. In the architectural attachment specifica-
tion we have to take care of the link direction. Figure 5.10 shows the definition of a CTS PROXY AGENT
instance and the specification of all attachments in which it is involved.

For the complete Æmilia textual description of our case study please refer to the Appendix A at the end
of the thesis. The action service rates in the last column of Table 5.2 are used as input parameters in the
Æmilia description.

5.3 Performance Analysis Based on Stochastic Process Algebras 101

Figure 5.10: Textual Description of CTS PROXY AGENT Component

5.3.3 ANALYSIS

To evaluate the obtained Æmilia textual description by means of TwoTowers, we must specify the per-
formance indices of interest using the rewards technique [40]. The indices specification must respect the
TwoTowers input format. After that, the results can be obtained by running TwoTowers on the performance
specification. In the following we discuss the performance indices of interest and we report our experience
in their evaluation.

PERFORMANCEINDICES - The performance requirement presented in Section 5.2 demands the evaluation
of the mean response time of the system when the considered scenario is executed. Applying the Little
Law [111], the mean response time of the system is equal to the average number of requests in the system
divided by the throughput of the system. Hence, we need to calculate the throughput of the system and the
average number of recovery requests in the system. In our case, the throughput of the system corresponds to
the throughput of the last executed action in the scenario of Figure 5.2 due to the particular structure of the
model whose actions are strongly synchronized. Whereas the average number of recovery requests in the
system is always one since the COORDINATOR component is blocked waiting for the recovery termination
and can not capture new failures. Therefore in order to evaluate the mean response time of the system we
reduce to evaluate the throughput of the system.

In TwoTowers for each performance index of interest we have to define a particular specification where we
indicate how to calculate it by following the rewards technique for Markov chain [100]. This technique
requires to specify a reward for each state and for each state transition of the Markov chain strictly related
to an action. These rewards are then suitably combined with the probability that the Markov chain reaches
the particular state and with the probability that the state transition occurs.

102 Chapter 5. Application of two Predictive Performance Analyses to a Complex Case Study

PROXY EQUIP States Transitions Exec. System Mean Response
AGENT Time (sec.) Throughput Time

1 2 90 171 0 0.1546 6.4683
2 4 468 1326 2 0.141997 7.042402
3 6 3114 12057 789 0.133783 7.4747491
4 8 21636 105696 10824 0.127787 7.8255221
5 10 151290 890823 86592 0.1248814 8.0119247
10 20 Not Enough Memory

Table 5.3: Performance Evaluation Results of the Simplified Æmilia Model

Throughput-like measures can be specified in a way that does not depend on the specific rate of the actions,
using transition rewards with value 1.

To evaluate the throughput of the system for the Recovery scenario, corresponding to the throughput of the
action ”RecoveryCompleted”, we specify:

MEASURE throughputIS ENABLED
(COORD.RecoveryCompleted)− >TRANS REW(1.0)

The actual throughput is hence obtained by summing the probabilities of all the state transitions in which
the action ”RecoveryCompleted” of theCOORDinstance can be executed, and by multiplying such a sum
by the transition reward1.0.

PERFORMANCEEVALUATION PHASE - Table 5.3 shows the results obtained by of evaluating the Æmilia
specification by means of the TwoTowers tool with respect to the specified performance indices and con-
sidering a set of system configurations. The results presented in Table 5.3 are obtained through a computer
equipped with Pentium IV 1.6 GHz and 512MB RAM. OS used is RedHat Linux 8.0

Unfortunately, for bigger configurations state space explosion occurs. Indeed, we were able to obtain results
for system configuration specified than the actual configuration.

The first and the second columns of the table in Table 5.3 show the instance number of the PROXY AGENT
and EQUIP components in the configurations we considered. The third and the fourth columns report the
dimensions of the Markov Chain built by TwoTowers in terms of the number of states and transitions,
respectively. Finally, the last two columns show the system throughput obtained by TwoTowers and the
mean response time of the system.

We can observe that we are not able to calculate the mean response time of the real configuration (i.e.
10 PROXY AGENT instances and at least 20 EQUIP instances) since the state space explosion problem
happens when the number of instances increases. Anyway, already from these results on reduced config-
urations we see that the proposed performance constraints on the software components are not satisfied.
Hence, according to the predictive performance analysis, the next step will be to define a new reasonable
set of performance constraints and then to repeat the evaluation.

5.3.4 CONSIDERATIONS ON THEUSED APPROACH

The methodology is based on the Æmilia SPA-based ADL that has nice and useful features inherited both
from the process algebra notation and from the ADL. Æmilia expressiveness is high thanks to its the ex-
pressiveness of the SPA it is based on. Its ADL-nature makes its use easier for a software engineer. From a
software architectural specification it is quite simple to derive an Æmilia textual description since it reflects

5.3 Performance Analysis Based on Stochastic Process Algebras 103

the SA structure. The only drawback of Æmilia in order to carry on a performance analysis at SA level, is
strictly related to its process algebra aspects. In fact, we need pieces of information on the internal behavior
of the components. This drawback is not evident in our case study since this information is contained in the
scenario. The scenario contains component interactions and method invocations internal to the components
that represent actions that consume time. Every time we have this information, the Æmilia textual descrip-
tion is easily and automatically derivable. These characteristics make the introduction of our approach in
an industrial context possible.

However, automation is a fundamental aspect and the state-space explosion reported by TwoTowers during
the evaluation step reduces the usage of the approach in a real industrial context. There can be solutions
to this problem, for example by reducing the complexity of the performance model obtained. However
such approaches reduce the automation and make the integration with the software development process
difficult. These solutions require in fact to consider models that are not directly derived from the software
specification and thus imply specific skills and expertise.

Another drawback of this performance analysis approach is in the specification of performance indices.
Indeed the TwoTowers input format for indices requires a specific knowledge on the underlying reward
theory. This aspect reduces the integration of performance analysis in an industrial software development
process. However, we believe that this limitation could be overcome by providing TwoTowers with a more
friendly interface.

In the following we report the criteria defined in Section 5.1 suitable instantiated for the approach:

Transparency The approach shows good transparency even if it should be improved in several parts, as
the following criteria highlight.

Performance Model Derivation The methodology based on Æmilia SPA-based ADL has nice and
useful features inherited both from the process algebra notation and from the ADL. Thanks to
its ADL nature it is quite simple to derive an Æmilia textual description from a software archi-
tectural specification. However the approach requires detailed information on the component
internal behavior that is not always available at the SA level. This drawback is not evident in our
case study since this information is contained in the scenario that contains method invocations
internal to the components with respect to the actions that consume time.

Software Model Annotation In order to obtain a performance model, it is necessary to provide
quantitative, performance-oriented information which can be used to build the performance
model. Annotations can be expressed using standard UML mechanisms (stereotypes and tagged
values) which are supported by default by most UML CASE tools. Many efforts have spent to
define a UML profile for such aims (UML profile for Schedulability, Performance and Time
[87]). A good aspect in this approach is that the performance model generated in Æmilia is
parametric, meaning that each parameter (such as activities durations) must be instantiated be-
fore the model is executed by modifying it.

Performance Indices The Æmilia-based approach does not suffer of the accuracy problems, as the
model can be solved analytically by the TwoTowers tool, which computes an exact numeri-
cal result. However, this approach shows a drawback in the specification of the performance
indices. Indeed the TwoTowers input format for indices requires a specific knowledge on the
underlying reward theory.

Automation The approach shows high automation in the analysis due to the TwoTowers tool. However, at
the moment the step of generation of the textual description is not automatic even if it could be since
it is based on a set of systematic transformation rules.

Result Interpretation The results interpretation might be very difficult since the user may combine differ-
ent performance measures in order to obtain information related to the software model elements.

104 Chapter 5. Application of two Predictive Performance Analyses to a Complex Case Study

Generality The approach can be applied to any application domain and architectural pattern (such as clien-
t/server, layered architectures and others). However the modeling of fork/join systems, simultaneous
resource possession, general time distributions and arbitrary scheduling policies, even if it is possible,
is not an easy task since they require some tricks not always trivial.

Feedback Obtaining feedback is quite difficult in this approach, because it may be required to the user
to combine different performance measures in order to obtain performance information about the
software model elements.

Scalability The scalability of the Æmilia-based approach is somewhat limited by the state-space explosion
problem. Even for software models of moderate size, the analytical model becomes too complex and
overflows the resources available on the host platform. This problem reduces the applicability of the
approach in a real context. There can be solutions to the state-space explosion problem, but these
solutions require the user to hand-tune the generated performance model. This requires specific skills
and expertise, and reduces the automation of the approach and make the integration with the software
development process difficult.

Summarizing, the most critical issues that can compromise the applicability of the approach are automation
i.e. the availability of tools that overcome the state-space explosion, the performance indices specification
and the consequently results interpretation. These last two aspects should be made more friendly.

5.4 PERFORMANCEANALYSIS BASED ON SIMULATION

An alternative approach for performance modeling and analysis of the software architecture we applied to
the NICE system is based on simulation. This modeling approach allows general system representation
of arbitrarily complex real-world situations, which can be too complex or even impossible to represent
by analytical models. The simulation approach is implemented in a tool called UML-Ψ that is described
in [45, 29]. It is based on a process oriented discrete-event simulation. We apply the UML-Ψ tool to to
the NICE system in order to derive the simulation model from annotated UML use case, deployment and
activity diagrams specification, as follows.

The section proceeds to briefly recall the main aspects of a simulation model, to present the generation
approach of the simulation model, to report the analysis results and it concludes giving some consideration
on the used technique.

5.4.1 SIMULATION MODELS

Besides being a solution technique for performance models, simulation can be a performance evaluation
technique itself [34]. It is actually the most flexible and general analysis technique, since any specified
behavior can be simulated. The main drawback of simulation is its development and execution cost.

A simulation model (i.e., a conceptual representation of the system) is generally derived by using aprocess
orientedor anevent orientedapproach. From it a simulation program is derived. Such simulation program
implements the simulation model.

One fundamental step in deriving a simulation model/program is the verification of the correctness of the
program with respect to the model and the validation of the conceptual simulation model with respect to
the system (i.e. checking whether the model can be substituted to the real system for the purposes of
experimentation).

5.4 Performance Analysis Based on Simulation 105

A critical issue in simulation concerns the identification of the system model at the appropriate level of
abstraction.

Whenever a simulation model/program is derived three more tasks have to be accomplished: (i)planning
the simulation experiments, e.g. length of the simulation run, number of run, initialization, (ii) running
the simulation program and (iii) analyzing the results via appropriate output analysis methods based on
statistical techniques.

Existing simulation tools provide suitable specification languages for the definition of simulation models,
and a simulation environment to conduct system performance evaluation, such as for example CSIM [2],
C++Sim [1] and JavaSim [3].

5.4.2 SIMULATION MODELING

The approach, proposed by Balsamo and Marzolla in [28, 45], generates a process-oriented simulation
model of a UML software specification describing the software architecture of the system. The used UML
diagrams are Use Case, Activity and Deployment diagrams. Use case diagrams are used to model workloads
applied to the system. Actors correspond to open or closed workloads, a workload being a stream of users
accessing the system. Each user executes one of the use cases associated with the corresponding actor. Use
casesUi,j associated with ActorAi is given probabilitypi,j to be chosen. The sum of the probabilities of
use cases associated to the same actor must be 1, that is

∑k
j=0 pi,j = 1, for eachi. Deployment diagrams

are used to describe the physical resources (processors) which are available. Finally, activity diagrams show
which computations are performed on the resources. There must be at least one activity diagram associated
to each use case. Each action state represents a computation, that is, a request of service from one active
resource (processor).

In order to carry on performance analysis in UML-Ψ we add quantitative informations to UML specifi-
cation, by using stereotyped and tagged values corresponding to a subset of those described in the UML
Performance Profile [87].

¿OpenWorkloadÀ or ¿ClosedWorkloadÀ actors respectively denote unlimited (open) and finite
(closed) number of users accessing the system. For actors representing open workloads we specify the
interarrival pattern of users with theRTarrivalPattern tagged value. For closed workloads we spec-
ify the following tagged values:

PApopulation Number of users of the system;

PAextDelay External delay experienced by users.

Each step of an activity diagram is stereotyped as¿PAstepÀ, and can be furtherly annotated with the
following tagged values:

PArep the number of times this step has to be repeated;

PAdelay an additional delay in the execution of this step, for example to model a user interaction;

PAinterval the time between repetitions of this step, if it has to be repeated multiple times;

PAdemand the processing demand of the step;

PAhost The name of the host (deployment diagram node instance) to which the service is requested.

106 Chapter 5. Application of two Predictive Performance Analyses to a Complex Case Study

Display Failure Occurred

Start Recovery Start Recovery

Prepare Deletepp
Prepare Set Parameter

Send Deletepp

Deletepp

Trap Dpp

Prepare Createpp

Send Createpp

Createpp

Trap Cpp

Send Set Parameter

Interface Activity

Send Set Parameter

Set Parameter

Trap Set Parameter

Send Set Parameter

Set Parameter

Trap Set Parameter

Interface Activity

Trap Set Parameter

Display Recovery Complete

Lock Recovery

Unlock Recovery

Figure 5.11: Recovery Scenario

Resources are modeled as node instances in Deployment diagrams. Active resources (processors) corre-
spond to nodes stereotyped as¿PAhostÀ. Each node instance can be tagged with the following attributes:

PAschedPolicy (recognized values are “FIFO”, “LIFO” and “PS”) The scheduling policy of the processor,
either first-come-first-served (FIFO), last-come-first-served (LIFO) or processor sharing (PS).

PActxSwT the context switch time.

PArate the processing rate of the host, with respect to a reference processor. Thus, aPArate of 2.0 means
that the host is twice as fast as the reference processor.

Passive resources correspond to nodes stereotyped as¿PResourceÀ. Passive resources have a maximum
capacity, expressed with thePAcapacity tag. Requests of a resource are done by actions stereotyped as
¿GRMacquireÀ, while release of a resource is done by actions stereotyped as¿GRMreleaseÀ. If the
residual capacity of a resource is less than what requested, the requesting action is suspended until enough
resource is available. Pending requests are served FIFO.

5.4 Performance Analysis Based on Simulation 107

The UML-Ψ tool parses the XMI representation [121] of the annotated UML model. Currently the XMI
variant used by the ArgoUML [20] tool is supported. From the annotated UML model, a process-oriented
simulation model is automatically derived. UML elements are mapped directly into simulation processes
in the following way. Actors are translated into processes generating the workload. Deployment node
instances correspond to processes simulating the resource with the given scheduling policy, processing rate
and context switch time. Finally, each action state in the activity diagrams is translated into a simulation
process. When a workload user is activated, it chooses the use case to execute. The activity diagram
associated with the selected use case is translated into a set of processes, one for each action state. The
simulation process associated with the starting activity is finally executed. Each step, once completed,
starts the successor step until the end of the activity diagram is reached. At that point the workload user is
resumed.

In order to apply the simulation-based modeling technique, it is necessary to translate the sequence diagram
of Figure 5.2 into activity diagram. This can be done easily, resulting in the activity diagram depicted in
Figure 5.11.

Note that the system we are simulating is synchronous, meaning that when an equipment is being repaired,
then no other equipment can be repaired at the same time, but must wait until the current corresponding
operation has been completed. In order to simulate this behavior it is necessary to use a passive resource in
order to simulate a lock on the scenario. When executing a scenario it is first necessary to get the lock; if no
recovery operation is currently running, then the lock is granted immediately. If the lock is not available,
the recovery request is put on a queue. We compute the mean execution time of the scenario, including
the contention time spent waiting for another running scenario to complete. The service demand for each
action state was set as in Table 5.2.

A simplified representation of the resulting simulation model is given in Figure 5.12 where each node
represents a simulation process and arrows indicate the process activation order. This graph shows the cor-
respondence between the activity diagram and the simulation process. The dotted arrows indicate requests
or releases of passive resources, which in our example are denoted as borderless gray boxes labelled “Lock
Recovery Scenario”. As explained above, these resources are used to guarantee that only a single recovery
scenario is executed at the same time.

5.4.3 ANALYSIS

UML-Ψ computes the following steady-state performance measures: mean execution time of each ac-
tion state, mean execution time of each use case, and mean utilization and throughput of the processing
resources. These values are computed using the batch means method [32, Chap. 7]. Mean values are
expressed in term of confidence intervals, where the confidence level can be specified by the user. The
simulation is stopped when the desired accuracy is obtained, that is, when the relative confidence interval
widths are less than a given threshold. For more details on the UML-Ψ approach please refer to [114]

For simulating the NICE system we set the confidence level to95% and a10% confidence interval rela-
tive width. Simulation provides estimated performance measures whose mean values are inserted into the
original UML model as tagged values associated with the relevant UML elements.

We simulate the system considering an increasing numberN of equipments, forN = 1 . . . 6. We assume
that the time between successive recovery operations on the same equipment are exponentially distributed
with mean15s. Simulation results in terms of average execution times of the Recovery scenarios are shown
in Table 5.4. The table displays also the total execution time of the simulations on a Linux/Intel machine
running at 900Mhz, with 256MB or RAM.

108 Chapter 5. Application of two Predictive Performance Analyses to a Complex Case Study

Figure 5.12: Structure of the Simulation Model.

5.4.4 CONSIDERATION ON THEAPPROACH

Transparency The approach shows high transparency as the following criteria highlight.

Performance Model Derivation The simulation-based performance model can be easily derived
from the UML specification, as there is an almost one-to-one mapping between UML elements
and simulation processes [29].

Software Model Annotation In order to obtain a performance model, it is necessary to provide
quantitative, performance-oriented information which can be used to build the performance
model. UML-Ψ requires the UML model to be annotated according to a subset of the UML
Performance Profile [87]. Annotations are expressed using standard UML mechanisms (stereo-
types and tagged values) which are supported by default by most UML CASE tools. The mod-
eler only needs to know the notation used to specify the values, which in our case is based on
the Perl language.

Performance Indices The simulation-based approach can derive many different performance met-
rics. However, the results are expressed in term of confidence intervals. Special care has to

5.5 Combined Usage of Tools 109

N Recovery Scenario Simulation
Mean Exec. Time (s) Requirement Satisfied?Exec. Time

1 6.61 no 56s
2 7.64 no 1m09s
3 10.26 no 1m37s
4 13.70 no 1m29s
5 17.66 no 2m44s
6 23.97 no 2m51s

Table 5.4: Computed mean execution times for the Recovery scenario, for different numberN of equip-
ments. The last column on the left reports the execution time of the simulation program

be taken in order to apply the correct statistical techniques to remove the initialization bias and
compute means from sequence of observations which are usually correlated, requiring many
samples (and thus potentially longer execution times) to be taken [32, 110]. UML-Ψ imple-
ments the batch means method described in [33] to compute the mean values. The user only
specifies the desired accuracy in term of confidence interval relative width and confidence level.

Automation The UML-Ψ approach shows high automation degree. It allows software model annotation
by means of ArgoUML case tool. From the xmi exporting of the UML diagrams UML-Ψ generates
and, after having defined performance indices and simulation parameters (confidence intervals), it
runs the simulation in order to obtain information of the quantitative figures specified before. At the
end of a simulation run UML-Ψ reports them by means of annotations in the used diagrams.

Result Interpretation Due to the provision of the performance indices upon the software models, the
interpretation results is not a big deal.

Generality The approach can be applied to any application domain and architectural pattern (such as clien-
t/server, layered architectures and others). It allows general software model, that is, without any con-
straints on the software architecture model in order to derive the performance model. For example, it
is possible to simulate fork/join systems, simultaneous resource possession, general time distributions
and arbitrary scheduling policies.

Feedback The performance values computed by UML-Ψ are inserted back into the original UML model as
tagged values associated to the relevant model elements. In this way the user may get an immediate
feedback on the system performances. However the approach does not suggests design alternatives
in case some performance problems are experienced.

Scalability The simulation-based approach is scalable, meaning that the complexity of the simulation
model increases linearly with the number of UML elements to simulate. Also, the user may per-
form many different experiments by changing the UML model, performing a simulation run and
modifying the UML model to get better performances before iterating the process again. It is then
very easy to perform many “what-if” experiments, changing parameters or structure of the model to
see what the result is. Unfortunately, the lack of parameterized results can be a limitation for that.
Namely, it is not possible to get performance results as a function of an (unknown) parameter, or set
of parameters. It is necessary to explore explicitly all the alternatives by running different simulations
to collect the results.

5.5 COMBINED USAGE OFTOOLS

As presented before, we applied two different approaches to software performance analysis to the NICE case
study from the telecommunication domain. The first technique allows analytical analysis of the performance
of the Æmilia model derived from UML sequence (and statechart) diagrams. The second one obtains the

110 Chapter 5. Application of two Predictive Performance Analyses to a Complex Case Study

performance indices of interest by executing a simulation model automatically generated from UML use
case, activity and deployment diagrams.

Both the approaches showed high generality in terms of performance aspects, software system application
domains and software architectural patterns. Both of them require specific information on performance
aspects of the system that are then used in the analysis. While the simulation technique allows their inser-
tion through the UML activity diagram annotations, the other approach imposes the analyst to insert them
directly in the performance model.

Moreover, the presented methodologies showed, as main drawback, the necessity to specify configuration
parameters. The simulative technique requires the user to define confidence intervals and the duration of
the simulation, while the Æmilia approach requires expertise for the specification of performance indices
since the user must have a deep knowledge on the reward theory and queuing theory.

Differently to Æmilia approach, simulation provides a simple feedback mechanism that reports the obtained
performance results on the software architecture level.

Finally, the methodology based on stochastic process algebra may require specific skills in software mod-
eling since, in order to derive an Æmilia model, detailed information on the system behavior have to be
provided. However, on the positive side Æmilia specification also allows for behavioral analysis.

The comparison of the two approaches is summarized in Table 5.5.

As largely expected the two methodologies have pro and cons. However, in this work we have experimented
the feasibility of a complementary approach at an affordable cost. Different approaches highlight different
figure of merits in terms of performance modeling, analysis and indices that can be evaluated, and of
feedbacks at the design level that can derive from the performance results interpretation. In this scenario,
the use of different techniques can provide to the software designer a more precise and comprehensive
picture on the software architecture. Thus, we believe that the concurrent/complementary application of
several analysis techniques can overcome the problems of the single techniques and conduct to more faithful
analysis results.

A big element toward a combined use of the two approaches is the use of standard software artifacts as
system initial documents. This can simplifies the comparison among the results obtained by different ap-
proaches.

5.6 SUMMARY

In this Chapter we applied two different approaches to software performance analysis to the NICE case
study from the telecommunication domain. The first technique allows analytical analysis of the performance
of the Æmilia model derived from UML sequence (and statechart) diagrams. The second one obtains the
performance indices of interest by executing a simulation model automatically generated from UML use
case, activity and deployment diagrams.

As largely expected the two methodologies have pro and cons. However, in this work we have experimented
the feasibility of a complementary approach at an affordable cost. A big element toward a combined use of
the two approaches is the use of standard software artifacts as system initial documents.

5.6 Summary 111

Simulation/UML- Ψ Æmilia/TwoTowers
Perf. Model
Derivation

Easy. There is an almost direct map-
ping between UML elements and simula-
tion processes.

Easy due to the ADL Æmilia notation
which allows performance models which
tightly reflect the software specification.

Annotations Uses stereotypes and tagged values to
specify performance-oriented parameters.
Tag values are written in Perl following
the specification for the UML Performance
Profile [87]

Parameters should be instantiated by the
modeler when the performance model is
executed.

Generality No constraint on the software model. Modeling some particular aspects of soft-
ware systems, even if possible, can be dif-
ficult.

Computed
Perfor-
mance
Indices

Only approximate values are computed,
which are given as confidence intervals.
UML-Ψ implements a set of statistical
functions which are automatically applied
to output data analysis in order to compute
sound results without any user guidance.
For many problems (eg removing the ini-
tialization bias) there is no single agreed
upon technique which can be applied to ev-
ery situation.

Results are exact numerical values com-
puted analytically.

Scalability The size of the performance model in-
creases linearly with the size of the UML
model.

The size of the performance model can
grow exponentially with the size of the
software model, thus making the approach
difficult if not impossible to apply but for
small models.

Feedback Performance results are inserted into the
original UML model, as tagged values as-
sociated to the relevant model elements.

It is not easy to associate the computed per-
formance measures to the software compo-
nents to which they refer.

Table 5.5: Summary of the Comparison between the Simulation-based and the Analytical Approach.

112 Chapter 5. Application of two Predictive Performance Analyses to a Complex Case Study

Part II

Integration of Predictive Functional and
Non-Functional Analyses

113

CHAPTER 6

A TOOL INTEGRATION FRAMEWORK

Software analysis has always been a non-trivial activity along the software development process, due both
to special skills required to developers and to short time-to-market. On the other end, as the software sys-
tems progress and find new application environments (e.g. heterogeneous platforms, mobile devices, etc.)
the analysis of functional and non-functional properties is becoming a primary concern to meet customer
requirements.

Major efforts have been spent in the past for the functional analysis of software systems, that brought nowa-
days to offer quite sophisticated (formal and semiformal) methodologies and tools to verify and validate
the functional behaviour of a software system since the early phases of its lifecycle [8]. On the contrary,
non-functional attributes (such as performance, security, etc.) have not received the same consideration.
Only in the last few years the idea of integrating such type of analysis along the whole software lifecycle
has been supported from new methodologies aimed at filling the gap between the software development
process and its non-functional validation [11].

The software evolution seems to ask for the integration of functional and non-functional analysis, and
the automation in embedding the feedback resulting from analysis into the software models. The need of
integration has been repeatedly claimed in the recent past, with particular focus on the software architectural
level [74]. In this chapter we introduce a framework to cope with the integration issues at that level.

The work this chapter discusses has been outlined in [62] and it is described here in details.

6.1 MOTIVATIONS AND GOALS

Major efforts have been spent in the past for the functional analysis of software systems, that brought nowa-
days to offer quite sophisticated (formal and semiformal) methodologies and tools to verify and validate
the functional behaviour of a software system since the early phases of its lifecycle [8]. On the contrary,
non-functional attributes (such as performance, security, etc.) have not received the same consideration.
Only in the last few years the idea of integrating such type of analysis along the whole software lifecycle
has been supported from new methodologies aimed at filling the gap between the software development
process and its non-functional validation [11].

The rationale behind this Chapter is that the software evolution seems to ask for advances in two major top-
ics of software analysis: (i) the integration of functional and non-functional analysis, and (ii) the automation
in embedding the feedback resulting from analysis into the software models. The need of integration has
been repeatedly claimed in the recent past, with particular focus on the software architectural level [74].
The availability of such integration will provide a tool that coordinates several analises that can be made
over a software architecture. We introduce here a framework to cope with the integration issues at that level.
We started from the goal of evidencing inter-relationships between functional and non-functional aspects
that would not necessarily emerge from separate analysis. For example, it is intuitive that upon detecting

115

116 Chapter 6. A Tool Integration Framework

a deadlock in a software model, a critical component may be split in two components, and this refinement
may heavily affect the software performance. Viceversa, a security analysis may lead to introduce additional
logics to components (that work as firewalls) in a subsystem, thus the behaviour of the subsystem needs to
be validated again. In many cases analysis methodologies are based on a translation of the software model
into a different notation to be analyzed (e.g., a formal language for functional verification, or a Petri Net for
performance validation). Our intent is to place an intermediate representation (based on XML) of software
models that may work as a common ground to apply functional and non-functional analysis as well as to
feed back the analysis results on the software models.

In a collaborative working several teams can concurrently work on the development and analysis of a
software system. This means that it should be necessary a design environment that timely notifies to all the
involved teams changes made by one of them. Let us suppose for example that at the SA level one team is
checking the reliability of the software system design, while other two teams are validating the SA design
against the functional and performance requirements. The first team to improve the reliability of the system
makes some changes on the SA. If these changes are made in a uncontrolled way and are not propagated
to the views of the other two teams, these will work on different software system. The consistence of the
different views of the SA is not guaranteed any more. To address with this consistency issue there should
be designed a design environment that is able to reflects changes made on a views over the others active
at the same time. Our intend is to propose a framework that guarantees consistency views of a SA design
when different design/analysis teams are working on it. The XML-based intermediate representation help
us to meet this aim.

To show our idea, in this Chapter we integrate two existing methodologies for software analysis:CHARMY

[101] that translates scenarios and state machine diagrams into Promela language [98] for software for-
mal verification, and a methodology that generates a Markov model [150] from a software specification
based on theÆmilia architectural description language [43], to validate software performance. Both the
methodologies work at an architectural level.

Our long term goal is to incrementally implement such framework by embedding other methodologies for
software analysis at the architectural level. Obviously this goal lays on the ability of the XML core to be
extended. As we will show in Section 6.3, we devise this ability as the result of two tasks: keeping the XML
core general enough to embed new software notations; introducing rules and relationships across different
software notations that allow to automatically propagate an analysis feedback from a functional world to a
non-functional one, and viceversa.

The framework implementation will be based on theEclipseplatform, namely a software tool for tool
implementation. This is a relevant aspect of our work, in that by embedding structures, rules and algorithms
into Eclipse, we exploit the well-known integration features of this technology.

Loosely related work to this can be found in the research done in the field of independent verification and
validation of software systems (e.g., see [68]). The contribution reported in this chapter is the integration
of software analysis by proposing the design (as well as an idea of implementation) of an actual integration
framework. A similar approach can be found in [67], where a framework has been introduced to integrate
non-functional requirements in conceptual models. The integration work in [67] is performed at a require-
ment elicitation level, and is based on Entity-Relationship models. Our approach differs from the one in
[67] because we assume that the (functional as well as non-functional) requirements have been formulated
and modeled in some software notation. Then, we do not constrain the developers to build ad-hoc models
(such as ER), rather our integration is based on XML models that can be automatically generated from the
software models.

6.2 XML Technologies as Integration Support 117

6.2 XML TECHNOLOGIES ASINTEGRATION SUPPORT

The wide success of XML for tool interoperability has opened promising perspectives on the integration of
software and performance tools. The definition of XML Schema for the interchanged data will simplify the
task.

In this Section we give some preliminary notions on the key concepts of XML and XML Schemas. The
information reported here is not complete, but enough for the reader to understand the following sections.

6.2.1 THE EXTENSIBLE MARKUP LANGUAGE

The XML language is a standard meta–markup language defined by the W3C Web Consortium [155].
The XML itself is a simple but powerful idea, derived with many simplifications from SGML. SGML has
been used for years to formally specify document and data formats, but its complexity kept it a “tool for
professionals”.

The basic syntax of XML is quite simple and should be familiar to anyone that knows HTML. Well–formed
XML documents must obey to some simple rules, such as, e.g. each document must have an uniqueroot
element. In addition, XML languages may also be associated to a specific “grammar”, defined through a
Document Type Definition(DTD). or through an XML Schema Definition (XSD).

The idea of XML comes from the success of markup languages like HTML, focusing on a particular class
of documents that show a strong hierarchical structure. The number of supporting technologies developed
around XML made its success in few years. Today, XML is becoming a well–founded standard for the
description of document formats.

However, the use of XML and DTD/XSD is not limited to document format definition. In the last years,
XML languages are being adopted also for data description and manipulation. Indeed, the hierarchical
structure of markup documents is very suitable to represent a wide variety of data, especially objects and
similar structures. XML fragments are used to contain data structures and make them more portable and
open–format. Applications can easily interface with XML–structured data streams or packets using XML
parsers and querying tools (like XPath [157], XSLT [158]) to manipulate their content.

At the present XML and DTD/XSD are being used much more as a data–definition formalism than as a
document–definition language. Indeed, most of the XML languages currently defined and standardized are
explicitly designed to contain and give formal structure to data that has no “document” format.

6.2.2 THE EXTENSIBLE SCHEMA DEFINITION

DTD is a notation to define the XML language grammar. DTDs have many limitations and most of them
derive from the initial definition of XML as a language used to structure textual documents. Moreover,
they are specified by means of a language that is not XML related. To overcome these drawbacks, a new
XML–grammar definition language has been developed. The new standard is itself an XML language,
called eXtensible Schema Definition (XSD) [156], and it has many features lacking to DTD.

The XML Schema specification uses the concept oftypeas its basic mechanism to define the structure of
XML documents. XSD distinguishes amongsimpleandcomplex types: the former are built-in and include
the most common data types used in DBMS and programming languages; the latter are used to describe the
structure of elements, i.e. theircontent model.

118 Chapter 6. A Tool Integration Framework

<element name=”E”>
<complexType>
<sequence>
<element name=”F” t y p e=” i n t e g e r ” minOccurs=”1 ”

maxOccurs=” unbounded ” />
<cho i ce minOccurs=”0 ” maxOccurs=”1 ”>
<element name=”G” t y p e=” s t r i n g ” />
<element name=”H” t y p e=” a ” / >

</ cho ice>
</sequence>

</complexType>
</element>

Figure 6.1: A Complex Type Definition

<simpleType name=”b ”>
< r e s t r i c t i o n base=” s t r i n g ”>
<minLength va l u e=”0 ” / >
<maxLength va l u e=” 20 ” / >
<whiteSpace v a l u e=” c o l l a p s e ” />
<pa t te rn v a l u e=”A(B |C) {2;4}D∗ ” / >

</ r e s t r i c t i o n >
</simpleType>

Figure 6.2: A Simple Type Definition

A content model defines the children (elements or attributes) of a particular element and optionally the order
in which they must appear.

Content models are created by freely composing three basic models: sequence (sequence), choice
(choice), and set (all). A cardinality constraint can be assigned both to the elements and to the basic
models, through theminOccurs andmaxOccurs attributes. Finally, an element must be defined asmixed
complex type every time it can contain both other elements and text.

Fig. 6.1 shows an example of element declaration, that is read as follows:

The elementE contains a sequence of at least one elementF, optionally followed by an
elementG or H. ElementF contains an integer, elementG contains a string and elementH
contains a value belonging to the user–defined typea.

Schemas also offer a rich sub–language for the definition of derived types. Types can be derived byexten-
sionor restriction. Elements of derived types can be declared compatible and arranged in an object-oriented
fashion by means ofsubstitution groups.

For instance, Fig. 6.2 illustrates the definition of a restriction of thestring build–in type and Fig. 6.3 shows
an elementJ whose type is obtained as an extension of the complex type elementeType by adding some
attributes.

Schemas allow declarations of types, elements and attributes to beglobalor local, i.e. nested inside another
declaration. In the former case, the declared type, element or attribute has a distinctive name and can be
referenced (possibly many times) in other parts of the schema.

6.3 A framework for Software Analysis Integration 119

<complexType name=” eType ”>
<sequence>
<element reg =”F” maxOccurs=” unbounded ” />
<cho i ce minOccurs=”0 ”>
<element r e f=”G” / >
<element r e f=”H” / >

</ cho ice>
</sequence>

</complexType>

<element name=” J ”>
<complexType>
<complexContent>
<e x t e n s i o n base=” eType ”>
<a t t r i b u t e name=” A t t r 1 ” t y p e=” boo lean ”

use=” r e q u i r e d ” />
<a t t r i b u t e name=” A t t r 2 ” t y p e=” doub le ”

use=” o p t i o n a l ” d e f a u l t=” 1 .0 ” />
</ ex tens ion>

</complexContent>
</complexType>

</element>

Figure 6.3: A Complex Type Derived by Extension

Elements and their structure are defined through complex types. XML Schema allows to define non-
hierarchical relations between elements usingidentity constraints. The key construct is used to declare
that a particular element instance in a valid XML document is uniquely identified through a set of its at-
tributes and/or sub–elements. Theunique construct has the same meaning and syntax ofkey, but it also
allows the specified attributes and/or sub–elements to be empty.

Both key and unique constraints have a scope, i.e. it is possible to declare different keys for the same
element from different nesting levels.

Finally, thekeyref construct defines a relation between two elements, requiring the matching of a set of
attributes and/or sub–elements of an element with those in thekey of another element.

6.3 A FRAMEWORK FORSOFTWARE ANALYSIS INTEGRATION

In this section we introduce the framework we propose to integrate several functional and non-functional
analysis of software architectures.

Figure 6.4 shows the architecture of such a framework.

Rounded boxes on the top side of the figure represents software notations adopted for the software devel-
opment (e.g., theUnified Modeling Languageor whateverArchitectural Description Language). Let us
assume that a software architecture has been built using one of these notations. Several methodologies are
nowadays available to take as input a software model and to produce the same model in a different notation,
ready to be validated by automated tools with respect to either functional or non-functional properties. On
the bottom side of Figure 6.4 are presented some examples of methodologies (i.e.CHARMY andTwoTow-

120 Chapter 6. A Tool Integration Framework

Visual

Editors

MSC
UML

Semantic

Relations

XML

ADL
i
 ADL
j
 Other

TwoTowers
 Other

Input filters

X

 M

 L

filters
filters

Analysis filters

Feedback

Feedback

Charmy

Feedback

XML Models

Representation

Integration Core

QN solver
SPIN
 Other

Charmy

notation

TwoTowers

notation

Figure 6.4: The Framework Architecture.

ers) as square boxes, and some examples of automated tools for software analysis (e.g., theSPIN model
checker).

In the scenario of a stand-alone analysis of a software architecture, the sequence of steps to validate the
architecture, for example from a functional viewpoint with theCHARMY approach, would be as follows:
the UML diagrams of the software model from the rounded box directly flow to theCHARMY square
box, where they are translated into theSPINspecification language (i.e.,Promela) and forwarded to the
SPINmodel checker (a square box in the bottom side of Figure 6.4).SPINruns the model and produces
results that have to be examined by the developer in order to embed the analysis feedback into the software
architecture.

In our framework the validation steps are different, due to the integration of such activity with other po-
tential software analysis as well as to a certain automation in the interpretation and provision of result
feedback. In Figure 6.4 a big square box has been placed between the topmost software notations and the
bottommost analysis methodologies. It contains some filters and the XMLIntegration Core, which is the
main component of our framework.

EachInput filter translates the software model from its original notation to a XML-based common represen-
tation, namely theXML Models Representationbox in Figure 6.4. An appropriateAnalysis filtertranslates
the XML representation into the input notation to the desired analysis methodology (e.g.,CHARMY nota-
tion in Figure 6.4). The latter notation obviously depends on the methodology, and it can go from a subset
of the XML representation to a completely different language defined within the methodology. From this
point on the steps are the same as for a stand-alone analysis, up to obtain results from the automated tool.

The feedback resulting from a specific analysis (e.g., splitting a component upon a deadlock detection)
propagates, through anAnalysis filter, up to the XML Integration Corewhere the model is either updated
or a hint is given on how to modify it.

In the Semantic Relationsbox the rules that link entities to entities are expressed (in XML) and allow to
transfer analysis feedback from a notation to another. In fact, the model changes inferred by the analysis
results in the XMLIntegration Core, have to be reflected in the other analysis methodologies. This is the
way we conceive analysis integration.

6.3 A framework for Software Analysis Integration 121

In the Visual Editorsbox on the right side of Figure 6.4 there can be any editor able to take a XML rep-
resentation of a software model and display it. In practice, this is an additional graphical capability of our
framework that may extend analysis tools with graphical user interfaces providing either a way to interact
with the software models or a way to operate with the analysis methodology tools.

In the next section we give some details of the XMLIntegration Coreand how it works for analysis inte-
gration.

6.3.1 ARCHITECTURE OF THEXML Integration Core

The Integration Core purpose is twofold. It contains an easy and manageable representation of all the
notations taken in input from the considered analysis approaches by means of a common language (XML).
It allows the integration of the analysis in terms of the analysis results and the produced feedbacks at the
software architecture level.

To reach this last aim we introduce the concept of semantic relations among the entities of the considered
notations. Semantic relations are built every time it is possible to semantically relate the concepts in differ-
ent notations. This means that, in general, there is not necessarily a relation between every pair of entities
of two different notations; sometimes, those relations could not exist at all.

The semantic relation between two elements of two different notations strongly depends from the used
approaches. This implies that the semantic relations are given by considering the approaches pairwise. We
define the structure rules specifying the relations between concepts of the considered notations. Of course,
when a particular software system is analyzed, these structure rules have to be instantiated on it. The rules
instantiation is performed by a dedicated engine containing the needed logic to do so. We point out that an
engine has to be built for each pair of approaches.

<
set_rules
 model1
="Charmy
"
 model2
="TwoTowers
 ">

 <
bid_rule

 rule_elem1
 ="
SA/Components/StateMachine@name
 "

 rule_elem2
 ="
ArchiType/archiElemTypes/elementType/behavior/

 process/@name
 "/>

<
bid_rule

 rule_elem1
 ="
outgoing/@ref
 "

 rule_elem2
 ="
ratedaction/@actionName
 "
/>

 <
condition
="
pathState=pathProcess
 "/>

</
set_rules
>

. . .

Engine_AEm_

Charmy

Rules (.xml)

Integration Core

XML Models Representation
 Semantic Relations

Notation

Schemas

(.xsd)

Models

(.xml)

Rule

Instances

(.xml)

engine

Rules (.xml)

engine

Rules (.xml)

engine

Rules (.xml)

engine

Rules (.xml)
Rules (.xml)

engine

Set_AEm_Charmy_rules.xml

SM.xsd

Scenario.xsd

Aemilia.xsd

SetSM.xml

SetScenario.xml

SetAEmilia.xml

Figure 6.5: Structure of the Integration Core

From the previous considerations, we split theIntegration Coreinto theXML Models Representationand
theSemantic Relationsas shown in Figure 6.5.

Given an analysis approach to be integrated it is necessary to provide an XML schema for each notation
taken in input. A schema describes how to produce the XML representation of the software architecture
under analysis. The schemas are stored in theNotation Schemasrepository (see Figure 6.5) while the
Modelsrepository contains the software architecture description of the system, represented in XML. For
example, let us consider theCHARMY and TwoTowers approaches, and a Set-Counter application which
will be introduced later. The schemas of the State Machines, Scenarios and Æmilia notation (in Figure
6.5, SM.xsd, Scenario.xsd and Æmilia.xsd, respectively) are stored in theNotation Schemasrepository.
The Modelsrepository contains the XML version of the State Machines, the Scenarios and the Æmilia

122 Chapter 6. A Tool Integration Framework

textual description modeling the Set-Counter application (in the Figure 6.5, SetSM.xml, SetScenario.xml
and SetÆmilia.xml, respectively).

Semantic Relations, instead, contains, for each pair of approaches, a set of structural rules which define
relationship classes (in Figure 6.5Rules(.xml)), an engine which instantiate the relationships defined by the
structural rules on the current architecture. The instantiated relationships are stored within this component
(in Figure 6.5Rule Instances(.xml)). The engine role is to instantiate the structure rules for a particular
software architecture of the system that we want to analyze.

In Figure 6.5 we show some structure rules forCHARMY and TwoTowers approaches. In particular we
show two rules: the first states that there exist a semantic relation between theCHARMY state machine
model and the Æmilia process; the second one claims that a transition over a State Machine is related to a
rated action of an Æmilia process if they belong to the same execution trace. The relation defined by the
rules are specified by using XPath expression [157] over the notation schema. In this way we are able to
unambiguously relate the notation elements.

6.4 FIRST IMPLEMENTATION OF THE XML I NTEGRATION CORE

We devise an incremental approach to the framework implementation. The analysis approaches are con-
sidered pairwise, and for each pair we intend to introduce only the missing schemas and rules needed to
integrate the approach into the framework. Therefore theNotation Schemasrepository as well as the XML
Rulesmay be extended every time two approaches have to be related.

As first step, we have implemented (input and analysis) filters, XML schemas, rules and engine for Charmy
and TwoTowers approaches. We found the XML characteristics fairly suitable for such project, and we
are nowadays working on integrating other approaches (e.g., the PRIMA-UML approach for Queueing
Network-based performance analysis from UML diagrams [66]).

Although some similarities can be found, we remark that our integration task differs from the UML 2 project
[148] because we do not intend to push software developers to use a specific notation (such as UML), rather
we want to provide tools to make the software analysis as much transparent as possible to the software
development process. We figure out developers not necessarily being constrained to a specific notation, and
only if (and when) the need of an integrated software analysis comes up during the software lifecycle they
can consider to enter the framework by providing the necessary filters, schemas and rules.

We share with the UML 2 project the idea of having an XML intermediate format as a basis for the analysis
tasks. Indeed, since the XMI standards for UML 2 are not yet out up to this date, it has been and it is being
our concern to make our XML schemas as much compliant as possible to the XMI standards for UML
1.x. However, even UML 2 is not wide enough to embed formal notations such as Process Algebras which
are widely used, for example, in performance analysis. Therefore we try to work towards an integration
framework that embeds UML as a software development notation (see Figure 6.4), relations among UML
entities as rules already embedded into the notation and, in addition, provides tools to integrate whatever
analysis approach.

In practice, our rules work at the metamodel level, as they relate notation concepts to notation concepts.
The need of rules to integrate software analysis is supported from an OMG call for proposals [14].

6.4.1 THE CONSIDEREDSOFTWARE ANALYSIS METHODOLOGIES

CHARMY (CHECKING ARCHITECTURAL MODEL CONSISTENCY) CHARMY is a framework that, since
from the earlier stage of the software development process, aims to assist the software architect in designing

6.4 First Implementation of the XML Integration Core 123

software architectures and in validating them against functional requirements. State machines and scenarios
are used as the source notation for specifying software architectures and their behavioral properties. Model
checking techniques, and in particular the model checkerSPIN[98], are used to check the consistency be-
tween the software architecture and the functional requirements by using a Promela specification and Büchi
Automata [48] which are both derived from the source notations. The former is theSPINmodeling lan-
guage, while the latter is the automata representation for Linear-time Temporal Logic (LTL) formulae [127]
that expresses behavioral properties.

CHARMY currently offers a graphical user interface which aids the software architecture design and auto-
mates the machinery of the approach.

Technical details onCHARMY may be found in [101], and an approach to integrateCHARMY into a real
software development life-cycle can be found in [101, 59].

TWOTOWERS: ÆMILIA TO MARKOV MODELS The TwoTowers (3.0) tool [40] allows the validation of
performance requirements at the software architecture level. It takes as input an Æmilia textual description,
builds the corresponding Markov model (which can be both a Continuous and a Discrete Markov Chain)
and evaluates the performance indices of interest.

Æmilia is an architectural description language (ADL) based on the Stochastic Process AlgebraEMPAgr

[41]. It was introduced by Bernardo et al. in [43] with the aim of making the Stochastic Process Algebra a
more familiar software model notation to software engineers.

Stochastic Process Algebras (SPA) permit to analyze the performance of concurrent systems which are
described as collections of entities, or processes, executing atomic actions. The processes are used to
describe concurrent behaviors and they synchronize in order to communicate. Temporal information is
added to actions by means of continuous random variables, representing activity durations. The quantitative
analysis of the modelled system can be performed by constructing the underlying stochastic process. In
particular, when action durations are represented by exponential random variables, the underlying stochastic
process yields a Markov Chain.

A model description in Æmilia represents an Architectural Type (AT) defined as a function of its Archi-
tectural Element Types (AET) and its architectural topology. An AET is defined by its behavior, specified
either as a family ofEMPAgr sequential terms or through an invocation of a previously defined AT, and
by its interactions, specified as a set ofEMPAgr action types occurring in the behavior. The architectural
topology is specified through the declaration of a set of Architectural Element Instances (AEI) and a set
of Directed Architectural Attachments (DAA) among the interactions of the AEI. Depending on the SA
configuration to be specified by means of Æmilia, it can be necessary one or more AEI for each AET.

6.4.2 AN EXAMPLE : THE SET-COUNTER APPLICATION

To illustrate details on theModelsandRule Instancesrepositories, we use a simple example introduced
in [79]. The application is made of two components: a Set and a Counter. If a User adds or removes an
element to/from the Set (insert(e) anddelete(e) respectively) the Set increments or decrements (inc and
dec respectively) the number of stored elements into the Counter component. In the following, we refer to
the Set-Counter architecture containing one User instance, one Set instance and one Counter instance (1).

In Figure 6.6 we report theCHARMY State Machines and the Æmilia specification for the Set-Counter
application (Figure 6.6.b and 6.6.c, respectively) and a sketch of the XML representations for the User

1For lack of space, we ask the reader to refer to [149] for details about the schemas and the XML files for the Set-Counter
application

124 Chapter 6. A Tool Integration Framework

component (Figure 6.6.a and 6.6.d). These representations are built by using the appropriate input filters
(interested reader can found details in [149]).

Counter

S0

?inc

?dec

S0
 S2

?insert(e)

!
d

e
c

 !inc

?
d
e
l
e
 t
e
 (
e
)

S1

Set

ARCHI_TYPE SET_ARCHI(void;rate a1 := 2, rate a2 := 1)

ARCHI_ELEM_TYPES

 ELEM_TYPE SET_Type(void;rate a2)

 BEHAVIOR

 SET(void; void) = choice{

 <insert,*>.<inc,a2>.SET(),

 <delete,*>.<dec,a2>.SET() }

 INPUT_INTERACTIONS AND insert; delete

 OUTPUT_INTERACTIONS UNI inc; dec

 ELEM_TYPE USER_Type(void; rate a1)

 BEHAVIOR

 USER(void; void)=choice{

 <insert, inf>.USER(),

 <delete, inf>.USER() }

 INPUT_INTERACTIONS

 OUTPUT_INTERACTIONS UNI insert; delete

 ELEM_TYPE COUNTER_Type(void; void)

 BEHAVIOR

 COUNTER(void; void)=choice{

 <inc,*>.COUNTER(),

 <dec,*>.COUNTER() }

 INPUT_INTERACTIONS UNI inc; dec

 OUTPUT_INTERACTIONS

ARCHI_TOPOLOGY

 ARCHI_ELEM_INSTANCES

User: USER_Type(;a1);

Set: SET_Type(;a2);

Counter: Counter_Type(;);

ARCHI_INTERACTIONS

ARCHI_ATTACHMENTS

FROM User.insert TO Set.insert;

FROM User.delete TO Set.delete;

FROM Set.inc TO Set.inc;

FROM Set.dec TO Set.dec;

END

(b) State Machines
 (c) AEmilia Model

<
elementType
 name
="
User_Type
">

<
parametersList
>

<
localVarsList
>

<
voidElem
 type
="
void
"/>

</
localVarsList
>

<
rateWeightList
>

<
rates
>

<
rate
 name
="
a1
"/>

</
rates
>

</
rateWeightList
>

</
parametersList
>

<
behavior
>

<
process
 name
="
USER
">

<
parametersList
>

<
localVarsList
>

 <
voidElem
 type
="
void
"/>

</
localVarsList
>

<
rateWeightList
>

<
voidElem
 type
="
void
"/>

</
rateWeightList
>

</
parametersList
>

<
actionsequence
>

<
choice
>

<
actionsequence
>

<
ratedaction
 actionName
="
insert
">

<
infinitive
/>

</
ratedaction
>

<
newProcess
 ProcessID
="
User
"/>

</
actionsequence
>

<
actionsequence
>

<
ratedaction
 actionName
="
delete
">

<
infinitive
/>

</
ratedaction
>

<
newProcess
 ProcessID
="
User
"/>

</
actionsequence
>

</
choice
>

</
actionsequence
>

</
process
>

</
behavior
>

<
inputInteractions
/>

<
outputInteractions
>

<
interaction
 nameAction
="
insert
"
 type
="
UNI
"/>

<
interaction
 nameAction
="
delete
"
 type
="
UNI
"/>

</
outputInteractions
>

</
elementType
>

<
StateMachine
 name
="
User
">

<
CompositeState
>

<
InitialState
 name
="
S0
">

<
EntryCode
/>

<
outgoing
 target
="
S0
">

<
transition
 ref
="
insert
"/>

<
transition
 ref
="
delete
"/>

</
outgoing
>

<
incoming
>

<
transition
 ref
="
insert
"/>

<
transition
 ref
="
delete
"/>

</
incoming
>

</
InitialState
>

</
CompositeState
>

<
Transitions
>

<
Transition
 name
="
delete
">

<
Parameters
>

<
Parameter
 name
="
e
"
 Type
="
int
"/>

</
Parameters
>

<
Input
 value
="
false
"/>

<
Output
 value
="
true
"/>

</
Transition
>

<
Transition
 name
="
insert
">

<
Parameters
>

<
Parameter
 name
="
e
"
 Type
="
int
"/>

</
Parameters
>

<
Input
 value
="
false
"/>

<
Output
 value
="
true
"/>

</
Transition
>

</
Transitions
>

</
StateMachine
>

S0

!insert(e)

!delete(e)

User

(a) XML for User State Machine

in SetSM.xml

(d) XML for User Element Type of AEmilia

specification in SetAEmilia.xml

Figure 6.6: Architecture of Set-Counter Application

A fragment of the rules instances expressing the semantic relations between theCHARMY and TwoTowers
approaches is shown in Figure 6.7. At the rightmost side of the figure, you can find the rule instance that
realizes the relation between theinsert transition in the User State Machine and theinsert rated action
of the User process inside the Æmilia description. Both these rule members are identified by means of the
XPath expressions specifying their positions in the XML representations.

6.5 THE ECLIPSEPLATFORM

The Eclipse platform is an Integrated Development Environment (IDE) for anything and nothing in partic-
ular [131]. Eclipse is a framework for building integrated development environments for creating appli-
cations, and its main role is to provide mechanisms and rules to create seamlessly integrated development
tools, and more. The Eclipse platform supports the construction of tools from an unrestricted variety of tool
providers, and facilitates theintegrationof such tools, that usually manipulate different content types, and
are developed by different providers.

The Eclipse platform architecture is shown in Figure 6.8(a) and is made of the following components:
i) Platform runtime: Provides all the low level Application Programming Interfaces (API) to the function-
alities of the platform, which can be used by tool providers. ii)Workspace: Provides a consistent and
efficient way to organize the data used by the tools deployed in the platform. iii)Workbench: Enables the
tool provider to display a graphical view of the data stored in the workspace, and to provide a graphical
user interface to interact with the installed tools. iv)Help, Team: Provides an integrated help system and
the team working capabilities for sharing the data in the workspace between multiple users.

6.5 The Eclipse Platform 125

<
SA
 xmlns:xsi
 ="
http://www.w3.org/2001/XMLSchema-instance
 "

 xsi:noNamespaceSchemaLocation
 ="
SM.xsd
"

 name
="
Set Counter
 ">

<
Components
 >

 <
StateMachine
 name
="
Set
">

<
CompositeState
 >

<
InitialState
 name
="
S0
">

<
EntryCode
 />

<
outgoing
 target
="
S2
">

<
transition
 ref
="
insert
"/>

</
outgoing
>

<
outgoing
 target
="
S1
">

<
transition
 ref
="
delete
"/>

</
outgoing
>

<
incoming
>

<
transition
 ref
="
inc
"/>

<
transition
 ref
="
dec
"/>

</
incoming
>

</
InitialState
>

. . .

</
CompositeState
 >

<
Transitions
 >

. . .

<
Transition
 name
="
insert
">

<
Parameters
 >

<
Parameter
 name
="
e
"
 Type
="
int
"/>

</
Parameters
 >

<
Input
 value
="
true
"/>

<
Output
 value
="
false
"/>

</
Transition
 >

. .
 .

</
Transitions
>

 </
StateMachine
 >

 </
Components
 >

</
SA
>
 SetSM.xml

<
ArchiType
 xmlns
="
AEmilia
"

 xmlns:xsi
 ="
http://www.w3.org/2001/XMLSchema-

instance
"

 xsi:schemaLocation
 ="
AEmilia.xsd
 "

 nameArch
 ="
EsempioSet_Type
 ">

. . .

 <
archiElemTypes
 >

. . .

<
elementType
 name
="
Set_Type
">

. . .

<
behavior
>

<
process
 name
="
SET
">

. . .

<
actionsequence
 >

 <
choice
>

<
actionsequence
 >

<
ratedaction
 actionName
 ="
insert
">

<
passive
/>

</
ratedaction
 >

<
ratedaction
 actionName
 ="
incr
">

<
exponential
 expRate
="
a2
"/>

</
ratedaction
 >

<
newProcess
 ProcessID
="
SET
"/>

</
actionsequence
 >

. . .

</
choice
>

</
actionsequence
 >

</
process
>

</
behavior
>

. . .

 </
elementType
 >

. . .

</
archiElemTypes
 >

. . .

</
ArchiType
 >
 SetAEmilia.xml

<
instanceRule
 model1
="
SA
"
 model2
="
ArchiType
 ">

. . .

<
bid_rule
 rule_elem1
 ="
ArchiType[@nomeArch=“EsempioSet_Type”]/

 archiElemTypes/elementType[@name=“SetType”]/behavior/

 process[@name=“SET”]/actionsequence/choice/actionsequence/

 ratedaction[@actionName=“insert”]
 "

 rule_elem2
 ="
SA[@name=“SetCounter”]/Components/

 StateMachine[@name=“Set”]/CompositeState/

 InitialState[@name=“S0”]/outgoing[@target=“S2”]/

 transition[@ref=“insert”]
 "/>

. . .

</
instanceRule
 >

Set_AEm_Charmy_rules.xml

Figure 6.7: Rules Instance for the Set-Counter Application in TwoTowers-CHARMY Integration

6.5.1 DESIGNING THEFRAMEWORK IN ECLIPSE

The framework described in Section 6.3 maps very well to the Eclipse platform, which can be used to
profitably implement most of the components of such a framework as extensions to the platform itself, by
means of plugins.

As regard to the framework architecture depicted in Figure 6.8(b), we give an outline of how the architec-
tural components can be implemented using the Eclipse framework:

• Integration Core: It can be directly mapped to the Eclipse platform workspace, where all the data
used by the tools deployed in the platform are saved. Since XML is the target language for storing
information about the structures represented by models in the Integration Core, the Eclipse platform

(a) The Eclipse Platform Architecture (b) The Integration Framework overEclipse

Figure 6.8: EclipsePlatform and its Instantiation for Our Framework

126 Chapter 6. A Tool Integration Framework

runtime API may be profitably used to handle such information. In fact the whole Eclipse platform
relies on XML for handling data files and, as a consequence, it provides a complete support for XML
processing.

• Visual Editors: The workbench, with its graphical capabilities and widget toolkits, may be used to
export graphical representation of the integration core, in order to spot model sections which need to
be revised (as a consequence of some analysis) or even to provide a visual way to act directly on the
model by changing it. Analysis methodologies which lacks of visual tool, may also take advantage
of the workbench in order to provide visual editors that can give a methodology-oriented view of the
models they require.
Methodologies which already have their set of modeling tools, may provide visual editors which
expose a sort of control panel for those tools. In this way, external tools can be used as before, but in
a more integrated way, from a single environment.

• Input and analysis filters: These filters may be implemented as plugins which interact directly with
the integration core, modifying it as needed. Notification mechanisms provided by the Eclipse plat-
form may be also used for triggering some application logic which acts on the integration core as a
consequence of an input filter importing of new models, or an analysis filter feedback which modifies
the model itself (directly or indirectly).

As a side effect, all the previously cited architectural components, may take advantage of the other Eclipse
framework components, especially from the team working capabilities which enables the versioning of the
data stored in the workspace, and therefore in the integration core; this could be useful for keeping track of
the changes made to the models and, in case, provide an effective way to rollback such changes.

It is also important to point out that many companies are developing modeling tools using the Eclipse
framework. Notably UML modeling tools [122] are already available and can be readily used also in the
context of our integration framework. Moreover, the fact that development environments for Java and C++
have already been integrated with the Eclipse framework may be useful for bridging the gap between the
models and code, for example by automatically generating skeleton code from the models stored in the
integration core.

6.6 SUMMARY

In this Chapter we have introduced a framework to support the integration of functional and non-functional
analysis of software systems at architectural level. This work originates from the activities in our software
engineering lab, where we experienced the crucial need of merging results from different software analysis
approaches in order to better refine software architectures.

Our framework lays on an XML-based integration core, where software models and semantic relations
between the models are represented. The aim is to provide a seamless integration of different analysis
methodologies. To this regard we have sketched guidelines to allow embedding new methodologies in our
framework. We have also shown how such a framework can be implemented using the Eclipse platform.

CHAPTER 7

INTEGRATION OF A SOFTWARE PERFORMANCEENGINEERING

METHODOLOGY IN THE TOOL INTEGRATION FRAMEWORK

The aim of this Chapter is twofold: to integrate two SPE approach tools in order to realize a fully automated
predictive performance analysis, and to show its integration in the framework tool we presented in the
previous chapter. The SPE approaches we considered are the one proposed by Cortellessa and Mirandola
in [66] and the other from Smith and Williams discussed in [145] in detail. The first defines a process to
generates Execution Graphes and Queuing Networks from software architecture design described by means
of annotated UML Use Case, Sequence and Deployment Diagrams. This approach is implement in the
XPRIT tool [64]. The second instead determines the workload proposed to the systems by reducing the
Execution Graph and uses such an information to properly parameterize the queuing network. This second
approach interacts with QNAP tool to evaluate the obtained model and gain the performance indices. This
second approach is implemented in the SPE•ED tool.

To accomplish our goals we reviewed the S-PMIF meta-model proposed by Smith et al. in [160]. It formally
defines the Execution Graph, in terms of entities and relationships among them. Moreover, we defined upon
that meta-model an XML Schema that specifies the syntax of the language we used to integrate the two tools.
To integrate the two tools we also made usage of the PMIF meta-model proposed by Smith and Williams in
[160] and reviewed by Smith and Lladó in [141] to represent the QN model.

The effort spent in the realization of the integration of the two approaches provided us a new piece of the
XML Integration Core and a first step towards the insertion of the SPE approach into the tool integration
framework has been done. In particular, we made the XML schema of the S-PMIF part of the XML Model
Representation in the XML Integration Core. Indeed the approach insertion in the framework can be made
at two levels: at the UML notation level and at the Execution Graph level.

In the following, we first show the xml schema definition step and the integration of the two tools and later,
in the last section, we map the implemented modules in the integration tool framework entities discussed in
the Chapter 6.

7.1 TOWARDS A FULLY AUTOMATION OF THE SPE PROCESS

The SPE process uses multiple performance assessment tools depending on the state of the software and
the amount of performance data available. This Chapter describes two XML based interchange formats
that facilitate using a variety of performance tools in a plug-and-play manner, thus enabling the use of
the tool best suited to the analysis. A Software Performance Model Interchange Format (S-PMIF) is a
common representation that can be used to exchange information between (UML-based) software design
tools and software performance engineering tools. Using it, a software tool can capture software architecture
and design information along with some performance information and export it to a software performance
engineering tool for model elaboration and solution without the need for laborious manual translation from
one tool’s representation to another, and the need to validate the resulting specification. S-PMIF enables
the following Software Performance Engineering (SPE) tasks:

127

128
Chapter 7. Integration of a Software Performance Engineering Methodology in the Tool

Integration Framework

1. Developers can prepare designs as they usually do and export the data to SPE tools where perfor-
mance models can be constructed automatically.

2. The model transformation can be used to check that the resulting processing details are those intended
by the UML specification.

3. Data available to developers can be captured in the development tool - other data can be added by
performance specialists in the SPE tool.

4. Rapid production of models makes data available for supporting design decisions in a timely fashion.
This is good for studying architecture and design tradeoffs before committing to code.

5. Developers can do some of this on their own without needing detailed knowledge of performance
models.

The performance model interchange format (PMIF 2.0) is a common representation for system performance
model data that can be used to move models among system performance modeling tools that use a queueing
network model paradigm [141]. A user of several tools that support these formats can create a model in one
tool and easily move models to other tools for further work.

This Chapter first defines an XML based S-PMIF based on the meta-model of software performance model
information requirements in [160]. Then it demonstrates the feasibility of using both the S-PMIF and the
PMIF 2.0 to automatically translate an architecture description in UML into both a software performance
model and a system performance model to study the performance characteristics of the architecture. The
software performance model provides best and worst case performance data for an architecture/design. If
the predicted performance results do not meet performance requirements, the model identifies critical areas
and makes it easy for an analyst to study alternatives for correcting problems and quantify the performance
improvement of each. Once an appropriate architecture/design is selected, the PMIF can be used to transfer
the model to a system execution model to study additional facets of the operating environment and look for
problems due to contention, locking, etc., and to study the effect of changes in the computer or network
environment.

This overall process is beneficial because no single tool is good for everything. Early in development one
needs to quickly and easily create a simple model to determine whether a particular architecture will meet
performance requirements. Precise data is not available at that time, so simple models are appropriate for
identifying problem areas. Later in development, when some performance measurements are available,
more detailed models can be used to study intricacies of the performance of the system. At that time,
different tools are desirable that provide features not in the simpler models. These ”industrial strength”
modeling tools are seldom appropriate earlier in development because the models take additional time and
expertise to construct and evaluate, and it is seldom justified when performance details are sketchy at best.

A common set of XML based interchange formats lets one use a variety of different tools as long as they
support the interchange. Each tool must either provide an explicit import and export command, or provide
an interface to/from a file and an XSLT translation can convert between the interchange format and the file.
The translation can be relatively easy.

Earlier work defined both a meta-model for software performance models and a PMIF using an EIA/CDIF
(Electronic Industries Association/CASE Data Interchange Format) paradigm for transferring information
between CASE tools [144, 160]. The PMIF was subsequently enhanced and implemented in XML [141].
An exchange takes place via a file and internal tool information is translated to and from the file’s transfer
format. The transfer format in the original CDIF standard used LISP as the implementation language.
Today, XML is a more logical choice for a transfer format because it was designed for this purpose and
there are many tools available to support the exchange of information in XML.

This project uses the SPE meta-model as a starting point, and contributes the following to the interchange
process:

7.1 Towards a Fully Automation of the SPE Process 129

Figure 7.1: The SPE process.

• An updated SPE meta-model

• Definition of the XML schema based on the meta-model

• Implementation of extensions to the XPRIT software to export UML models into the S-PMIF

• Implementation of a new function in the SPE•ED software to import S-PMIF models

• Demonstrated feasibility with an experimental proof of concept that uses both interchange formats
to combine the use of software performance engineering models and system performance models to
predict performance from a UML specification.

After discussing related work, this Chapter describes the SPE meta-model and the XML schema based
on it. Then it presents the SPE process for model exchanges and the required extensions to XPRIT and
SPE•ED. The SPE process and the experimental proof of concept are presented. Plans for future work and
conclusions complete the presentation.

Differently from other similar work, this follows the software performance engineering approach where
from an annotated UML software specification, a software performance model is first derived and evaluated
using a software modeling tool, like SPE•ED [142, 143], which outputs are normally enough in early
stages of design. When more specific performance measures are needed, the model can be exported as a
Queuing Network model and analyzed with a system modeling tool, like Qnap. Furthermore, our approach
proposes and uses common XML based interchange formats, S-PMIF and PMIF 2.0, which allow multiple
tools to be used to solve the models. Tools may be used in a ”plug and play” fashion to select the tool best
suited for a particular problem. It simplifies the implementation of an interchange process because tools
only need to interface with the interchange format and need not develop custom interfaces to each other.
The whole process that we devise is illustrated in Figure 7.1.

130
Chapter 7. Integration of a Software Performance Engineering Methodology in the Tool

Integration Framework

Figure 7.2: SPE Meta-Model Diagram.

7.2 SPE META-MODEL

The SPE meta-model formally defines the information required to perform an SPE study. This model is
known as the SPE meta-model because it is a model of the information that goes into constructing an SPE
model. Note that this meta-model is different from the Performance Model Interchange Format (PMIF) dis-
cussed in [140, 141, 144]. The PMIF defines information exchanged between queueing network modeling
tools (QNM) while the meta-model defines information to be exchanged between UML software design
tools and performance tools. Additional information, such as the mapping of components to processing
locations as well as the internal characteristics of software locations may be exchanged between UML and
performance tools. This exchange may lay on PMIF or an extension of it where needed.

7.2.1 SPE META-MODEL 2.0

This meta-model defines the essential information required to create the software and system performance
models as defined in [139, 145]. The SPE meta-model class diagram is shown in Figure 7.2. Figure
1b shows the attributes of each object. (Note: Object attributes are typically defined as part of the class
diagram. They are shown in Figure 7.3 here to conserve space.) The following paragraphs describe the
classes and their relationships. The complete definition is in [147]. An SPE study is based on Projects which
contain one or more PerformanceScenarios. Each PerformanceScenario is modeled by an ExecutionGraph.
An ExecutionGraph is composed of one or more Nodes and zero or more Arcs. A Node may be connected to

7.2 SPE Meta-Model 131

Figure 7.3: Meta-model Attributes.

0, 1, or 2 other Nodes via an Arc1. Several types of Nodes may be used in constructing an ExecutionGraph:

ProcessingNode:ProcessingNode: represents processing steps at an appropriate level of detail. There are
four types of ProcessingNodes:

1. BasicNode : represents a software processing step at the lowest level of detail appropriate for
the current development stage.

2. ExpandedNode : indicates that processing details are expanded in a subgraph at the next level
of detail. The subgraph is, itself, another ExecutionGraph.

3. LinkNode : represents a component whose execution requirements are specified in a previ-
ously saved performance scenario.

4. SynchronizationNode : represents communication and synchronization with a Synchro-
nizationNode in another PerformanceScenario. A SynchronizationNode may be a SendNode or
ReceiveNode.

4.1 SendNode represents a call from one process to another. There are three types of
SendNodes:

4.1.1 SynchronousCall: represents a call in which the caller waits for a reply before pro-
ceeding

4.1.2 DeferredSynchronousCall: represents a call in which the caller continues to execute
and later requests the reply. If the reply is not available at that time then the caller
waits.

4.1.3 AsynchronousCall: represents a call with no reply.

4.2 ReceiveNode: represents the receipt of a request from another process. There are 2 types
of ReceiveNodes:

4.2.1 ReplyNode: represents receipt of request that requires a reply. It can be used with
either a SynchronousCall or a DeferredSynchronousCall.

4.2.2 NoReplyNode: represents receipt of a request for which a reply cannot be sent (i.e., an
AsynchronouCall).

CompoundNode: CompoundNode: represents special processing structures, such as Case constructs, rep-
etition, and parallel execution. There are four types of CompoundNode:

1Note that some CompoundNodes may be connected to more than 2 attached nodes, but Arcs are not defined for those connections.
So Nodes can be connected to at most one predecessor and one successor Node by an Arc.

132
Chapter 7. Integration of a Software Performance Engineering Methodology in the Tool

Integration Framework

1. RepetitionNode : represents processing that is repeated and a repetition factor specifies the
number of repetitions.

2. CaseNode: represents conditional execution of components, each with a probability of execu-
tion.

3. PardoNode : represents parallel execution paths, each with a probability of being initiated.
The parallel execution paths join when they finish.

4. SplitNode : indicates the initiation of concurrent processes, each with a probability of being
initiated, that need not join.

A CompoundNode is also composed of one or more ProcessingNodes and one or more Arcs. The re-
sources used by a Node are specified by one or more ResourceRequirements. A ResourceRequirement
may be described by an optional Parameter. A Facility is a collection of Devices. A ResourceRequirement
is executed on one or more Devices. A Device represents a unit that provides some processing service.
ResourceRequirements are associated with Devices by an OverheadMatrix which specifies the amount of
service that each resource type requires from various devices. The current version of the meta-model does
not include performance requirements. Currently, performance requirements are defined informally, based
on the type of problem and expert judgment. Inclusion of performance requirements in the meta-model will
require that they be more formally defined. This is a topic for future research.

The OverheadMatrix merits some additional explanation. It is based on a concept in [145] and the SPE
product, SPEoED [142, 143] used in this demonstration. The OverheadMatrix is an associative entity; it de-
scribes the relationship between a ResourceName and a Device. An individual instance of OverheadMatrix
contains a ResourceName a DeviceName and an AmountOfService. For example, the ResourceRequire-
ment may specify the number of instructions to be executed. The OverheadMatrix would specify the CPU
processing time per instruction as the AmountOfService for the CPU Device. The class may be viewed as
a table with each instance corresponding to a row that specifies a distinct ResourceName/DeviceName pair
such as:

• instructions and the CPU processing time per instruction,

• database updates and the CPU processing time per update

• database updates and the Disk device visits per update.

The use of the overhead matrix makes it possible to separate the portion of the model that describes the
software from the portion that describes the execution environment. This is important for the SPE approach
because developers are often able to specify the software resource requirements such as the number of
database updates or messages transmitted, but are

7.2.2 ADJUSTMENTS TO THEMETA-MODEL

The following changes were made to the original SPE meta-model to reflect more recent information in
[145]:

• The StateIdentification node was deleted and the SynchronizationNode was added a subclass of Pro-
cessingNode

• Facility was added

• Project was added

7.2 SPE Meta-Model 133

• Device definitions were modified to specify the specific kind of device (such as CPU, Disk, etc.)
rather than the generic terms FCFS, NonFCFSDemandSpec, and NonFCFSTimeSpec.

Other minor changes were made to class attributes for the XML implementation. For ex-
ample, XML schemas allow names to be used as IDs and ID references, so NodeIds
were eliminated. We changed the specification for names to match XML names in
http://www.w3.orgTR/2004/REC-xml-20040204/#id . Other changes are similar to
those made in [141].

7.2.3 S-PMIF XML SCHEMA

The diagram of a portion of the XML schema corresponding to the S-PMIF meta-model is shown in Figure
7.4. The complete schema is atwww.perfeng.com/pmif/s-pmifschema.xsd . The following
excerpt shows the schema definition for an ExecutionGraph:
<xs:complexType name=” EG type ”>

<xs : sequence>
<x s : c h o i c e maxOccurs=” unbounded ”>

<xs : sequence>
<x s : c h o i c e>

<x s : e l e m e n t name=” BasicNode ” t y p e=”
Bas icNode type ” />

<x s : e l e m e n t name=” ExpandedNode ” t y p e=”
ExpandedNodetype ” />

<x s : e l e m e n t name=” LinkNode ” t y p e=” L inkNode type
” / >

<x s : e l e m e n t name=” Synch ron i za t i onNode ” t y p e=”
SynchroNodetype ” />

</ x s : c h o i c e>
<x s : e l e m e n t name=” ResourceRequ i rement ”t y p e=”

Resou rceRequ i r emen tt ype ” ” minOccurs=”0 ”
maxOccurs=” unbounded ”>

</ x s : e l e m e n t>
</ x s : sequence>
<x s : e l e m e n t name=”CompoundNode” t ype =” CompoundNodetype

” / >
</ x s : c h o i c e>
<x s : e l e m e n t name=” Arc ” t ype =” A rct ype ” minOccurs=”0 ”

maxOccurs=” unbounded ” />
</ x s : sequence>

unable to specify the device requirements for them. The overhead matrix thus provides a mechanism to
separate the two and to obtain the ResourceName and UnitsOfService from the software specification and
the OverheadMatrix from other sources such as measurement tools or computer experts

<x s : a t t r i b u t e name=”EGname” t y p e=” xs : ID ” use=” r e q u i r e d ” />
<x s : a t t r i b u t e name=” IsMainEG ” t y p e=” x s : b o o l e a n ” use=” r e q u i r e d ”

/>
<x s : a t t r i b u t e name=” S ta r tNode ” t y p e=” xs:IDREF ” use=” r e q u i r e d ” />
<x s : a t t r i b u t e name=” Mod i f i ca t i onDa teT ime ” t y p e=” xs :da teT ime ”

use=” o p t i o n a l ” />
<x s : a t t r i b u t e name=”SWmodelname” t y p e=” x s : s t r i n g ” use=” o p t i o n a l

” / >
</ xs:complexType>

134
Chapter 7. Integration of a Software Performance Engineering Methodology in the Tool

Integration Framework

Figure 7.4: Portion of the XML schema corresponding to the S-PMIF meta-model.

The following is a sample s-pmif.xml ExecutionGraph specification:
<Execut ionGraph EGname=” drawmod1 EG ” IsMainEG=” t r u e ” S ta r tNode =”

c r e a t e M o d e l ”>
<BasicNode NodeName=” c r e a t eM o d e l ” />
<BasicNode NodeName=” drawModel ” />
<CompoundNode>

<Repe t i t i onNode NodeName=” r1 ”>
<ExpandedNode NodeName=” e1 ” EGname=” e 1r e f ” />

</ Repe t i t i onNode>
</CompoundNode>
<BasicNode NodeName=” c l o s e ” />
<Arc FromNode=” c r e a t eM o d e l ” ToNode=” draw Model ” />
<Arc FromNode=” drawModel ” ToNode=” r1 ” />
<Arc FromNode=” r1 ” ToNode=” c l o s e ” />

</ Execut ionGraph>

The schema has 2 differences from the meta-model. First, we flattened the hierarchy in several areas to
simplify the xml. For example, both Nodes and ProcessingNodes are eliminated from the schema and their
attributes are moved to the nodes that inherit those attributes. Second, we made some elements and attributes
optional in the schema even though they are not optional in a software performance model. For example, a
workload intensity such as interarrival time is necessary to solve a software performance model; however,
the developer of the UML software diagrams may not know that information so it won’t be required in the
xml. Similarly, we made resource requirements, overhead matrix and device specifications optional. We
discuss this issue further in the next section. We also created three separate schemas for the meta-model:
Topology,OverheadMatrix, and Device. They can be combined by including the appropriate schemas.
Thus, Topology may includeOverheadMatrix which includes Device. This is useful because one may use

7.3 SPE Model Interchange Process 135

any of the schemas without using the others. For example, if the overhead matrix specification is coming
from another source it does not need to be included in the topology, and vice-versa.

7.3 SPE MODEL INTERCHANGEPROCESS

Our vision for the SPE model interchange process is:

1. A software architect, designer, or developer would use a UML tool to create their model of the
software and when ready for the assessment, export the model into S-PMIF.

2. A software performance engineer would then import the S-PMIF into a software performance mod-
eling tool such as SPE•ED. They would likely need to supplement the information received from
S-PMIF to add one or more of the following: resource requirements, facility and device character-
istics, and the overhead matrix. The latter task may be skipped when the original UML model is
annotated with all the additional performance information needed (using, for example, the UML SPT
profile [87]), and the translation tool is able to process this additional information.

3. The software performance engineer would conduct performance studies, and if problems are found,
modify the software performance model accordingly.

4. After resolving any serious problems with the software architecture and/or design, they may export
the model into PMIF.

5. A performance engineer would import the PMIF into a system or network modeling tool for further
investigation of performance properties of the network and computer system such as the effect of
locking and contention with other work in the environment.

6. Results would then be exchanged in the reverse direction and ultimately the software specialist would
be able to view suggestions for performance improvements and automatically update the UML to
reflect selected changes.

This process differs from that proposed by other authors primarily because we envision the use of a software
performance modeling tool such as SPE•ED between the UML and the system performance modeling tool.
In our experience, we find many software problems that must be corrected before detailed study of the sys-
tem performance is feasible. The case study described later illustrates. When problems are detected, it isn’t
enough to know that the system is saturated. It is also necessary to determine which parts of the software
contribute to the problem and how much, in order to determine options for solving the problem. For exam-
ple, the case study has a problem due to excessive disk usage. A software performance model can identify
which portions of the software use the disk and enable the evaluation of different software alternatives that
use less I/O. A system performance model, however, will be limited to hardware improvement alternatives
such as more or faster devices. The best solution may be a combination of the two. Our model interchange
process enables the evaluation of all those options.

PHILOSOPHY - The model interchange strategy that we adopted from CDIF [75] is ”export everything
you know and provide defaults for other required information”; and ”import the parts you need and make
appropriate assumptions for required data that is not in the schema and thus the interchange file.” We started
with a use case for the SPE interchange process in which developers did not have resource requirement
specifications, the facility or device information, etc. So it was necessary to fill in many default values such
as equal probabilities for Case nodes, etc. Our PMIF experience led us to the realization that everything
you know is not necessarily everything you use. For example, SPE•ED uses visits to specify routing, but
it knows about probabilities, and it is relatively easy to calculate them. We created an ”import-friendly”

136
Chapter 7. Integration of a Software Performance Engineering Methodology in the Tool

Integration Framework

PMIF; that is, we include both visits and probabilities to make it easy on the import side. It is easy to do on
output and it lets many importers use simple tools like XSLT rather than requiring custom code to do the
import. The redundant specifications are currently optional.

EXPORTING UML -M ODELS TO S-PMIF - This is a two-steps task: (i) exporting UML diagrams from
a CASE tool representation to an XML format, (ii) transforming the exported result into a S-PMIF model.
For what concerns the first step, the XMI standard specifications [121] have been adopted by almost all
UML CASE tools to export UML diagrams in XML. Actually XMI does not represent a specific Schema
for UML diagrams, but gives formal specifications to build standard Schemas for UML diagrams. This is
the reason for small differences among the XMI exporting results of UML tools. For the sake of this Chapter
experiments we have used the Poseidon tool [5]. The XPRIT tool performs the second step [64]. XPRIT
is made of two components: UML2EG, that allows to annotate Use Case and Sequence Diagrams and
generate from the annotated diagrams an Execution Graph; UML2QN, that allows to annotate a Deployment
Diagram and generate from the annotated diagram a Queueing Network representing the hardware platform
where the software shall run. For the sake of these experiments we have used only UML2EG, as the
generation of a Queueing Network has been delayed in the process. In particular, we have exploited the
XPRIT capability of producing the structure of an Execution Graph (owing S-PMIF) from one or more
UML Sequence Diagrams (represented in XMI). The translation algorithm is based on visiting the Sequence
Diagram and recognizing elementary patterns. For each pattern in a Sequence Diagram a corresponding
pattern of an Execution Graph is associated. The whole structure of the Sequence Diagram is used to
interconnect elementary patterns in the Execution Graph. For example, UML2EG is able to recognize
sequential and parallel patterns, synchronous and asynchronous communications. Some accommodations
were needed on the UML diagrams to make XPRIT work on these experiments:

1. In order to avoid XPRIT considering the paths that depart one after the other from the same SD axis
(see draw()’s leaving Beam in Figure 7.5) to all be parallel paths, we added return arrows to the
diagrams;

2. XPRIT does not cope with object creation, as all the names of components acting in a diagram need to
be known in advance; therefore object creation has been modeled as a standard synchronous message
between two existing components;

3. Software loops are not part of the UML 1.x standards (which is the basis of XPRIT), so message
labels have been exploited to delimitate the starting and the ending messages of a loop in a Sequence
Diagram.

Note that the last limitation will disappear with UML 2 Sequence Diagrams, where frames have been
introduced to delimitate special interaction patterns. A new XPRIT release is being implemented based on
UML 2, so many translation steps will become straightforward.

IMPORTING S-PMIF MODELS INTO SPE•ED - SPE•ED uses the Document Object Model (DOM) to
import the s-pmif.xml. It first loads and parses the document, then uses DOM calls to walk through each
execution graph and create the corresponding nodes and arcs in SPE•ED.

SPE•ED required a custom interface because, rather than reading input from a file, it provides a graphical
user interface that enables a user to quickly draw a model. When the input comes from an S-PMIF, there is
currently no provision for location coordinates for the nodes. Therefore another special routine is required
to ”reformat” a graph and assign nodes to locations.

EXPORTING A PMIF.XML MODEL FROM SPE•ED -

7.3 SPE Model Interchange Process 137

Figure 7.5: Drawmod Sequence diagram.

SPE•ED also uses the Document Object Model (DOM) to export the pmif.xml. It creates the entire docu-
ment in memory, then writes it to a file. This facilitates the export because elements and attributes can be
added in any order as long as they are added in the correct location. It is a relatively small file, e.g., 2-3K for
the example in section 5, so the memory requirements are modest. SPE•ED uses a standard topology for
models. Each facility contains a CPU and one or more other types of devices. Within a facility the QNM is
assumed to be a central server model. Workloads begin execution on the CPU and upon completion transit
to one of the other devices, then back to the CPU until completion. A model can contain multiple facilities,
each with this central service topology. Several other cases required special handling, such as generating
source, sink, and think nodes, transit probabilities, generating separate servers when quantity of servers is
greater than one, name substitutions, etc. Details are in [141].

IMPORTING A PMIF.XML MODEL INTO QNAP - Qnap reads the input (QNM specification and solving
parameters) from a file. Ultimately, Qnap would have an interface that would read from its standard file
OR the pmif.xml file. However, we did not have access to Qnap source code and we could not implement
such an interface directly. Therefore, we translated the pmif.xml file into a file in Qnap’s format. The
model translation from a pmif.xml file into a Qnap input file was done using XSLT. We generated a specific
XSLT file that transforms a pmif.xml file into a file that can be directly read and executed by Qnap. The
direct use of XSLT was feasible due to the possibility of specifying the stations by parts in the Qnap input
file. This might not be possible for some other tools with stricter ordering in the input file, in which
case two possibilities would arise: The use of DOM (as used by SPE•ED to export pmif.xml) or the
use of XSLT together with a conventional programming language. The use of XSLT is fairly simple,
therefore we would recommend XSLT when possible for the translation into a tool’s file format. For the
case of a real implementation (i.e.,implementing an interface from the tool that would read from the xml
file directly), the use of DOM would be necessary since XSLT can only transform an XML file into another
file. It would probably be advisable to read the entire pmif.xml file into memory then interpret and insert
parameters into appropriate internal data structures because of the ordering in the XML schema. That is,
some transformations may require information from elements that have not been read yet.

138
Chapter 7. Integration of a Software Performance Engineering Methodology in the Tool

Integration Framework

Figure 7.6: Generated SPE•ED Model.

7.4 EXPERIMENTAL RESULTS

For the proof of concept we used the Drawmod Architecture 1 model described in Chapter 4 of Smith and
Williams’ book ([145]). The sequence diagram for the model is in Figure 7.5.

The following is part of the XML file resulting from the XPRIT translation of the sequence diagram:
<P e r f o r m a n c e S c e n a r i o Scenar ioName=” drawmod1 ”
SWmodelf i lename=” drawmod1 SD . xmi ”>

<Execut ionGraph EGname=” drawmod1 ” IsMainEG=” t r u e ” S ta r tNode =”
c r e a t e M o d e l ”>
<BasicNode NodeName=” c r e a t eM o d e l ” />
<BasicNode NodeName=” drawModel ” />
<BasicNode NodeName=” open ” />
<BasicNode NodeName=” f i ndmode l ID ” />
<BasicNode NodeName=” f indmode l ID beams ” />
<BasicNode NodeName=” s o r tb e a m s ” />
<CompoundNode>

<Repe t i t i onNode NodeName=” r1 ”>
<ExpandedNode NodeName=” e1 ” EGname=” e 1r e f ” />

</ Repe t i t i onNode>
</CompoundNode>
<BasicNode NodeName=” c l o s e ” />
<Arc FromNode=” c r e a t eM o d e l ” ToNode=” draw Model ” />
<Arc FromNode=” drawModel ” ToNode=” open ” />
<Arc FromNode=” open ” ToNode=” f i ndmode l ID ” />
<Arc FromNode=” f i nd mode l ID ” ToNode=” f ind mode l ID beams ” />
<Arc FromNode=” f ind mode l ID beams ” ToNode=” s o r tb e a m s ” />
<Arc FromNode=” s o r t b e a m s ” ToNode=” r1 ” />
<Arc FromNode=” r1 ” ToNode=” c l o s e ” />

</ Execut ionGraph>
<Execut ionGraph EGname=” e 1r e f ” IsMainEG=” f a l s e ” S ta r tNode =”

r e t r i e v e b e a m ”>
<!−−D e t a i l s o m i t t e d−−>

</ Execut ionGraph>

7.4 Experimental results 139

</ Pe r fo rmanceScenar io>

The Execution Graph has a Boolean attribute (IsMainEG) that indicates whether it is the main graph in the
file or a sub-graph. It is represented from a sequence of nodes followed by a sequence of arcs between
nodes. As long as the Sequence Diagram follows a sequential execution, all Basic Nodes are generated.
Upon finding a loop, a Repetition Node is appended that refers to a subgraph identified from the EGname
attributee1ref . The complete file is in [147]. Next the s-pmif.xml model was imported into SPE•ED and
the software model was created. The generated software model is shown in Figure 7.6. Note that the text
does not fit into the execution graph nodes because the operating system routines use spaces to insert line
breaks; however, the XML names cannot contain spaces. Some translation of names will be necessary to
create ”prettier” models.

Next, we added the resource requirements (from the Drawmod example in [145]), then the model was
solved. In general, software performance engineers will need to use the techniques in [145] to estimate
requirements that are not in the interchange file. That is an important step in the overall process, but it is
beyond the scope of this Chapter. The model was solved and problems were identified in the architecture.
After making the architectural changes we produced Drawmod Architecture 3 (also described in [145])
and confirmed that it resolved the performance problems. Note that in this case, SPE•ED has the ability
to solve the system execution model both analytically and with simulation to quantify the response time,
utilization, etc. for computer resources so it isn’t necessary to export the model to get those results. There
are other reasons why one might want to export the model, such as:

• to compare solutions

• to get additional metrics such as queue lengths

• to study additional facets of the environment that might not fit the central server assumptions men-
tioned in section 7.3.

So the next step in the proof of concept is to export the model from SPE•ED into pmif.xml. The following
shows an excerpt containing the generated service request (produced from SPE•EDs conversion of the
software performance model into the system performance model):

<Serv i ceReques t>
<DemandServ iceRequest WorkloadName=” DrawmodArch i tec tu re 3 ” Server ID =”

CPU” ServiceDemand=” 3.574195E−03” TimeUni ts=” sec ” NumberOfVis i ts=”
2219 ”>
<T r a n s i t To=” Disk A ” P r o b a b i l i t y =” 4 .867057E−02”/>
<T r a n s i t To=” Disk B ” P r o b a b i l i t y =” 4 .867057E−02”/>
<T r a n s i t To=” D i sp lay ” P r o b a b i l i t y =” 0 .9022082 ” />
<T r a n s i t To=” UserThink ” P r o b a b i l i t y =” 4 .506535E−04” />

</DemandServ iceRequest>
<WorkUn i tServ i ceReques t WorkloadName=” DrawmodArch i tec tu re 3 ” Server ID =

” Disk A ” NumberOfVis i ts=” 108 ”>
<T r a n s i t To=”CPU” P r o b a b i l i t y =”1 ” />

</ WorkUn i tServ iceRequest>
<WorkUn i tServ i ceReques t WorkloadName=” DrawmodArch i tec tu re 3 ” Server ID =

” Disk B ” NumberOfVis i ts=” 108 ”>
<T r a n s i t To=”CPU” P r o b a b i l i t y =”1 ” />

</ WorkUn i tServ iceRequest>
<WorkUn i tServ i ceReques t WorkloadName=” DrawmodArch i tec tu re 3 ” Server ID =

” D i sp lay ” NumberOfVis i ts=” 2002 ”>
<T r a n s i t To=”CPU” P r o b a b i l i t y =”1 ” />

</ WorkUn i tServ iceRequest>
</ Se rv i ceReques t>

The pmif.xml is then imported into Qnap. In this specific implementation the import consists of an XSLT

140
Chapter 7. Integration of a Software Performance Engineering Methodology in the Tool

Integration Framework

translation from a file in pmif’s format into a file in Qnap’s format. The generated Qnap input file for the
Drawmod Architecture 3 is shown below. It can be seen that the stations need first to be declared and then
they can be modified as many times as is wanted, so when reading the file sequentially, the last information
read is the one that is taken. This makes the use of XSLT very convenient.
/DECLARE / QUEUE UserThin , CPU;

QUEUE Disk A , Disk B , D i sp lay ;
CLASS Drawmod ;
REAL TDrawmod ;

/ STATION / NAME= UserThin ;
TYPE = INFINITE ;

/ STATION / NAME= CPU;
SCHED = PS ;

/ STATION / NAME = Disk A ;
SERVICE = EXP (0 . 0 3) ;
SCHED = FIFO ;

/ STATION / NAME = Disk B ;
SERVICE = EXP (0 . 0 3) ;
SCHED = FIFO ;

/ STATION / NAME = D isp lay ;
SERVICE = EXP(0 . 0 0 1) ;
TYPE = INFINITE ;

/ STATION / NAME = UserThin ;
INIT (Drawmod) = 1 0 ;
SERVICE(Drawmod) = EXP(6 0) ;
TRANSIT(Drawmod) = CPU , 1 ;

/ STATION / NAME = Disk A ;
TRANSIT(Drawmod) = CPU , 1 ;

/ STATION / NAME = Disk B ;
TRANSIT(Drawmod) = CPU , 1 ;

/ STATION / NAME = D isp lay ;
TRANSIT(Drawmod) = CPU , 1 ;

/ STATION / NAME = CPU;
SERVICE(Drawmod) = EXP(0.000001610723298783236) ;
TRANSIT(Drawmod) = Disk A , 4 . 8 6 7 0 5 7 E−02,

Disk B , 4 . 8 6 7 0 5 7 E−02,
D isp lay , 0 . 9 0 2 2 0 8 2 ,
UserThin , 4 . 5 0 6 5 3 5 E−04 ;

The Qnap model is then solved and used for further study. The results of the initial solution are reported
in [141] and are not shown here. This proof of concept illustrates the feasibility of the SPE process using
XML based interchange formats for using multiple tools, rather than the particular results obtained from
the models.

LESSONLEARNED - We learned several lessons while conducting the experimental proof of concept that
are described in the following paragraphs. We found that there may be different interpretations of a UML
sequence diagram and it may not be clear which is the proper interpretation. For example, the sequence
of draw()s in Figure 7.5 were interpreted by XPRIT to be parallel steps because they did not have return
arrows. We often find that, for convenience, developers do not specify return arrows from calls, and we do
not want to require this specification just so the models can be exported. For this exercise, we just inserted
the return arrows. In UML 2 there is a specific construct for parallel execution so this issue will no longer
be a problem. In general, the interchange shows the value of viewing processing steps in different notations
to confirm that the processing is specified the way the developer intended. Note that the translated model in
Figure 4 is far more detailed than the Drawmod model in Figure 4-18 of [145]. Many of the processing steps
in the automatically generated model are not interesting from a performance standpoint, and the extra steps
tend to ”clutter” the model. This is a departure from the simple model strategy described earlier. This is a
common problem with automatic translation of designs. In many cases it may be easier to just create a new
model and omit those details initially. Some techniques for ”pruning” an automatically generated model
would make it better suited for SPE. This proof of concept illustrates one pass from UML to Qnap. The
SPE process will actually be iterative and there will be a need to exchange multiple models in the forward
as well as the reverse direction. Thus, we will need to be able to retain information that was added by
tools during the evaluation so that it won’t have to be re-created each time, such as resource requirements,
location coordinates, etc. We envision using the S-PMIF to transfer this information to the design tool
where it will need to be imported, saved, and exported the next time this SPE interchange process is used.

7.5 The SPE Approach in the Tool Integration Framework 141

7.5 THE SPE APPROACH IN THETOOL INTEGRATION FRAMEWORK

Figure 7.7: First Mapping between the SPE Approach Components and the Tool Integration Framework.

In this section we discuss how insert the above SPE approach(es) in the tool integration framework. We
show the possible mapping among the SPE approach and the integration framework entities introduced in
the Chapter 6. There are three are three ways to insert to SPE approach in the framework: (i) integration
at the Execution Graph notation level by means of XPRIT (see Figure 7.7); (ii) integration at the UML
notation level by means of the XMI exporting of the UML diagrams (see Figure 7.8); integration at the
Execution Graph notation level by means of S-PMIF exporting (see Figure 7.9).

All the three possibilities have the SPE•EDtool as analysis tool. SPE•ED makes use of QNAP tool to
evaluate the performance model form which gain values for the performance indices of indices.

In the first option, reported in Figure 7.7, the XML Schema for the S-PMIF meta-model becomes part of
the XML Integration Corein the XML Model Representation. The Input Filter component role in
the framework is covered by XPRIT tool that generate the Execution Graph from the UML diagrams. The
origin notation is the UML language describing the design of the software system we want to analyze. The
Analysis Filter here is the module we implemented to input the S-PMIF format in the SPE•ED
tool.

In this case, the analysis integration with other techniques requires the definition ofsematic
relations between the EG notation entities and the notation of the other considered analysis.

In the second option, reported in Figure 7.8, it is XML Schema for the UML language that becomes part
of theXML Integration Corein theXML Model Representation. TheInput Filter component role in
the framework is covered by the module of the UML Case tool used to design the software system, that
implements the XMI exporting of the UML diagrams. The origin notation is again the UML language.
TheAnalysis Filter here is the combination of the XPRIT tool that generates the EG of the software
system dynamics we want to analyze, and the module we implemented to input the S-PMIF format in the
SPE•ED tool.

142
Chapter 7. Integration of a Software Performance Engineering Methodology in the Tool

Integration Framework

Figure 7.8: Second Mapping between the SPE Approach Components and the Tool Integration Framework.

Figure 7.9: Third Mapping between the SPE Approach Components and the Tool Integration Framework.

In this case, the analysis integration with other techniques requires the definition ofsematic
relations between the UML notation entities and the notation of the other considered analysis.

In the last option, reported in Figure 7.9, the XML Schema for the S-PMIF meta-model becomes part of

7.6 Summary 143

the XML Integration Corein the XML Model Representation. The Input Filter component role in
the framework is covered by a new module we have to implement that exports the S-PMIF format from
the Execution Graph drawn by some graphical editor (we can use the one implemented in SPE•ED) . The
origin notation is the EG notation describing the dynamics of the software system we want to analyze. The
Analysis Filter here is the module we implemented to input the S-PMIF format in the SPE•ED
tool.

In this case, the analysis integration with other techniques requires the definition ofsematic
relations between the EG notation entities and the notation of the other considered analysis.

7.6 SUMMARY

In this Chapter we defined the S-PMIF XML format in order to automate an SPE approach by integrating
two tools: the XPRIT tool and the SPE•ED tool. We also showed how the defined S-PMIF format allows
us the integration of the automated approach in the tool integration framework. Actually we discussed
three different ways to accomplish this goal where in all the SPE•ED tool cover the role of analysis tool
whereas the XPRIT covers the role of an input filter,in the first case, and the role of the analysis filter in the
second case. In both of them the origin notation is the UML language. The last case does consider only the
SPE•ED tool and the origin notation is the Execution Graph.

144
Chapter 7. Integration of a Software Performance Engineering Methodology in the Tool

Integration Framework

Part III

Model-based Performance Analysis in
System Dynamic Reconfiguration

145

CHAPTER 8

DYNAMIC RECONFIGURATION TOMANAGE THE SIENA M IDDELWARE

PERFORMANCE

Recently, growing attention is focused on run-time management of Quality of Service of complex soft-
ware systems. In this context, self-adaptation of applications based on run-time monitoring and dynamic
reconfiguration is considered a useful technique to manage QoS in complex systems. Many frameworks for
dynamic reconfiguration have been recently proposed for this aim. These frameworks rely on monitoring,
reconfiguration and on–line model-based analysis to manage/negotiate QoS level of software systems at run
time. They share the idea of modifying the application configuration when the threshold of a critical QoS
index is crossed. The choice of the new configuration for improving the QoS of the system is based on the
current status of the managed software application.

In a previous work [55], we defined a framework able to dynamically reconfigure an application in order to
manage the performance of the software system at run-time. The framework monitors the performance of
the application and, when some problem occurs, it decides the new application configuration on the basis of
feedback provided by the on–line evaluation of performance models of several, pre-defined feasible alter-
natives. The choice of the new system configuration might consider several factors, such as, for example,
security, reliability of the application, and resources needed to implement the new configuration.

In this chapter we report our experience in implementing such an approach on theSIENA middleware. We
discuss the feasibility of the approach in a real context and point out its power/limits with respect to its
generality and reusability in different contexts.

The work this chapter discusses has been outlined in [55, 51] and it is described here in details.

8.1 BACKGROUND

In [130], Porcarelli et al. describe a framework which provides fault tolerance of component-based appli-
cations by detecting failures through monitoring, and by recovering through system reconfiguration. The
system reconfiguration is decided at run time by using online evaluation of a stochastic dependability model
of the system.

In [81], Garlan et al., presented an approach of self-adaptation to manage application performance based
on monitoring - interpretation - reconfiguration. In this approach the Software Architecture (SA) plays
a central role. The SA of the managed system is specified in terms of components and connectors using
Acme [80]. The architectural model is enriched with the runtime information provided by thegaugesand
finally it is evaluated by using AcmeStudio. If the current SA violates the specified constraints on the
system performance, it is dynamically modified by the framework.

Menasće et al. presented in [118] a framework that dynamically reconfigures an application, called Q-
application, in order to provide services with a given QoS level. A Q-application service can be imple-
mented by combining the services provided by registered components, also called QoS-aware components.

147

148 Chapter 8. Dynamic Reconfiguration to Manage theSIENA Middelware Performance

Several registered QoS-aware components can provide similar services with different QoS levels. These
components have several identical capabilities including QoS negotiation, registration and QoS monitoring.
When a Q-application receives a service request with a given QoS-level, it determines whether it can pro-
vide it and which registered QoS-aware components are involved. To make this decision, it evaluates the
performance models built on the possible configurations parameterized with the monitored data.

8.2 THE RECONFIGURATIONPROCESS

In a previous work [55] we have defined a framework that, by using the dynamic reconfiguration, manages
the performance of complex systems. That approach is based on monitoring the running system to collect
data, dynamic reconfiguration to change the running configuration whenever some performance problems
occur, and model-based performance analysis to decide the next system configuration among the ones
available.

A first performance model represents the software system behavior at a Software Architecture (SA) level.
The other models are generated on–the–fly through the application of suitable reconfiguration policies, de-
fined for the managed software system. Allowed reconfigurations may change only internal parameters of
software components (such as the number of threads or other features preventively defined by the compo-
nent developer), or the application topology by adding/removing component and/or connector instances.
However, a reconfiguration must not change the application functionalities (e.g. the substitution of a com-
ponent with a new one providing different services). A change in the application behavior would in fact
imply a re-design of the performance model, and not just its topology or some parameters, and consequently
the process could not be automatically carried out.

Figure 8.1: The Reconfiguration Process.

Figure 8.1 shows the reconfiguration process. The framework monitors performance attributes of the soft-
ware application. Whenever the established performance constraints are no longer satisfied, a reconfigu-
ration process will start. Given the set of reconfiguration policiesRPi defined for the application, a set
of reconfiguration alternatives is generated. These alternatives are evaluated by a performance model, cre-
ated on–the–fly on the basis of the performance model which reflects the current running configuration.
Each model is initialized with the monitored data, and then evaluated by using a solver tool. Finally, the
evaluation results are compared, and the most rewarding configuration is selected and applied to the system.

The online characteristics of the approach require areasonabletime of execution. This implies that only
models allowing analytical/numerical solution should be considered, whereas simulative models are not

8.3SIENA 149

admissible, since the accuracy of the analysis depends on the simulation running time. Moreover, in order
to control the state space explosion of the analytical/numerical solution, the model of the system should
be as simple as possible, omitting useless details about components behavior. The choice of the Software
Architectural abstraction for the application behavior description permits to address such problem. In fact,
SA is the minimum detailed description of the application having all the behavioral information needed to
carry on a predictive performance analysis, and it allows lightweight and fast models evaluation. Of course,
there is a tradeoff between the simplicity of the model and the support of the feedback provided for online
decision making.

8.3 SIENA

As a concrete example of dynamic application, we have chosenSIENA, a distributed, content-based, pub-
lish/subscribe event notification service [53, 52]. As depicted in Figure 8.2, theSIENA architecture defines

event service

access pointservers

subscribe

notify

advertise

publish ���
���
���
���

��
��
��

��
��
��

publisher subscriber

Figure 8.2:SIENA Architecture

two main entities: (i) theclientsand (ii) theevent-servicethat is responsible for delivering messages.

Clients may be bothpublishers(i.e. event generators) that publish notifications and,subscribers(i.e. event
consumers) that express their interest in such kind of events by supplying afilter. The event-service, com-
posed of one or more servers interconnected in a hierarchical fashion, forms a store-and-forward network
that is responsible for delivering events from publishers to those subscribers that have been submitted a
filter matching such notifications.

The performance of aSIENA network basically depends on both performance of the single router within
the event-service and whole network topology. In this Chapter we are interested in architectural adaptation
driven by entities (both clients and routers) performance monitoring.

C0

C2

C6

C3

C4

C7
C5

C9

C8

S0

S2

S4S3

S1

C1

Figure 8.3: A Possible Configuration for theSIENA Network

Moreover, we are interested in dynamically modifying theSIENA topology depending on several perfor-
mance attributes, such asutilizationandthroughputof SIENA Routers.

150 Chapter 8. Dynamic Reconfiguration to Manage theSIENA Middelware Performance

These attributes depend on the performance of the everySIENA router and on the network topology. The
performance of aSIENA router depends on the number of stored filters, as well as on the number of clients
connected to it. TheSIENA network topology, instead, impacts the internal management of subscription and
published messages, and then the global performance of the middleware.

8.4 THE LIRA FRAMEWORK

L IRA [54] (Light-weight Infrastructure for Reconfiguring Applications) is a system that enables the recon-
figuration of Component Based Applications in the Large Scale Distributed Systems context. This system
has been designed and implemented to manage dynamic and automatic reconfigurations, using a remote
interface.L IRA, in fact, dynamically changes the topology of the managed application, by installing new
components, adding and removing component instances, or simply changing their connections. In particu-
lar, L IRA performs two different kinds of reconfigurations: (i) aComponent Reconfigurationthat permits
internal parameters tuning and, (ii)Application Reconfigurationthat permits to change the overall applica-
tion by means of architectural properties (i.e. number of components and connections).

As depicted in Figure 8.4, theL IRA Software Architecture specifies three main entities: (i)Agentswhich
manage the components and implement both local and global reconfiguration logic, (ii) the agentMan-
agement Information Base(MIB), that contains the list of variables and functions exported by the agent
itself for remotely management and (iii) theManagement Protocol, that allows the interaction between the
agents.

L IRA defines three different kind of agents:

Component Agent: It is strictly coupled with a component and allows for monitoring and reconfiguring the
component in terms of internal parameters. The component agent manages the life cycle of the component,
being able to start, stop, suspend and resume the managed element.

Host Agent: It is associated with an host in the network and is responsible for installing and activating
(deactivating) components on such host.

Manager: It is the agent that manages one or more components by interacting with their agents. Since each
Manager is an agent itself, it may be managed by an Higher-level agent. Managers can then communicate
with each other by forming a hierarchical agents network. The agent root of the hierarchy, calledApplication
Manager, controls all the agents present in the environment and coordinates the reconfigurations following
the specified adaptation policies. The hierarchy allows the monitoring and reconfiguration at component,
sub-system and application level.

Component

Component
Agent

Host

Host
Agent

MIB

MIB

Manager

MIB

Management
Protocol

Decision
Maker

Figure 8.4:L IRA Architecture

L IRA does not require any additional infrastructural support and the management activities are easily pro-
grammed by using theLira Reconfiguration Language. Moreover, by using the Lira Reconfiguration Lan-
guage it is possible to program different reconfiguration activities:

8.5 Reconfiguring Siena 151

Startup: It is the script that the manager executes at startup. It can be used to instantiate and activate the
application components.

Proactivity: It is possible to define a proactive behavior, by means of a set of actions, that the manager
continuously executes.

Reactivity: It is possible to define a reactive behavior, by means of a set of actions, that the manager exe-
cutes as reaction to an external stimulus.

Reconfigurations: Defines the reconfiguration logic by means of a set ofreconfigurationsexpressed as
functions.

The reconfiguration activities are stored in four different files that theApplication Manageropportunely
reads and interprets when it receives an event. In such a way, it is possible to replace those files online to
have a dynamic behavior of LIRA framework.

8.5 RECONFIGURINGSIENA

SIENA middleware is a network composed by a set of event dispatchers (SIENARouters) and clients publish-
ing and subscribing for events (SIENA Clients). As introduced in 8.3, aSIENA network has a hierarchical
structure rooted in aSIENA Router, where the leaves areSIENA Clients, and all intermediate nodes are
SIENA Routers.

Due to the event dispatcher rules and the dynamism of aSIENA network, it can happen that one or more
SIENA Routers are overloaded and degrade the performance of the whole network. For example, aSIENA

Router might be the access point of many Clients or it might be the root of a largeSIENA sub-network,
while otherSIENA Routers are unloaded (in this case the hierarchical structure is not balanced).

When aSIENA Router is overloaded (i.e. its utilization is high) we would reconfigure theSIENA network in
order to prevent critical performance scenarios. The possible alternatives to reconfigure aSIENA network
are listed in Section 8.5.1.

Figure 8.5 depicts the Software Architecture of the reconfiguration framework ofSIENA based onL IRA.
EachSIENA Router andSIENA Client has aL IRA component agent attached to it. Among their tasks, a
L IRA component agent has to monitor the associatedSIENA component. AL IRA Application Agent (called
also Manager) is connected to each component agents and it manages the wholeSIENA network.

When aSIENA Router is overloaded, i.e. its utilization is greater than a given value, the associatedL IRA

agent generates an external stimulus, or reconfiguration event, captured by theL IRA Application Manager
and the reconfiguration process will start. The Application Manager executes the reactive actions associated
to the event, written in thereactivity file. Among the reactive actions, the Application Manager has
to collect all monitored data regarding the routers and the clients of the currentSIENA configuration. It
has also to write the currentSIENA configuration model filled with the collected data in theModel DB .
Finally, it calls thereconfigure service of thePerformance Manager .

The Performance Manager reads the current configuration model from the DB and, by analyzing the infor-
mation in it, it generates several reconfiguration alternatives based on the rules described in section 8.5.1.
For each alternative it predicts performance indices and, based on them, it decides the next reconfiguration.
Then, the Performance Manager writes the reconfiguration function in theReconfigurations file, and,
finally, it returns the control to theL IRA Application manager. The latter, by executing the reconfiguration
function, reconfigures theSIENA network.

During the execution of the reconfiguration processSIENA will continue its tasks and the dispatching ser-
vices provided by it will not interrupt. However to prevent unwanted thrashing between configurations we

152 Chapter 8. Dynamic Reconfiguration to Manage theSIENA Middelware Performance

disable the reconfiguration process for a fixed period of time (some minutes) after a reconfiguration has
taken place. More precisely, we implemented the framework in such a way that, after a reconfiguration
event is notified to the Application Manager, the Manager disables all interrupts requiring a reconfigura-
tion. It re-establishes the interrupt mechanism later when reconfiguration has been executed and some time
has passed.

Figure 8.5: Software Architecture of the Reconfiguration Framework UsingL IRA.

As said before, the reconfiguration process starts when aL IRA component agent discovers that its associated
SIENA Router has the utilization higher than a given value. The choice of such value is critical. If it is too
high the reconfiguration process will start late and probably it finishes when aSIENA Router, or worst a
SIENA subnet, is saturated. On the other hand, if the chosen value is too low the reconfiguration process
will occur too frequently and many efforts and resources will be uselessly spent to reconfigure. Moreover
such value should be related to the time needed to reconfigure the software system.

In our experiments, we have chosen two different values for utilization, one for the root of theSIENA

hierarchy and one for the otherSIENA Routers. The first value is greater than the second one since the root
has to manage all publications traffic flowing in the network and it should be the more overloadedSIENA

Router. We fixed such values to 0.8 and 0.7, respectively. Our decision is not supported by a deep study
and more efforts should be spent to define more suitable values.

8.5.1 SIENA RECONFIGURATIONALTERNATIVES

We identify four different reconfiguration rules for theSIENA middleware.

Moving SIENA Clients - One or moreSIENA Clients are moved from the overloadedSIENA Router to the
unloaded one(s) . This alternative aims at balancing the workload among theSIENA Routers. Note that, in
order to obtain a significant improvement, the receivingSIENA Routers must not belong to the sub-hierarchy
of the overloaded Router.

Let us consider as an example the configuration in Figure 8.2 and suppose that theSIENA RouterS3 is
overloaded. A reconfiguration alternative here could be moving theSIENA ClientsC3 andC4 from S3 to
S2.

8.5 Reconfiguring Siena 153

Changing SIENA Routers internal parameters -TheSIENA Router implementation allows the modifica-
tion of the number of its internal threads satisfying service requests by external software entities. In this
way, it is possible to add (software) processing capabilities to eachSIENA Router1.

ChangingSIENA Routers topology -One or moreSIENA Routers are switched from the overloadedSIENA

Router to the unloaded ones. This alternative aims at balancing the workload among theSIENA Routers
switching them from one master to another. Again, to reach an improvement, the reconfiguredSIENA

Routers must be attached to a master that does not belong to the sub-hierarchy of the overloaded router.

Let us consider again the configuration in Figure 8.2 and suppose now that theSIENA RouterS1 is over-
loaded. For a greater improvement, the routers receiving a router children ofS1 areS0, the root of the
hierarchy, andS2. Since the root is the more critical node in theSIENA topology, it should not be con-
sidered. Hence, it is convenient to switchS1 childrens toS2. A reconfiguration alternative here could be
moving theSIENA RouterS3 from S1 to S2.

Adding/Removing SIENA Routers - The last possible reconfiguration action is to remove/addSIENA

Router instances in order to increase/decrease the processing capacity of theSIENA network. Of course,
we add new router instances if we need more (software) processing capacity, whereas we remove router
instances whenever there are tooSIENA routers with respect to the real necessity.

8.5.2 TRADE-OFF ANALYSIS

Moving SIENA Clients - Switching a client from a master to another one, is not provided by theSIENA

API. Then, it has to be implemented as sequence of basic actions: (i) shutdown the client, (ii) create a new
client and connect it to the new master, (iii) re-subscribe all filters to the new master. Of course, since
performing such actions requires time, then there is an high probability to lose events. A possible solution
to this problem would be to use theMOBIKIT framework [50] in conjunction toSIENA.

This reconfiguration alternative is the most critical one for two reasons: it can delay the service accom-
plishment at the user side and it could imply a more expensive cost for him/her. As a consequence of this
reconfiguration policy, in fact, aSIENA Client could be moved under aSIENA Router physically far from it
requiring possibly more time and more expenses to access to the system. For such reasons this alternative
should be considered only in critical situations for which the user gave explicit agreement.

Changing SIENA Routers internal parameters - The time needed to reconfigure theSIENA network is
almost constant since the only action to perform is to call the correspondent method of theSIENA router.

Changing SIENA Routers topology -The currentSIENA Router implementation provides a method for
link modification. However, the reconfiguration action has been implemented in two separated steps:
disconnectionfrom the current master andconnectionto the new one. Also in this case, the time needed
to perform such reconfiguration is not null (and not constant too), but it depends on the number of filters
the moved routers has to unsubscribe from the old master and re-subscribe to the new master. The use of
MOBIKIT would help in avoiding loss of events.

Adding/Removing SIENA Routers - Adding a newSIENA Router instance requires a constant execution
time. However, this reconfiguration is completed when the establishedSIENA components have been
moved to compose theSIENA sub-net of the newSIENA router. In fact, a newSIENARouter is added
when additional (software) processing capacity is needed to unload the existentSIENA Routers. Hence the
time needed to complete such reconfiguration depends on the number ofSIENA components to be moved.
Similar considerations can be done for the RemovingSIENARouters reconfiguration action since it requires
to move all its connectedSIENA routers and clients before stopping and shutting down it.

1TheSIENA native implementation sets to five the default number of active threads.

154 Chapter 8. Dynamic Reconfiguration to Manage theSIENA Middelware Performance

It is worth noticing that theMoving SIENA ClientsandChanging SIENA Routers topologyreconfiguration
alternatives are basic steps of the Adding/RemovingSIENA Routers ones. Hence their implementation
complexity is less than the latter. Whereas Changing theSIENA Routers internal parameters reconfiguration
is the simplier one. As first step, we decide to consider only the MovingSIENA Clients and Changing
SIENA Routers topology reconfiguration alternatives. First because the last presented alternative is based
on them and, whenever they are implemented, it should be easy to also embed theAdding/Removing SIENA

Routersalternative. Second because they do not introduce more processing capacity to theSIENA system.
The increasing of (software) processing capacity could require more resources (servers, bandwidth, and so
on). In this case we should make a on–line costs-benefits trade-off analysis for such alternatives. To achieve
such goals we have to introduce different types of models that take into account also other aspects such as
for example available budget.

8.6 PERFORMANCEMODEL AND EVALUATION TECHNIQUE

In this section we report the monitored data and the figure we derived from them. Moreover we discuss the
performance model and the evaluation technique used to calculate the performance indices.

For aSIENA Client we can monitor the number of both subscription (SUB) and publication (PUB) requests
(SUBc,m, PUBc,m) forwarded by theSIENA ClientC to itsSIENA Router access point.

Figure 8.6-(a) shows the monitored data for aSIENA RouterSRk. For aSIENA RouterSRk, we are able
to monitor the number of SUB and PUB requests served by it (CSUB,k, CPUB,k), and its average service
time needed to process such types of requests (τSUB,k, τPUB,k). Moreover, we can monitor the number
of SUB and PUB forwarded bySRk to its masterSRm (SUBk,m, PUBk,m), the number of PUB that it
receives from its SubNet (PUBSN,k) and the number of notifications (NOT) that it notifies to its SubNet
(Notk,SN). Finally, it is possible to measure the number of NOT (among the processed PUB and NOT
requests) it receives from its master (Notm,k).

Figure 8.6: Monitored and derived data for aSIENA Router k

From the monitored data, we are able to derive fundamental measures for our approach. The derived data
for a SIENA Client C consists of the SUB rate and PUB rate thatC forwards to itsSIENA Router access
pointm (µSUB,c,m, µPUB,c,m).

Figure 8.6-(b) shows the derived data for aSIENA RouterSRk. For aSIENA RouterSRk we are able to
determine the service rate for SUB and PUB requests (ρSUB,k, ρPUB,k), the (total) SUB and PUB arrival
rates (λSUB,k, λPUB,k) and theSRk throughput for both SUB and PUB (XSUB,k, XPUB,k). Moreover,
we can calculate the SUB and PUB rates thatSRk forwards to its master (µSUB,k,m, µPUB,k,m), the NOT
rate thatSRk receives from its master (µNOT,m,k), and the one it forwards to its SubNet (µNOT,k,SN).
Finally, we are able to determine the (observed) probability (pSUB,k,m) under whichSRk forwards a SUB

8.6 Performance Model and Evaluation Technique 155

to its master, the (observed) probability thatSRk forwards a notification to its SubNet (pNOT,k,SN) and
the (observed) probability that theSRk master forwards a NOT toSRk (qNOT,m,k). For the sake of
presentation, the formulae used to derive data have been moved to the appendix B at the end of the thesis.

The performance indices are, instead, calculated by considering theSIENA Routers separately. We use the
analytical solution techniques for open multi-chain performance models [111]. Due to the particular topol-
ogy of a SIENA configuration, the performance model-based re-configuration consists in re-modulating
the incoming traffic to eachSIENA Router. This is reasonable since we just consider, as possible re-
configuration actions only theMoving SIENA ClientsandChanging SIENA Routers topologyalternatives.
Whenever a reconfiguration alternative is generated, the Performance Manager re-modulates the traffic
among theSIENA Routers in the newSIENA topology according to the data monitored at the step before.
After that, the performance indices local to eachSIENA Router are calculated considering the new topology
and the related traffic. For details on the formulae used to evaluate the performance indices please refer to
the appendix B at the end of the thesis.

Our approach to performance evaluation ofSIENA Routers in a new configuration, is based on the following
assumptions:

1. when we re-modulate the traffic, we assume that the probabilitiespSUB,k,m, pNOT,k,SN and
qNOT,m,k remain constant over the considered reconfiguration alternatives;

2. we assume that theSIENA system has sufficient (software) processing capacity to process the given
workload. This assumption is necessary to use the open model solution technique considered.

8.6.1 PERFORMANCEINDICES

SIENA is a dynamic system where the number of Clients connected to the event service changes frequently
with no precise rules, rather it follows the will of the users behind theSIENAClients. This dynamism leads
us to consider theSIENA system as an open system, even if the number of Clients that could connect to the
event service is known and finite. EachSIENA Router provides two main services (i.e. subscription and the
publication services), hence, theSIENA middleware is a multi-chain system. Finally, since aSIENA Router,
as a consequence of a publication, can forward a notification to severalSIENA Router/Client Siblings,
the related performance model contains forks. Hence, in general,SIENA leads to an open multi-chain
performance model with concurrent behaviors.

For this kind of performance models there exist no analytical solution techniques and, we adopted an ap-
proximate solution technique for such model. In fact, in general, they are simulated to obtain performance
figures. In our case, due to the strict real-time constraints our approach has, we cannot simulate the model
for the reasons discussed in Section 8.2.

However, the reconfiguration process we defined forSIENA depends on the performance indices local to
eachSIENA Router and not on performance aspects of the whole system. In fact, for our aims, we mainly
need utilization and throughput of eachSIENA Routers. Hence we can consider aSIENA Router separately
from the other ones. Moreover, since theSIENA Routers and theSIENA Clients form a hierarchical topology
(i.e. a tree), we are able to approximate the requests arrival rates of eachSIENA Router in a new configu-
ration, by looking at the new configuration topology and the information derived from the monitoring data
on the current running configuration.

The ability of re-modulating the traffic incoming in eachSIENA Router permits us to consider a
SIENARouter as an independent service center (or system) and to calculate the performance indices of
interest by using the open multi-chain queueing network formulae. Since theSIENA Router is a multi-chain
system, to obtain performance indices aggregate per service center (i.e. perSIENA Router) we have to cal-

156 Chapter 8. Dynamic Reconfiguration to Manage theSIENA Middelware Performance

culate the ones related to each chain traversing it and then aggregate following rules in [111] as reported in
the appendix.

In the following section we report the formulas we used to re-modulate the traffic in order to obtain an
approximation of the one flowing in the newSIENA topology defined by a reconfiguration alternative.

8.6.2 TRAFFIC RE-MODULATION

Due to the considered reconfiguration actions, a reconfiguration alternative consists of the definition of a
new SubNet possibly for eachSR in theSIENA topology, i.e. the setsSubNet′(SR). In the following, the
formulae for traffic re-modulation are mainly dependant on such set. Moreover, in defining such formulas,
we assume that the previous assumptions are verified.

SUB TRAFFIC RE-MODULATION

• λ′SUB,k =
∑

i∈SubNet′(SRk) µ′SUB,i,k is the new SUB arrival rate forSRk;

• µ′SUB,k,m = X ′
SUB,k ∗ pSUB,k,m whereX ′

SUB,k = λ′SUB,k is the new SUB rate thatSRk forwards
to its master.

PUB TRAFFIC RE-MODULATION

• λ′PUB,k =
∑

i∈SubNet′(SRk) µPUB,i,k is the new PUB arrival rate forSRk;

• µ′PUB,k,m = X ′
PUB,k = λ′PUB,k is the new PUB rate thatSRk forwards to its master.

NOT TRAFFIC RE-MODULATION

• µ′NOT,k,SN = pNOT,k,SN ∗ (µ′NOT,m,k + λ′PUB,k) is the new NOT rate thatSRk forwards to its
SubNet;

• µ′NOT,m,k = qNOT,m,k ∗ µ′NOT,m,SN is the new NOT rate thatSRk forwards to its master.

8.7 FRAMEWORK IMPLEMENTATION

In this section we detail the design choices we have made and the overall system implementation.

Figure 8.7 depicts the high-level Software Architecture of the system. Different entities may be distin-
guished: (i)SIENA router and client with the associatedL IRA ComponentAgent; (ii) theL IRA Application-
Manager, (iii) the Performance Manager.

The L IRA ComponentAgents play the role of monitors by profiling theSIENA entities and, in case of
anomalies, throwing the alarm to the ApplicationManager. When the ApplicationManager receives the
alarm message, theL IRA reactivity script is executed. For eachSIENA routers and clients the Application-
Manager retrieves all monitored data and forwards them to theConfigMonitor. Once the ConfigMonitor

8.7 Framework Implementation 157

S1

HDA1

C1

PA1

Application
Manager

S0

HDA0

Performance Manager

CMA

Config
Monitor

ReConfig
Maker

DMA

Problem
Analyzer

Decision Maker

Figure 8.7: Software Architecture

Figure 8.8: The Configuration Schema.

has stored all data sent by the ApplicationManager, it creates a XML file representing the actual system
configuration (such file obeys the XSchema depicted in Figure 8.8). At this point theProblemAnalyzerex-
amines this configuration, calculates the derived data and then produces several alternative configurations.
The ReConfigMakerchooses (driven by heuristics) the best possible reconfiguration and writes theL IRA

reconfiguration script. Finally, the ApplicationManager executes this script in order to actuate the produced
reconfiguration.

8.7.1 MONITORING

AspectJ [105] is a general-purpose Java extension of the Aspect Oriented Programming paradigm intro-
duced by Kiczales et al [106].

AspectJ extends Java by adding few new constructs:pointcutsandadvicethat dynamically affect program
flow, inter-type declarationsthat statically affect a program’s class hierarchy, andaspectsthat encapsulate
these new constructs.

In particular, while a pointcut picks out certain join points (that is a well-defined point in the program flow),
and values at those points, a piece of advice is code that is executed when a join point is reached. AspectJ
inter-type declarations allow to modify the static structure of a program, namely, the members of its classes
and the relationship between classes. Finally, aspects are the units of modularity for crosscutting concerns.
They behave somewhat like Java classes, but may also include pointcuts, advice and inter-type declarations.
All of these are then automatically combined by using a weaver tool. In particular, given the program source

158 Chapter 8. Dynamic Reconfiguration to Manage theSIENA Middelware Performance

Program
source
code

AspectJ
Description
Language

AspectJ
Description
Programs

Aspect
Weaver

Woven
output code

Figure 8.9: The AspectJ Weaving Process

p u b l i c a s p e c t D i s p a t c h e r M o n i t o r{
/ / A t t r i b u t e s D e f i n i t i o n s
i n t H i e r a r c h i c a l D i s p a t c h e r . processedPubNum ;
i n t H i e r a r c h i c a l D i s p a t c h e r . forwardedPubNum ;
i n t H i e r a r c h i c a l D i s p a t c h e r . fromMasterPubNum ;
i n t H i e r a r c h i c a l D i s p a t c h e r . f romCl ientsPubNum ;
. . .

/ / P o i n t c u t s D e f i n i t i o n s
p o i n t c u t processedPUB () :
e x e c u t i o n (∗ H i e r a r c h i c a l D i s p a t c h e r . p u b l i s h (SENPPacket)) ;

p o i n t c u t PubMasterForward () :
w i t h i n c o d e (∗ H i e r a r c h i c a l D i s p a t c h e r . p u b l i s h (SENPPacket))
&& c a l l (∗ I n t e r f a c e . send (by te [] , i n t)) ;
. . .

i n t H i e r a r c h i c a l D i s p a t c h e r . getProcessedPubNum (){
r e t u r n processedPubNum ;

}
}

Figure 8.10: DispatcerMonitor Aspect Source Code

code and the aspects definition as input, the weaving process (showed in Figure 8.9) produces a woven Java
output code that will then compiled using traditional Java compiler.

The fact that the application and the aspects are designed and developed separately, makes AspectJ well-
suited for defining behavior that ranges from simple tracing, to profiling, as well as to testing of internal
consistency within the application. In fact, AspectJ makes it possible to cleanly modularize these kind of
functionalities, thereby enabling and disabling them when desired.

An important task in our case study is represented by the monitoring process. In fact, in order to profile the
SIENA entities behavior we need to extract information about their internal status. Of course, this requires
both to access internal data structures and to watch the execution flow by means of called methods and
object interactions.

The use of aspects has easily allowed the servers and clients profiling by avoiding changes/modifications
to their source code. In particular, through the use of AspectJ we have been able to add extra attributes
and methods to the existing HierarchicalDispatcher class implemented inSIENA. Figure 8.10 reports a
piece of the AspectJ DispatcherMonitor source code which shows some monitored attributes, methods
declaration and,pointcutsof interest. For example, theprocessedPubNumattribute (which counts the

8.8 Experiments 159

number of processed publications) is incremented every time theProcessedPUBpointcut is reached and
can be retrieved at runtime by invoking the added methodgetProcessedPubNum().

The monitoring operations performed by the aspects are direct accesses to variables with constant compu-
tational timeO(1). Thus the monitoring overhead on theSIENA HierarchicalDispatcher performance can
be considered negligible. On the other hand, retrieving data from the HierarchicalDispatcher during the
reconfiguration phase, costs timeO(np + ns) wherenp andns are the number of processed publications
and subscriptions, respectively. In particular, this is the computational complexity necessary for calculating
the average processing time of both publications and subscriptions.

8.8 EXPERIMENTS

In this section we describe our experimental setup by detailing both the architectural and implementation
choices.

The initial system configuration (showed in Figure 8.3) presents an event-service composed of five routers
and ten clients (five subscribers and five publisher). Each router’s monitor has been configured to give the
alarm when the critical valueUk is greater that0.7. Since theSIENA root-router is the most overloaded
(S0 referring to Figure 8.3), its critical valueU0 is set up to0.8. Subscribers (C0, C2, C4, C6, C8) submit
100 subscriptions, one each40ms. Publishers (C1, C3, C5, C7, C9) emit1000000 events, one each40ms.
All the experiments have been executed on a Personal Computer with512 MB of RAM, 1.6GHz of CPU,
running a Linux Fedora Core III Operating System.

Figure 8.11: Service Rate

Running the test described above, the first alarm has been raised byS4 after 29849ms. As described in
Section 8.7, the ConfigManager stores all monitored data for what concerns both the clients, and the routers
(refer to Figure 8.11 and Figure 8.12). Once all monitored data has been retrieved, the PerformanceManager
derives the data concerning the service rate (ρPUB,k andρSUB,k), reported in Figure 8.11, and the request
arrival rates (λPUB,k andλSUB,k) shown in Figure 8.12. In Figure 8.13 we report the utilization of all
SIENA routers and we observe thatS3 andS4 are critical, then the PerformanceManager proposes several
alternatives. The one reported in Figure 8.14 is chosen, and the correspondingL IRA reconfiguration script
shown in Figure 8.15 is executed reconfiguring theSIENA network as depicted in Figure 8.16. Finally, in
Figure 8.17 we report the predictedSIENA routers utilization for the new configuration.

160 Chapter 8. Dynamic Reconfiguration to Manage theSIENA Middelware Performance

Figure 8.12: Total Arrival rates of SRs

Figure 8.13: Utilization of Siena Routers

<R e c o n f i g u r a t i o n A c t i o n s>
<MoveCl ient S i e n a C l i e n t =”C9 ” From=”S4 ” To=”S2”/>
<MoveCl ient S i e n a C l i e n t =”C3 ” From=”S3 ” To=”S2”/>

</ R e c o n f i g u r a t i o n A c t i o n s>

Figure 8.14: Reconfiguration Actions

r e c o n f i g u r a t i o n g loba lSys tem beg in
p r i n t l n (” R e c o n f i g u r i n g C l i e n t s ”) ;
connec t ” C9 ” t o ” S2 ” ;
c a l l (”CMA” , MOVECLIENT, ” C9 ” , ” S2 ”) ;
connec t ” C3 ” t o ” S2 ” ;
c a l l (”CMA” , MOVECLIENT, ” C3 ” , ” S2 ”) ;

end

Figure 8.15:L IRA Reconfiguration Script

8.9 FINAL CONSIDERATIONS ANDFUTURE WORKS

The implementation we report shows the applicability of the reconfiguration process summarized in Section
8.2 to theSIENA middleware. We were able in fact to reconfigureSIENA network with no human interven-
tion and with no anySIENA service interruption. Moreover, the experiment results reported in Section 8.8
proves the improvement reachable with the framework.

However, some limitations of the approach have been singled out. First of all, the ProblemAnalyzer compo-

8.9 Final Considerations and Future Works 161

C0

C2

C6

C3

C4

C7C5

C9

C8

S0

S2

S4S3

S1

C1

Figure 8.16: The reconfiguredSIENA Network

Figure 8.17: Predict Utilization of Siena Routers after Reconfiguration

nent resulted very coupled with the managed system. This means that an ad-hoc implementation should be
provided for a given software application to be managed. Moreover, the approach does not cope with recon-
figuration that changes application behavior, but it just deals with reconfigurations that modify the topology
or internal application parameters. This limitation is strictly related to the necessity of reconfiguring the
performance model at run-time. The approach requires an initial effort in designing the performance model
from the Software Architecture description of the application. In this modeling step the modeler should
translate the software behavioral description into the performance model. Whenever a reconfiguration is
required, the suitable reconfigurations must not change this behavior. The execution of a (behaviorally)
different application would require a performance model which is not provided.

The current implementation does not deal with all possible reconfiguration alternatives identified in Section
8.5.1, but our aim is to deal with all such cases in our future works. The aim of this first study was
to prove the feasibility of the designed reconfiguration process. Other future research goals are to more
extensively validate the advantage of the use of such framework by using longer (in terms of execution runs)
experiments and on more realistic workloads, and to improve the process decision step. At the moment the
next reconfiguration is chosen just on the basis of the predicted performance indices. However many other
factors might affect this choice. First of all, the complexity of the reconfiguration and the time needed to
implement it. Moreover, the application manager could provide other QoS indices such as security, service
availability, dependability. A more complex decision step that takes into account such other constraint
should therefore be designed.

We are also planning to measure the overhead introduced by the LIRA framework.

162 Chapter 8. Dynamic Reconfiguration to Manage theSIENA Middelware Performance

8.10 SUMMARY

In this Chapter we presented our experience in designing and implementing the framework to dynamically
manage performance attributes of theSIENA publish/subscribe middleware. This has been done in three
steps: (i) application monitoring, (ii) model-based performance evaluation, (iii) dynamic reconfiguration.

The monitoring facilities, implemented by using the AspecJ programming language, are needed to extract
information about the internal status of the components involved in the system. The use of aspects allowed
us to extend theSIENA API with profiling functionalities without modifying theSIENA source code.

Model-based performance evaluation represents the core of the presented work. Even if the overall process
is general, it has been implemented specifically to cope with the characteristics ofSIENA. In particular,
we implemented three main components: aConfigManagerthat keeps trace of the system configuration; a
ProblemAnalizerthat evaluates the system performances and generates alternative configurations aiming to
increase the system performance; and aReconfigMakerthat chooses the most rewarding configuration and
reconfigures the entire system through the use of theL IRA framework.

CHAPTER 9

CONCLUSIONS ANDFUTURE WORK

In this thesis we dealt with the model-based performance analysis of software architectures. In particular
we focussed on component-based systems modelled at the architecture level for performance validation
goals. We used this modelling at two different phases of the software life cycle: design level and run time.
In the former we support the designers to take decisions at the software architecture level, whereas in the
latter we help to dynamically manage the performance attributes after the system deployment.

To accomplish the performance analysis of software systems, several model notations exist: Queueing
Networks, Generalized Stochastic Petri Nets, Stochastic Process Algebras and simulation models. From
the software designer perspective, there can be a relevant difference between the above alternatives due
to the knowledge gap between the performance analysis and the software development process that we
identified in Chapter 2.3. This gap should be fulfilled to reduce the reluctance of the designer to validate
the performance along the software life cycle. We made a first study in this direction where the main
contribution was the identification of the criteria useful to characterize the performance model notations
with respect to the skills of the software designers. The aim of our experiment was to look at these model
notations in order to assess their suitability to support software designers.

The thesis is composed by three parts: the first one deals with the fulfillment of the knowledge gap at the
software architecture level through the automated performance model generation; the second part defines
a framework whose aim is to integrate several predictive analysis of software architectures; the last part,
that copes with the last studies of my Ph.D. Program, introduces a reconfiguration process allowing the
dynamic performance management of software systems at run time and shows an experiment we did on
SIENA middleware.

PART I - PREDICTIVE PERFORMANCEANALYSIS: FROM SOFTWARE MODELS TO

PERFORMANCEMODELS.

In Chapter 3 we have reviewed the state of the art in model-based software performance prediction. Exist-
ing approaches propose the use of performance models to characterize the quantitative behavior of software
systems. These approaches aim at filling the gap between the software development process and the per-
formance analysis by generating, from the software models, performance models ready to be validated.
The review we carried out analyzed the approaches with respect to a set of relevant dimensions from a
software-designer perspective.

The resulting classification clearly showed that almost all methodologies try to encompass the whole soft-
ware life cycle starting from early software artifacts. Most of them are tightly coupled with tool support
that allows the (partial) automation of them. However, there is no methodology which is fully supported by
automated tools, although at the same time there is no methodology that does not provide or foresee some
kind of automatic support. Most approaches try to apply performance analysis very early, typically at the
software architecture level. However, most of them still require information from the implementation/ex-
ecution scenarios in order to carry out performance analysis. Nevertheless there is a growing number of

163

164 Chapter 9. Conclusions and Future Work

attempts that try to relax implementation/execution constraints in order to make the analysis applicable at
abstract design levels.

For software design specifications we believe that, at least at the next few years, the trend will be to use
standard software artifacts, like UML diagrams. On the other hand, Queuing Networks and their extensions
are widely used as performance models. QN provide an abstract notation allowing the modeling of software
component as black-box entities and easier feedback, especially in a component-based software develop-
ment process. As far as the analysis process is concerned, feedback provision is a key success factor for a
widespread use of these methodologies.

In Chapter 4 we have summarized our methodology to software architecture performance analysis. Our
approach generates a QN performance model from a software architecture description based on UML 2.0
diagrams. It derives from a re-engineering process of our previous approach that generates a QN model
from MSC describing the dynamics of the software system at the software architecture level.

The new approach uses UML 2.0 to describe the software system architecture. The migration has been
driven by two factors: a large expressiveness of UML 2.0 diagrams that allows us the definition of a compo-
sitional approach, and the introduction of an UML profile that defines suitable capabilities to annotate the
diagrams with additional performance information and with analysis results obtained upon the target model
solution.

In this approach we defined two types of translation rules: (i)basic rulesthat deals with the simple inter-
action fragments (that are component interactions) and the (ii)rules for fragment operatorthat defines QN
patterns for each considered fragment operator in the UML 2.0 sequence diagrams.

Even if the new approach allows the generation of a more detailed QN model, the obtained model is however
more complex to be complex. This complexity implied that we had to use more complex techniques to
evaluate the new QN model. For, example, when we have a parallel operator in a sequence diagram, a fork
is generated in the QN model. A QN with forks (namely Extended QN) can be evaluated only through
simulation techniques or, in some cases, by means of approximate solutions.

Chapter 5 reports our experience in applying two predictive performance analyses on a real case study. The
considered approaches were based on stochastic process algebras and on simulation models. Both of them
take as input the description of the software architecture of the system based on the UML notation. We
made this experiment to study if these methodologies are suitable to be applied to real systems.

As expected the two methodologies have shown pros and cons. In order to compare the approaches we
defined a framework that devises the main criteria a predictive analysis should have. This experience high-
lighted that the most important features a methodology should have are the automation, the transparency
and the feedback provision mechanism.

Moreover, in this work we have experimented the feasibility of a combined usage of approaches at an
affordable cost. A key element toward a combined use of the two approaches is the use of standard software
artifacts as system initial documents.

PART II - I NTEGRATION OF PREDICTIVE FUNCTIONAL AND NON-FUNCTIONAL

ANALYSES.

This part of the thesis introduced a framework to support the integration of functional and non-functional
analysis of software systems at architectural level. This work originates from the crucial need of merging
results from different software analysis approaches in order to better refine software architectures.

165

Our framework lays on an XML-based integration core, where software models and semantic relations
between the models are represented. The aim is to provide a seamless integration of different analysis
methodologies. To this regard we have sketched guidelines to allow embedding new methodologies in our
framework.

In this direction, in Chapter 7 we showed how to deploy an automated Software Performance Engineering
(SPE) approach into the framework. Indeed, we made a first step in this direction by defining the XML
schema that describes the Execution Graph notation. Such notation is used to describe the software dynam-
ics enriched by additional information that specifies the workload. The XML schema respects the S-PMIF
(Software - Performance Model Interchange Format) meta-model (see Chapter 7).

The defined schema can be part of the XML Integration Core of the framework to allow the integrated
analysis. The next step will be to decide which software architecture analyses we want to integrate to, and
define the relative semantic rules.

The work shown in this chapter, also allowed us to integrate two implemented tools, XPRIT and SPE•ED
in order to build a fully automated SPE process.

PART III - M ODEL-BASED PERFORMANCE ANALYSIS IN SYSTEM DYNAMIC

RECONFIGURATION.

In this part of the thesis we defined a framework able to dynamically reconfigure a component-based soft-
ware system in order to manage its performance at run-time. The framework monitors the performance
of the application and, when some problem occurs, decides the new application configuration on the basis
of feedback provided by the on–line evaluation of performance models of several, pre-defined, feasible al-
ternatives. The choice of the new system configuration might consider several factors, such as resources
needed to implement the new configuration.

In this chapter we also presented our experience in designing and implementing the framework to dynami-
cally manage performance attributes of theSIENA publish/subscribe middleware.

The monitoring facilities are implemented by using the AspecJ programming language. The use of aspects
allowed us to extend theSIENA API with profiling functionalities without modifying theSIENA source code.

We implemented three main components: aConfigManagerthat keeps trace of the system configuration;
a ProblemAnalizerthat evaluates the system performance and generates alternative configurations aiming
at improving the system performance; aReconfigMakerthat chooses the most rewarding configuration and
reconfigures the entire system through the use of theL IRA framework.

This implementation showed the applicability of the reconfiguration process with no human intervention
and with noSIENA service interruption. Moreover, the experimental results reported showed the sensible
improvement reachable with the framework. However, some limitations of the approach have been singled
out. TheProblemAnalyzercomponent resulted very coupled with the managed system. This means that
an ad-hoc implementation should be provided for a given software application to be managed. Moreover,
the approach does not cope with reconfiguration that changes application behavior, but it just deals with
reconfigurations that modify the topology or internal application parameters. This limitation is strictly
related to the necessity of reconfiguring the performance model at run-time. The approach requires an initial
effort in designing the performance model from the Software Architecture description of the application.
In this modeling step the modeler should translate the software behavioral description into the performance
model. Whenever a reconfiguration is required, the pre-defined reconfigurations must not have different
behaviors, because a (behaviorally) different application would require a different performance model to be
evaluated.

166 Chapter 9. Conclusions and Future Work

9.1 FUTURE WORK

Due to the wide range of topics the thesis deals with, many directions can be identified about future work.
However we believe that the most relevant ones are:

Performance Notations Study.The study we reported in Chapter 2.3 is in its preliminary phase. From the
reported results we cannot induce general assessments on the suitability of the considered notations
from a software design perspective, due to the limitations of the case study and the experimental
setting. Indeed, significant experiments in this direction have still be made. Moreover, early in the
life cycle, the choice of the performance model notation is still open and this study can help to identify
guidelines in such process.

Software Architecture Early Validation. In the future we should define a mechanism that generate more
meaningful feedback at the software architecture level. By meaningful feedback we mean software
architecture alternatives that suggest to the software designer how to overcome the performance prob-
lems the analysis pointed out. Moreover, since the automation is a key point for the application of the
approach to real case studies, our short time goal is to implement a tool prototype of it. This would
allow us to apply the methodology to real large scale case studies. Finally, we want to extend this
approach to specific application domain, such as mobile and ubiquitous computing.

Functional and Non-Functional Analysis Integration Framework. Our main research direction obvi-
ously leads to embed new methodologies for analysis at architectural level in our framework. This
task shall bring to enlarge the integration core in terms of software model representations as well as
semantic relations. If future results in this direction will appear as promising as the ones obtained
from this first setting, a long-term goal will be to extend the scope of the framework to other software
life cycle phases.

Moreover, the work in Chapter 7 was an initial step in the overall SPE interchange process. Several
additional steps are planned: (i) update XPRIT to export the new constructs in UML 2.0; (ii) export
resource requirements specified using the UML Profile for Schedulability, Performance and Time;
(iii) define a meta-model and schema for the feedback path, in order to support the transformation of
”abstract” performance results into ”actual” design alternatives for UML or other CASE tools; (iv)
define a meta-model and schema for the exchange of performance results from system performance
modeling tools back to software performance engineering tools.

Dynamic Reconfiguration Framework. The current implementation does not deal with all possible re-
configuration alternatives identified, but our aim is to deal with a wider set of choices. The aim of
this first study was to prove the feasibility of the designed reconfiguration process. Other future re-
search goals are to more extensively validate the advantage of the use of such framework by using
longer (in terms of execution runs) experiments on more realistic workloads, and to improve the pro-
cess decision step. At the moment the next reconfiguration is chosen only on the basis of the predicted
performance indices, although many other factors might affect this choice, such as the complexity of
the reconfiguration and the time needed to implement it. Moreover, the application manager could
provide other QoS indices such as security, service availability, dependability. A more complex deci-
sion step that takes into account such other constraints shall therefore be designed.

We are also planning to measure the overhead introduced by the LIRA framework on the application
execution.

APPENDIX A

ÆMILIA TEXTUAL DESCRIPTION FOR THEMAXIMAL

CONFIGURATION

ARCHI TYPE ScenarioType(void; rate a1 := 1,

rate a2 := 2, rate a3 := 100,

rate a4 := 0.5

ARCHI ELEM TYPES

ELEM TYPE COORDINATORType(void; rate a2)

BEHAVIOR

COORD(void; void)=

<DisplayFailureOccurred, inf>.<StartRecovery, inf> COORD’(),

COORD’(void; void)=

<RecoveryCompleted,*>

<DisplayRecoveryCompleted, a2 >.COORD();

INPUT INTERACTIONS

AND RecoveryCompleted

OUTPUT INTERACTIONS

AND StartRecovery

ELEM TYPE P1 Type(void; rate a1, rate a3)

BEHAVIOR

P1(void; void)=

<StartRecovery, *>.<PrepareSetParameter, a1>.

<SendSetParameter, a3>.P1’();

P1’(void; void)=

<TrapSetParameter,*>.<RecoveryCompleted, inf>.P1()

INPUT INTERACTIONS

UNI StartRecovery

ANDTrapSetParameter

OUTPUT INTERACTIONS

UNI SendSetParameter

AND RecoveryCompleted

167

168 Chapter A. Æmilia Textual Description for the Maximal Configuration

ELEM TYPE P2 Type(void; rate a1,rate a3

BEHAVIOR

P2(void;void)=

<StartRecovery, *>.<PrepareDeletepp, a1>. <SendDeletepp, a3>.P2’();

P2’(void;void)=

<TrapDpp, *>.<PrepareCreatepp, a1>. <SendCreatepp, a3>.P2” ();

P2” (void;void)=

<TrapCpp, *>.<RecoveryCompleted, inf>.P2()

INPUT INTERACTIONS

UNI StartRecovery

AND TrapDpp;TrapCpp

OUTPUT INTERACTIONS

UNI RecoveryCompleted

AND SendDeletepp;SendCreatepp

ELEM TYPE CTSPROXYAGENTType(void; rate a1, rate a2, rate a3

BEHAVIOR

CTSPA(voidvoid)=

<SendDeletepp, *>.<Deletepp, a1>. <TrapDpp, a3>.CTSPA’();

CTSPA’(voidvoid)=

<SendCreatepp, *>.<Createpp, a2>. <TrapCpp, a3>.CTSPA()

INPUT INTERACTIONS

UNI SendDeletepp;SendCreatepp

OUTPUT INTERACTIONS

UNI TrapDpp;TrapCpp

ELEM TYPE PROXYType(void;rate a3

BEHAVIOR

PROXY(void;void)=

<SendSetParameter, *>.<SendSetParameter, a3>.PROXY’();

169

PROXY’(void;void)=

<TrapSetParameter, *>.<TrapSetParameter, a3>.PROXY()

INPUT INTERACTIONS

UNI SendSetParameter

AND TrapSetParameter

OUTPUT INTERACTIONS

UNI TrapSetParameter

AND SendSetParameter

ELEM TYPE EQUIP Type(void;rate a2,rate a3)

BEHAVIOR

EQUIP(void;void)=

<SendSetParameter, *>.<SetParameter, a2>.

<TrapSetParameter, a3>.EQUIP();

INPUT INTERACTIONS

UNI SendSetParameter

OUTPUT INTERACTIONS

UNI TrapSetParameter

ARCHI TOPOLOGY

ARCHI ELEM ISTANCES

C:COORDINATORType(;a2); P1:P1 Type(;a1,a3); P2:P2 Type(;a1,a3);

CTSPA:CTSPROXYAGENTType(;a1,a2,a3);

PR1:PROXYType(;a3); · · ·; PR10:PROXYType(;a3);

EQUIP1:EQUIPType(;a2,a3); · · ·; EQUIP20:EQUIPType(;a2,a3)

ARCHI ATTACHMENTS

FROM C.StartRecovery: TO P1.StartRecovery;

FROM C.StartRecovery: TO P2.StartRecovery;

FROM P1.RecoveryCompleted: TO C.RecoveryCompleted;

FROM P2.RecoveryCompleted: TO C.RecoveryCompleted;

FROM P2.SendDeletepp: TO CTSPA.SendDeletepp;

FROM P2.SendCreatepp: TO CTSPA.SendCreatepp;

FROM CTSPA.TrapDpp: TO P2.TrapDpp;

FROM CTSPA.TrapCpp: TO P2.TrapCpp;

FROM P1.SendSetParameter: TO PR1.SendSetParameter;

FROM PR1.TrapSetParameter: TO P1.TrapSetParameter;

FROM PR1.SendSetParameter: TO EQUIP1.SendSetParameter;

FROM PR1.SendSetParameter: TO EQUIP2.SendSetParameter;

FROM EQUIP1.TrapSetParameter: TO PR1.TrapSetParameter;

FROM EQUIP2.TrapSetParameter: TO PR1.TrapSetParameter;

· · · · · ·
FROM P1.SendSetParameter: TO PR10.SendSetParameter;

FROM PR10.TrapSetParameter: TO P1.TrapSetParameter;

FROM PR10.SendSetParameter: TO EQUIP19.SendSetParameter;

FROM PR10.SendSetParameter: TO EQUIP20.SendSetParameter;

FROM EQUIP19.TrapSetParameter: TO PR10.TrapSetParameter;

FROM EQUIP20.TrapSetParameter: TO PR10.TrapSetParameter;

END

APPENDIX B

FORMULAE USED IN RECONFIGURINGSIENA

Along this sectionSubNet(SRk) represents the set ofSIENA Clients and theSIENA Routers for which SRk
is the access point or the master in the hierarchy,respectively.

B.1 MONITORED DATA

For aSIENA Clientcwe can monitor:

• Subc,m= number of sub requests forwarded by theSIENA Clientc to itsSIENA Router access pointm
in the observational interval of T ms;

• Pubc,m= number of pub requests forwarded by theSIENA Client ct to its SIENA Router access point
m in the observational interval of T ms;

For what concern theSIENA Routers (SR), through monitoring we are able to determine:

• Cc,k= number ofc ∈ {sub, pub} requests served by SRk in the observational interval of T ms;

• τc,k= average service time needed by SRk to process a c request,c ∈ {sub, pub/not};
• Subk,m= number of sub requests forwarded by SRk to its master;

• PubSN,k=number of pub requests that SRk receives by its SubNet during the interval of observation
time;

• Pubk,m=number of pub requests forwarded by SRk to its master;

• Notm,k= number of not request (among the processed pub/not requests) that SRk receives from its
master;

• Notk,SN= number of notifications (not) that SRk notifies to its SubNet (SN);

B.2 DERIVED MEASURES

The derived data for aSIENA Clientc consist of:

• µsub,c,m = Pubc,m/T is the sub rate thatc forwards to itsSIENA Router access point;

171

172 Chapter B. Formulae Used in ReconfiguringSIENA

• µpub,c,m = Pubc,m/T is the pub rate thatc forwards to itsSIENA Router access point;

The derived data for aSIENA Router SRk consist of:

• ρc,k = (1/τc,k) is the service rate of SRk for c ∈ {sub, pub} requests;

• Xc,k = Cc,k/T is the throughput of SRk relative to the c∈ {sub, pub} request;

• λc,k =
∑

i∈SubNet(SRk) µc,i,k) is the (total) arrival rate for SRk of c ∈ {pub, sub} requests .

• µsub,k,m = Subk,m/T is the sub rate that SRk forwards to its master;

• psub,k,m = µsub,k,m/λsub,k is the observed probability that SRk forwards a sub to its master, of
course such probability is zero ifSRk is the root of theSIENA Hierarchy;

• µpub,k,m = Pubk,m/T is the pub rate that SRk forwards to its master;

• µnot,m,k = Notm,k/T is the not rate that SRk receives from its master;;

• µnot,k,SN = Notk,SN/T is the not rate that SRk forwards to its SubNet;

• pnot,k,SN = µnot,k,SN/(µnot,m,k + λpub,k) is the observed probability that SRk forwards a notifica-
tion to its SubNet;

• qnot,m,k = µnot,m,k/µnot,m,SN is the observed probability that the SRk master forwards a not to
SRk.

B.3 PERFORMANCEINDICES

Formulas for centers performance indices per chain:

1. Uc,k = Xc,k ∗ τc,k is the utilization of SRk relative to the c∈ {sub, pub} chain for aSIENA configu-
ration;

2. Rc,k = ρc,k/(1 − ∑
j∈{sub,pub} Uj,k) is the average response time of SRk for a request c∈

{sub, pub};
3. Qc,k = Uc,k/(1−∑

j∈{sub,pub} Uj,k) is the average number of request of type c∈ {sub, pub} in the
waiting queue of SRk;

1. X ′
c,k = λc,k is the throughput of SRk relative to the c∈ {sub, pub} chain for the newSIENA config-

uration;

2. U ′
c,k = λc,k ∗ τc,k is the utilization of SRk relative to the c∈ {sub, pub} chain for the newSIENA

configuration;

Formulas for performance indices aggregated perSIENA router

1. Xk =
∑

c∈{sub,pub}Xc,k is the throughput of SRk ;

2. Uk =
∑

c∈{sub,pub} Uc,k is the utilization of SRk;

3. Qk =
∑

c∈{sub,pub}Qc,k is the waiting queue dimension of the SRk;

REFERENCES

[1] C++Sim. http://cxxsim.ncl.ac.uk/.

[2] CSIM-Performance Simulator. http://www.atl.imco.com/proj/csim.

[3] JavaSim. http://javasim.ncl.ac.uk/.

[4] Petri Nets tools database. http://www.daimi.aau.dk/PetriNets.

[5] Poseidon. http://www.gentleware.com.

[6] Unified modeling language (uml), version 1.4. OMG Documentation. At
http://www.omg.org/techonology/documents/formal/uml.htm.

[7] Approximate Mean Value Analysis of Client-Server Systems with Multi-Class Requests(May 1994).

[8] Proc. of SPIN workshops (1995–today).

[9] Analysis of Balanced Fork-Join Queueing Networks(1996).

[10] ObjecTime Ltd., Developer 5.1 Reference Manual, ObjecTime Ltd., 1998.

[11] Proc. of WOSP workshops (1998–2004).

[12] OPNET Manuals, Mil 3, Inc., 1999.

[13] Special IssuëQueueing Networks with BlockingP̈erformance Evaluation Journal(2003), vol. 51.

[14] XMOF queries, views and transformations on models using MOF, OCL and patterns (ad/2003-08-
07).

[15] ABUHR, R., AND CASSELMAN, R. Use Case Maps for Object-Oriented Systems. Prentice-Hall,
1996.

[16] AJMONE, M., BALBO , G., AND CONTE, G. A class of generalised stochastic petri nets for the per-
formance evaluation of multiprocessor systems.ACM Transactions on Computer Systems 2(1984),
93–122.

[17] AJMONE, M., BALBO , G., AND CONTE, G. Performance Models of Multiprocessor Performance.
The MIT Press, 1986.

[18] ANDOLFI, F., AQUILANI , F., BALSAMO , S., AND INVERARDI, P. Deriving performance models
of software architectures from message sequence charts. InProceedings of the Second International
Workshop on Software and Performance (WOSP00)(September 2000), pp. 47–57.

[19] AQUILANI , F., BALSAMO , S.,AND INVERARDI, P. Performance analysis at the software architec-
ture design level.Performance Evaluation 45, 4 (2001), 205–221.

[20] ArgoUML – Object-oriented design tool with cognitive support.

[21] ARIEF, L., AND SPEIRS, N. A UML tool for an automatic generation of simulation programs.
In Proceedings of the Second International Workshop on Software and Performance (WOSP00)
(September 2000), pp. 71–76.

174 REFERENCES

[22] BACCELLI , F., BALBO , G., BOUCHERIE, R., CAMPOS, J.,AND CHIOLA , G. Annotated bibliogra-
phy on stochastic petri nets. InPerformance Evaluation of Parallel and Distributed Systems-Solution
Methods(Amsterdam, 1994), C. Tract, Ed., no. N.105, pp. pp.1–24.

[23] BALBO , G., BRUELL, S.,AND GHANTA , S. Combinig queueing networks and generalized stochas-
tic petri nets for the solution of complex models of system behavior.IEEE Transactions on Comput-
ers 37(1988), 1251–1268.

[24] BALSAMO , S., BERNARDO, M., AND SIMEONI , M. Combinig stochastic process algebras and
queueing networks for software architecture analysis. InWOSP02(2002), pp. 190–202.

[25] BALSAMO , S., DE NITTO PERSONE, V., AND INVERARDI, P. A review on queueing network
models with finite capacity queues for software architectures performance prediction.Perform. Eval.
51, 2/4 (2003), 269–288.

[26] BALSAMO , S., DE NITTO PERSOŃE, V., AND ONVURAL , R. Analysis of Queueing Networks with
Blocking. Kluwer Academic Publishers, 2001.

[27] BALSAMO , S., DI MARCO, A., INVERARDI, P., AND SIMEONI , M. Model-based performance
prediction in software development: A survey.IEEE Transactions of Software Enginnering 30, 5
(2004), 295–310.

[28] BALSAMO , S.,AND MARZOLLA , M. A simulation-based approach to software performance model-
ing. In Proc. Joint 9th European Software Engineering Conference (ESEC& 11th SIGSOFT Sympo-
sium on the Foundations of Software Engineering FSE-11(Helsinki, FI, Sept. 1–5 2003), P. Inverardi,
Ed., ACM Press.

[29] BALSAMO , S., AND MARZOLLA , M. A simulation-based approach to software performance mod-
eling. Tech. Rep. TR SAH/44, MIUR Sahara Project, Mar. 2003.

[30] BALSAMO , S.,AND MARZOLLA , M. Towards performance evaluation of mobile systems in UML.
In Proc. of ESMc’03, The European Simulation and Modelling Conference(Naples, Italy, Oct. 27–29
2003), B. di Martino, L. T. Yang, and C. Bobenau, Eds., EUROSIS-ETI, pp. 61–68.

[31] BALSAMO , S., MARZOLLA , M., DI MARCO, A., AND INVERARDI, P. Experimenting different
software architectures performance techniques: a case study. InFourth International Workshop on
Software and Performance WOSP 2004(2004), pp. 115–119.

[32] BANKS, J., Ed. Handbook of Simulation. Wiley–Interscience, 1998.

[33] BANKS, J., CARSON, J. S., NELSON, B. L., AND NICOL, D. M. Discrete-Event System Simulation,
3rd ed. Prentice Hall, 2000.

[34] BANKS, J., II, J. C., NELSON, B., AND NICOL, D. Discrete-event System Simulation. Prentice-
Hall, 1999.

[35] BASS, L., CLEMENTS, P., AND KAZMAN , R. Software Architecture in Practice - second Edition.
SEI Series in Software Engineering. Addison-Wesley, 2003.

[36] BAUSE, F., AND KLAMANN , A. HiQPN user-s guide. Tech. rep., University of Dortmund, 1996.

[37] BEILNER, H., MATTER, J.,AND WYSOCKI, C. The hierarchical evaluation tool HIT. InProceed-
ings of the /th International Conference on Modelling Techniques and Tools for Computer Perfor-
mance Evaluation(Wien, 1994).

[38] BERNARDI, S., DONATELLI , S., AND MERSEGUER, J. From UML sequence diagrams and state-
charts to analysable petri net models. InProceedings of the Third International Workshop on Soft-
ware and Performance (WOSP02)(July 2002), pp. 35–45.

[39] BERNARDO, M. TwoTowers 2.0 User Manual. http://www.sti.uniurb.it/bernardo/twotowers, 2002.

REFERENCES 175

[40] BERNARDO, M. Twotowers 3.0: Enhancing usability. InProc. of the 11th IEEE/ACM Int. Symp.
on Modeling, Analysis and Simulation of Computer and Telecomunication Systems(Orlando (FL),
2003), pp. 188–193.

[41] BERNARDO, M., AND BRAVETTI , M. Performance measurement sensitive congruences for marko-
vian process algebras.Theoretical Computer Science 290(2003), 117–160.

[42] BERNARDO, M., CIANCARINI , P., AND DONATIELLO , L. On the formalization of architectural
types with process algebras. InProc. of the 8th ACM Int. Symp. on the Foundations of Software
Engineering (FSE-8)(San Diego(CA), 2000), A. Press, Ed., pp. pp.140–148.

[43] BERNARDO, M., DONATIELLO , L., AND CIANCARINI , P. Stochastic process algebra: From an
algebraic formalism to an architectural description language.Performance Evaluation of Complex
Systems: Techniques and Tools LNCS 2459(2002), 236–260.

[44] BERNARDO, M., AND GORRIERI, R. A tutorial on EMPA: A theory of concurrent processes with
nondeterminism, priorities, probabilities and time.Theoretical Computer Science 202, 1–2 (1998),
1–54.

[45] BERTOLINO, A., AND M IRANDOLA , R. Towards component-based software performance engineer-
ing. In Proc. 6th Workshop on Component-Based Software Engineering: Automated Reasoning and
Prediction, ACM/IEEE 25th International Conference on Software Engineering ICSE 2003(Port-
land, Oregon, USA, 2003), pp. 1–6.

[46] BERTOLINO, A., AND M IRANDOLA , R. CB-SPE tool: Putting component-based performance
engineering into practice. InCBSE(2004), pp. 233–248.

[47] BUCHHOLZ, P. A framework for the hierarchical analysis of discrete evet dynamic systems. PhD
thesis, University of Dortmund, 1996.

[48] BUCHI, J. R. On a decision method in restricted second order arithmetic. InProceedings of In-
ternational Congress of Logic, Methodology and Philosophy of Science(1960), S. U. Press, Ed.,
pp. 1–11.

[49] BUHR, R., AND R.S.CASSELMAN. Use CASE Maps for Object-Oriented Systems. Prentice Hall,
1996.

[50] CAPORUSCIO, M., CARZANIGA , A., AND WOLF, A. L. Design and evaluation of a support service
for mobile, wireless publish/subscribe applications.IEEE Transactions on Software Engineering
(Dec 2003).

[51] CAPORUSCIO, M., DI MARCO, A., AND INVERARDI, P.Run-time performance management of the
siena publish/subscribe middleware. InFifth International Workshop on Software and Performance
WOSP 2005. To appear.(Palma de Mallorca, Illes Balears,SPAIN., July 2005).

[52] CARZANIGA , A., ROSENBLUM, D., AND WOLF, A. Achieving scalability and expressiveness in an
internet-scale event notification service. InProceedings of the Nineteenth Annual ACM Symposium
on Principles of Distributed Computing(Portland, Oregon, July 2000), pp. 219–227.

[53] CARZANIGA , A., ROSENBLUM, D., AND WOLF, A. Design and Evaluation of a Wide-Area Event
Notification Service. 332–383.

[54] CASTALDI , M. Dynamic Reconfiguration of Component Based Applications. PhD thesis, University
of L’Aquila, 2004.

[55] CASTALDI , M., DI MARCO, A., AND INVERARDI, P. Data driven reconfiguration for performance
improvements: a model based approach. In2nd ICSE Workshop on Remote Analysis and Measure-
ment of Software Systems, (RAMSS04)(Edinburgh, Scotland, UK, May 2004).

176 REFERENCES

[56] COE, P., HOWELL, F., IBBETT, R., AND WILLIAMS , L. Techical note:a hierarchical computer
architecture design and simulation environment.ACM Transactions on Modelling and Computer
Simulation 8, 4 (1998), 431–446.

[57] COMPARE, D., DI MARCO, A., D’ONOFRIO, A., AND INVERARDI, P. Our experience in the
integration of process algebra based performance validation in an industrial context. Tech. rep.

[58] COMPARE, D., D’ONOFRIO, A., DI MARCO, A., AND INVERARDI, P. Automated performance
validation of software design: An industrial experience. InASE(2004), pp. 298–301.

[59] COMPARE, D., INVERARDI, P., PELLICCIONE, P., AND SEBASTIANI , A. Integrating model-
checking architectural analysis and validation in a real software life-cycle. InProceedings of the
12th Formal Methods 2003, European Symposium (FM03)(San Diego, California, September 2003),
vol. 2805, Springer.

[60] CORTELLESSA, V., D’A MBROGIO, A., AND IAZEOLLA , G. Automatic derivation of software
performance models from CASE documents.Performance Evaluation 45(2001), 81–105.

[61] CORTELLESSA, V., DI MARCO, A., AND INVERARDI, P. Three performance models at work: A
software designer perspective.Electr. Notes Theor. Comput. Sci. 97(2004), 219–239.

[62] CORTELLESSA, V., DI MARCO, A., INVERARDI, P., MANCINELLI , F., AND PELLICCIONE, P. A
framework for the integration of functional and non-functional analysis of software architectures. In
Int. Workshop on Test and Analysis of Component Based Systems (TACOS 2004)(Barcellona,SPAIN.,
March 2004).

[63] CORTELLESSA, V., DI MARCO, A., INVERARDI, P., MUCCINI, H., AND PELLICCIONE, P. Using
UML for SA-based modeling and analysis. InWorkshop on Software Architecture Description &
UML (UML04 workshop)(Lisbon, Portugal, October 2004).

[64] CORTELLESSA, V., GENTILE, M., AND PIZZUTI , M. XPRIT: An XML-based tool to translate
UML diagrams into execution graphs and queueing networks (tool paper). InProc. of 1st Int. Conf.
on the Quantitative Evaluation of Systems(Enschede, NL, 2004), IEEE Computer Society.

[65] CORTELLESSA, V., IAZEOLLA , G.,AND M IRANDOLA , R. Early generation of performance models
for object-oriented systems.IEE Proceedings-Software 147, 3 (2000), 61–72.

[66] CORTELLESSA, V., AND M IRANDOLA , R. PRIMA-UML: a performance validation incremental
methodology on early UML diagrams.Science of Computer Programming.

[67] CYSNEIROS, L., DE MELO SABAT NETO, J., , AND DO PRADO LEITE, G. S. A framework for
integrating non-functional requirements into conceptual models.Requirements Engineering 6, 2
(April 2001), 97–115.

[68] DALRYMPLE , E., AND EDWARDS, M. Independent integrated verification and validation. InPro-
ceedings of the Acquisition Conference(Arlington, Virginia, January 2003).

[69] DAS, O., AND WOODSIDE, C. M. Computing the performability of layered distributed systems
with a management architecture. InWOSP ’04: Proceedings of the fourth international workshop
on Software and performance(New York, NY, USA, 2004), ACM Press, pp. 174–185.

[70] DELLA PENNA, G., DI MARCO, A., INTRIGILA , B., MELATTI , I., AND PIERANTONIO, A. Inter-
operability mapping from xml schemas to er diagrams.Submitted to Data & Knowledge Engineering
- Elsevier Science Journal..

[71] DELLA PENNA, G., DI MARCO, A., INTRIGILA , B., MELATTI , I., AND PIERANTONIO, A. Xere:
Towards a natural interoperability between xml and er diagrams. InFASE(2003), pp. 356–371.

REFERENCES 177

[72] DI MARCO, A., AND INVERARDI, P. Starting from message sequence chart for soft-
ware architecture early performance analysis. In2nd International Workshop on Sce-
narios and State Machines: Models, Algorithms, and Tools(Portland, Oregon, USA.
http://www.di.univaq.it/di/pub.php?username=adimarco, May 2003).

[73] DI MARCO, A., AND INVERARDI, P. Compositional generation of software architecture perfor-
mance qn models. InFourth Working IEEE/IFIP Conference on Software Architecture (WICSA).
(2004), pp. 37–46.

[74] DUTOIT, A., KERKOW, D., PAECH, B., AND VON KNETHEN, A. Functional requirements, non-
functional requirements, and architecture should not be separated. InProceedings of International
Workshop REFSQ ’02(Essen, September 2002).

[75] ENGINEERING DEPARTMENT, E. I. A. Cdif - case data interchange format overview. vol. EIA/IS-
106.

[76] ENSLOW JR, P. H. What is a “distributed” data processing system?Computer 11, 1 (January 1978),
13–21.

[77] FRANKS, G., HUBBARD, A., MAJUMDAR, S., PETRIU, D., ROLIA , J., AND WOODSIDE, C.
A toolset for performance engineering and software design of client-server systems.Performance
Evaluation 24, 1-2 (1995), 117–135.

[78] FRANKS, R., AND WOODSIDE, C. Performance of multi-level client-server systems with parallel
service operations. InACM Proceedings of the First Workshop on Software and Performance(Santa
Fe, New Mexico, 1998), pp. 120–130.

[79] GARLAN , D., KHERSONSKY, S., AND K IM , J. S. Model checking publish/subscribe systems. In
Proceedings of The 10th International SPIN Workshop on Model Checking of Software (SPIN 03)
(Portland, Oregon, May 2003).

[80] GARLAN , D., MONROE, R., AND WILE , D. Acme: Architectural description of component-based
systems. InFoundations of Component-Based Systems, G. T. Leavens and M. Sitaraman, Eds. Cam-
bridge University Press, 2000, pp. 47–68.

[81] GARLAN , D., SCHMERL, B., AND CHANG, J. Using gauges for architecture-based monitoring and
adaptation. InProceedings of Working Conference on Complex and Dynamic Systems Architecture
(Brisbane, Australia, December 2001).

[82] GILMORE, S., AND HILLSTON, J. The pepa wokbench: A tool to support a process algebra-based
approach to performance modelling. InProceedings of the 7th International Conference on Mod-
elling Techniques and Tools for Performance Evaluation(1994), Springer, Ed., vol. 794, pp. 353–368.

[83] GOMAA , H. Designing Concurrent, Distributed, and Real-Time Applications with UML. Addison-
Wesley, 2000.

[84] GOMAA , H., AND MENASCÉ, D. Design and performance modeling of component interconnection
patterns for distributed software architectures. InProceedings of the Second International Workshop
on Software and Performance (WOSP00)(Ottawa, Canada, September 2000), pp. 117–126.

[85] GOMAA , H., AND MENASCÉ, D. Performance engineering of component-based distributed soft-
ware system. InPerformance Engineering(2001), vol. 2047, Springer, pp. 40–55.

[86] GRASSI, V., AND M IRANDOLA , R. PRIMAmob-UML: A methodology for performance analysis of
mobile software architectures. InProceedings of the Third International Workshop on Software and
Performance (WOSP02)(Rome, Italy, July 2002), pp. 262–274.

[87] GROUP, O. M. UML Profile, for Schedulability, Performance, and Time. OMG document ptc/2002-
03-02, http://www.omg.org/cgi-bin/doc?ptc/2002-03-02.

178 REFERENCES

[88] GU, G., AND PETRIU, D. C. XSLT transformation from UML models to LQN performance models.
In Proceedings of the Third International Workshop on Software and Performance (WOSP02)(Rome,
Italy, July 2002), pp. 227–234.

[89] HARRELD, H. Nasa delays satellite launch after finding bugs in software program. InFederal
Computer Week(1998).

[90] HARRISON, P., AND HILLSTON, J. Exploiting quasi-reversible structures in markovian process
algebra models.Computer Journal 38, 7 (1995), 510–520.

[91] HERMANNS, H., HERZOG, U., AND KATOEN, J. P. Process algebra for performance evaluation.
Theoretical Computer Science 274, 1–2 (Mar. 2002), 43–87.

[92] HERMANNS, H., MERTSIOTAKIS, V., AND RETTELBACH, M. A construction and analysis tool
based on the stochastic process algebra TIPP. Springer, Ed., no. LNCS 1055, pp. 427–430.

[93] HERZOG, U., KLEHMET, U., MERTSIOTAKIS, V., AND SIEGLE, M. Compositional performance
modelling with theTIPPtool . Performance Evaluation 39, 1-4 (2000), 5–35.

[94] HILLSTON, J. Pepa-performance enhanced process algebra. Tech. rep., Dept. of Computer Science,
University of Edimburgh, 1993.

[95] HILLSTON, J., AND THOMAS, N. Product form solution for a class of pepa models.Performance
Evaluation 35, 3 (1999), 171–192.

[96] HOARE, C. Communicating Sequential Processes. Prentice-Hall International, London, 1985.

[97] HOEBEN, F. Using UML models for performance calculation. InProceedings of the Second In-
ternational Workshop on Software and Performance (WOSP00)(Ottawa, Canada, September 2000),
pp. 77–82.

[98] HOLZMANN , G. J. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
September 2003.

[99] HOPCROFT, J., AND ULLMAN , J. Introduction to automata theory, languages and computations.
Addison-Wesley, 1979.

[100] HOWARD, R. Dynamic pobabilistic Systems. John Wiley and Sons, 1971.

[101] INVERARDI, P., MUCCINI, H., AND PELLICCIONE, P. Automated check of architectural models
consistency using SPIN. InProceedings of Automated Software Engineering Conference Proceed-
ings (ASE 2001)(San Diego, California, November 2001).

[102] K ÄHKIPURO, P. Uml-based performance modeling framework for component-based distributed
systems. InProceedings of Performance Engineering(2001), Springer, Ed., no. 2047, pp. 167–184.

[103] KANT, K. Introduction to Computer System Performance Evaluation. McGraw-Hill, 1992.

[104] KEMENY, J.,AND SNELL , J. Finite Markov Chains. Springer, New York, 1976.

[105] K ICZALES, G., HILSDALE , E., HUGUNIN, J., KERSTEN, M., PALM , J.,AND GRISWOLD, W. G.
An overview of AspectJ.Lecture Notes in Computer Science 2072(2001), 327–355.

[106] K ICZALES, G., LAMPING, J., MENHDHEKAR, A., MAEDA , C., LOPES, C., LOINGTIER, J.-M.,
AND IRWIN, J. Aspect-Oriented Programming. InProceedings European Conference on Object-
Oriented Programming, M. Akşit and S. Matsuoka, Eds., vol. 1241. Springer-Verlag, Berlin, Heidel-
berg, and New York, 1997, pp. 220–242.

[107] K ING, P., AND POOLEY, R. Derivation of petri net performance models from UML specifications
of communication software. InProceedings of XV UK Performance Engineering Workshop(1999).

REFERENCES 179

[108] KLEHMET, U., AND MERTSIOTAKIS, V. TIPPtool : Timed processes and performability evalua-
tion - user’s guide. Tech. rep., University of Erlangen, 1998.

[109] KLEINROCK, L. Queueing Systems Vol. 1:Theory. Wiley, 1975.

[110] LAW, A. M., AND KELTON, W. D. Simulation Modeling and Analysis, 3rd ed. McGraw–Hill, 2000.

[111] LAZOWSKA, E., KAHORJAN, J., GRAHAM , G. S., AND SEVCIK , K. C. Quantitative System
Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc.,
Englewood Cliffs, 1984.

[112] L INDEMANN , C., THÜMMLER , A., KLEMM , A., LOHMANN , M., AND WALDHORST, O. P. Per-
formance analysis of time-enhanced UML diagrams based on stochastic processes. InProceedings of
the Third International Workshop on Software and Performance (WOSP02)(Rome, Italy, July 2002),
pp. 25–34.

[113] L ÓPEZ-GRAO, J. P., MERSEGUER, J.,AND CAMPOS, J. From uml activity diagrams to stochastic
petri nets: application to software performance engineering. InWOSP ’04: Proceedings of the
fourth international workshop on Software and performance(New York, NY, USA, 2004), ACM
Press, pp. 25–36.

[114] MARZOLLA , M. Simulation-Based Performance Modeling of UML Software Architectures. PhD
Thesis TD-2004-1, Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Mestre, Italy,
Feb. 2004.

[115] MENASCÉ, D. A. A framework for software performance engineering of client/server systems. In
Proceedings of the 1997 Computer Measurement Group Conference(Orlando, Florida, 1997).

[116] MENASCÉ, D. A., AND GOMAA , H. On a language based method for software performance en-
gineering of client/server systems. Inin ACM Proceedings of the First Workshop on Software and
Performance, pp. 63–69.

[117] MENASCÉ, D. A., AND GOMAA , H. A method for design and performance amodeling of clien-
t/server systems.IEEE Transacion on Software Engineering 26, 11 (2000), 1066–1085.

[118] MENASCÉ, D. A., RUAN , H., AND GOMAA , H. A framework for QoS-aware software components.
In Proceedings of the fourth international workshop on Software and performance(Redwood Shores,
California), pp. 186–196.

[119] M IGUEL, M. D., LAMBOLAIS , T., AND M. HANNOUZ, S. BETGÉ-BREZETZ, S. P.Uml extensions
for the specification and evaluation of latency constraints in architectural models. InProceedings
of the Second International Workshop on Software and Performance (WOSP00)(September 2000),
pp. 83–880.

[120] M ILNER, R. Communication and Concurrency. Prentice-Hall International, International Series on
Conputer Science, 1989. International Series on Computer Science.

[121] OBJECTMANAGEMENT GROUP (OMG). XML Metadata Interchange (XMI) specification, version
2.0, 2002.

[122] OMONDO. Eclipseuml. http://www.omondo.com.

[123] PETRIU, D., AMYOT, D., AND WOODSIDE., M. Scenario-based performance engineering with
UCMNav.

[124] PETRIU, D. C., AND SHEN, H. Applying the UML performance profile: Graph grammar-based
derivation of LQN models from UML specifications. InProceedings of Computer Performance
Evaluation, Modelling Techniques and Tools 12th International Conference, TOOLS 2002(London,
UK, 2002), vol. 2324 ofLNCS, pp. 159–177.

180 REFERENCES

[125] PETRIU, D. C., AND WANG, X. From uml descriptions of high-level software architectures to lqn
performance models. InProceedings of AGTIVE’99(1999), S. Verlag, Ed., pp. 47–62.

[126] PETRIU, D. C., AND WOODSIDE, C. Software performance models from system scenarios in use
case maps. InProceedings of Computer Performance Evaluation, Modelling Techniques and Tools
12th International Conference, TOOLS 2002(2002), vol. 2324 ofLNCS, pp. 141–158.

[127] PNUELI , A. The temporal logic of programs. InProceedings of the 18th IEEE Symposium on
Foundation of Computer Science(1977), pp. 46–57.

[128] POOLEY, R. Using UML to derive stochastic process algebra models. InProceedings of XV UK
Performance Engineering Workshop(1999), pp. 23–34.

[129] POOLEY, R., AND K ING, P. The unified modeling language and performance engineering. In
Proceedings of IEE Software(1999), pp. 2–10.

[130] PORCARELLI, S., CASTALDI , M., GIANDOMENICO, F. D., BONDAVALLI , A., AND INVERARDI,
P. A framework for reconfiguration-based fault tolerance in distributed systems. InArchitecting De-
pendable Systems II. LNCS 3069(March 2004), C. G. R. De Lemos, A. Romanovsky, Ed., pp. 167–
190.

[131] PROJECT., T. E. Eclipse platform technical overview. Tech. rep., The Eclipse project, 2001.

[132] REISIG, W. Petri nets: an introduction.EATCS Monographs on Theoretical Computer Science Vol.4
(1985).

[133] ROLIA , J., AND SEVCIK , K. The method of layers.IEEE Transaction on Software Engineering
21/8(1995), 622–688.

[134] SAUER, C. H., AND MACNAIR , E. A. Queueing network software for systems modeling. In
Research Report RC-7143, IBM Thomas J. Watson Research Center(Yorktown,Heights, NY, 1978).

[135] SAUER, C. H., REISER, M., AND MACNAIR , E. A. RESQ - a package for solution of generalized
queueing networks. InProceedings, National Computer Conference(Dallas, TX, 1977), pp. 977–
986.

[136] S.BALSAMO , L.DONATIELLO , AND VAN DIJK, N. Bounded performance analysis of parallel pro-
cessing systems.IEEE Transactions on Parallel and Distributed Systems 9(October 1998), 1041–
1056.

[137] SECTOR, I. T. S. Message Sequence Charts, ITU-T Recommentation Z.120(11/99). 1999.

[138] SERENO, M. Towards a product form solution for stochastic process algebras.Computer Journal 38
(1995), 622–632.

[139] SMITH , C. Performance Engineering of Software Systems. Addison-Wesley, 1990.

[140] SMITH , C. Definition of a performance model interchange format. InPerformance Engineering
Services(October 1994), vol. PES-1001-94.

[141] SMITH , C., AND LLAD Ó, C. M. Performance model interchange format (PMIF 2.0): XML
definition and implementation. InProc. 1st Int. Conf. on Quantitative Evaluation of Systems (QEST)
(Enschede, NL, 2004).

[142] SMITH , C., AND WILLIAMS , L. Performance engineering evaluation of object-oriented systems
with SPE•EDTM . In Proceedings of Computer Performance Evaluation(Berlin, Germany, 1997),
vol. 1245 ofLNCS, pp. 135–154.

[143] SMITH , C., AND WILLIAMS , L. Performance engineering evaluation of CORBA-based distributed
systems with SPE•ED. In 10th International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation(Palma de Mallorca, Spain, 1998), Springer Verlag.

REFERENCES 181

[144] SMITH , C., AND WILLIAMS , L. A performance model interchange format.Journal of Systems and
Software 49, 1 (1999).

[145] SMITH , C., AND WILLIAMS , L. Performance Solutions: A Practical Guide to Creating Responsive,
Scalable Software. Addison-Wesley, Reading, MA, 2002.

[146] SMITH , C. U., LLAD Ó, C. M., CORTELLESSA, V., DI MARCO, A., AND WILLIAMS , L. G. From
UML models to software performance results: An SPE process based on XML interchange formats.
In Fifth International Workshop on Software and Performance WOSP 2005. To appear.(Palma de
Mallorca, Illes Balears,SPAIN., July 2005).

[147] SMITH , C. U., WILLIAMS , L. G., LLAD Ó, C. M., CORTELLESSA, V., AND DI MARCO, A.
Software performance engineering model interchange format (S-PMIF 2.0): XML definition and
implementation technical report. Tech. rep., L&S Computer Technology, Inc., Dec. 2004.

[148] OB J E C T MA N A G E M E N TGR O U P. Unified Modeling Language 2.0. http://www.omg.org/uml/,
2003.

[149] SEA GR O U P, U N I V E R S I T Y O F L’A Q U I L A. Tool-One project.
http://www.di.univaq.it/di/project.php?id=8, 2003.

[150] TIJMS, H. C. Stochastic Models, An Algorithmic Approach. John Wiley and Sons Ltd, 1994.

[151] TRIVEDI , K. S. Probability and Statistics with Reliability, Queueing and Computer Science Appli-
cations. John Wiley and Sons, 2001.

[152] UCHITEL, S., KRAMER, J.,AND MAGEE, J. Synthesis of behavorial models from scenarios.IEEE
Trans. on Software Engineering 29-2(2003).

[153] VERAN, M., AND POTIER, D. QNAP 2:a portable environment for queueing systems modelling. In
Rapport de recherche de l’INRIA-Rocquencourt(At http://www.inria.fr/rrrt/rr-0314.html, 1984).

[154] W3C. eXtensible Markup Language (XML) 1.0 (second edition) W3C recommendation 6 october
2000.

[155] W3C. World Wide Web Consortium.http://www.w3.org.

[156] W3C. XML Schema Part 1: Structuresand XML Schema Part 2: Datatypes, W3C
Recommendation 2 May 2001. http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/and
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

[157] W3C. XML Path Language, 1999.http://www.w3.org/TR/xpath.

[158] W3C. eXtensible Stylesheet Language (XSL), 2001.http://www.w3.org/Style/XSL/.

[159] WILLIAMS , L., AND SMITH , C. Performance evaluation of software architectures. Inin ACM
Proceedings of the First Workshop on Software and Performance, pp. 164–177.

[160] WILLIAMS , L., AND SMITH , C. Information requirements for software performance engineering.
In Proceedings of International Conference on Modeling Techniques and Tools for Computer Perfor-
mance Evaluation(Heidelberg, Germany, 1995), Springer Verlag.

[161] WILLIAMS , L., AND SMITH , C. PASA: A method for the performance assesment of software
architectures. InProceedings of the Third International Workshop on Software and Performance
(WOSP02)(Rome, Italy, July 2002), pp. 179–189.

[162] WOODSIDE, C., HRISCHUK, C., SELIC, B., AND S.BRAYAROV. Automated performance modeling
of software generated by a design environment.Performance Evaluation 45(2001), 107–123.

[163] WOODSIDE, C., NEILSON, J., PETRIU, S.,AND MJUMDAR, S. The stochastic rendezvous network
model for performance of synchronous client-server-like distributed software.IEEE Transaction on
Computer 44(1995), 20–34.

182 REFERENCES

[164] WU, X., AND DAVID MCMULLAN , M. W. Component-based performance prediction. InProc.
6th Workshop on Component-Based Software Engineering: Automated Reasoning and Prediction,
ACM/IEEE 25th International Conference on Software Engineering ICSE 2003(Portland, Oregon,
USA, 2003), pp. 13–18.

