
1

Algorithms for UNRELIABLE
Distributed Systems:

The consensus problem

2

Failures in Distributed Systems

Let us go back to the message-passing model; it may
undergo the following malfunctioning, among others:

Link failure: A link fails and remains inactive for some time;

the network may get disconnected

Processor crash (or benign) failure: At some point, a

processor stops forever taking steps; also in this case,
the network may get disconnected

Processor Byzantine (or malicious) failure: during the

execution, a processor changes state arbitrarily and
sends messages with arbitrary content (name dates back
to untrustable Byzantine Generals of Byzantine Empire,
IV–XV century A.D.); also in this case, the network may
get disconnected

3

Normal operating

Non-faulty
links and
nodes 1p

2p

3p

4p5p

a

b

a c

a

b

c a

4

Faulty

link
1p

2p

3p

4p5p

a

b

a c

b

c

a

Messages sent on the failed link

are not delivered (for some time), but
they cannot be corrupted

Link (non-permanent) Failures

5

Faulty

processor

Some of the messages are not sent
(forever)

1p

2p

3p

4p5p

a

a

b
b

Processor (permanent) crash failure

a c

6

Crash failure in a synchronous MPS

1p

2p

3p

4p

5p

Round

 1
1p

2p

3p

4p

5p

1p

2p

3p

4p

5p

Round

 2

Round

 3
1p

2p

4p

5p

Round

 4
1p

2p

4p

5p

Round

 5

After failure the processor disappears from

the network

3p 3p

7

Processor Byzantine failure

Faulty

processor
1p

2p

3p

4p5p

a

*!§ç#

%&/£

Processor sends arbitrary messages (i.e.,
they could be either correct or corrupted),
plus some messages may be not sent

a

*!§ç#

%&/£

c

8

Failure

1p

2p

3p

4p

5p

Round

 1
1p

2p

3p

4p

5p

1p

2p

3p

4p

5p

Round

 2

Round

 3
1p

2p

4p

5p

Round

 4
1p

2p

4p

5p

Round

 5

After failure the processor may continue

functioning in the network

3p 3p

Failure

1p

2p

4p

5p

Round

 6

3p

Byzantine failure in a synchronous MPS

9

Consensus Problem
Every processor has an input xєX (notice that in this way
the algorithms running at the processors will depend on
their input), and must decide an output yєY. Assume that
link or node failures can possibly take place in the system.
Then, design an algorithm enjoying the following properties:

Termination: Eventually, every non-faulty processor decides
on a value yєY.

Agreement: All decisions by non-faulty processors must be
the same.

Validity: If all inputs are the same, then the decision of a
non-faulty processor must equal the common input (this
avoids trivial solutions).

In the following, we assume that X=Y=N

10

Agreement

0

1

2 3

3

Start

Everybody has an
initial value

Finish

2

4 4

4

All non-faulty must
decide the same value

4

11

1

1

1 1

1

Start

If everybody starts with the same value,

then non-faulty must decide that value

Finish
2

1

1 1

1

Validity

12

Negative result for link failures

• Although this is the simplest fault a MPS may
face, it may already be enough to prevent
consensus

• More formally, there exist input instances for
which it is impossible to reach consensus in case
of single non-permanent link failures, even in the
synchronous non-anonymous case

• To illustrate this negative result, we present the
very famous problem of the 2 generals

13

Consensus under non-permanent link failures:
the 2 generals problem

There are two generals of the same army
who have encamped a short distance apart.
Their objective is to decide on whether to
capture a hill, which is possible only if they
both attack (i.e., if only one general attacks,
he will be defeated, and so their common
output should be either “not attack” or
“attack”). However, they might have
different opinion about what to do (i.e., their
input). The two generals can only
communicate (synchronously) by sending
messengers, which could be captured (i.e.,
link failure), though. Is it possible for them
to reach a common decision?

1p 2p

Let’s attack

A B

More formally, we are talking about consensus in the following MPS:

14

• First of all, notice that it is needed to exchange messages to
reach consensus (as we said, generals might have different
opinions in mind!)

• Assume the problem can be solved, and let Π be the shortest
protocol (i.e., a solving algorithm with the minimum number of
messages) for a given input configuration.

• Since this protocol is deterministic, for such a fixed input
configuration, there will be a sequence of messages to be
exchanged, which however may not be all successfully delivered,
due to the possible link failure.

• In particular, suppose now that the last message in Π does not
reach the destination (i.e., a link failure takes place). Since Π is
correct independent of link failures, consensus must be reached
in any case. This means, the last message was useless, and then
Π could not be shortest!

Impossibility of consensus under link failures

15

Negative result for processor failures
in asynchronous systems

• It is not hard to see that a processor failure (both
permanent crash and byzantine) is at least as difficult as a
non-permanent link failure, and then also in this case not
for all the input instances it will be possible to solve the
consensus problem

• Negative result: in the asynchronous case it can be proven
that it is impossible to reach consensus for any system
topology and already for a single crash failure!

 in search of some positive result, we focus on the
synchronous case and we look at the powerful clique
topology

16

Positive results: Assumption on the communication
model for crash and byzantine failures

1p

2p

3p

4p5p

• Complete undirected graph (in a sense, this implies non-uniformity)

• Synchronous network, synchronous start: w.l.o.g., we assume that rounds
are now organized as follows: messages are sent at the beginning of a
round, and then delivered and read in the very same round

17

Overview of Consensus Results

f-resilient consensus algorithms (i.e.,
algorithms solving consensus for at
most f faulty processors)

Crash failures Byzantine failures

Number of
rounds

f+1 (tight) 2(f+1)

f+1 (tight)

Total number
of processors

n≥f+1 (tight) n≥4f+1

n≥3f+1 (tight)

Message
complexity

O(n3) O(n3)

O(nO(n)) (exponential)

18

A simple algorithm for fault-free consensus

1. Broadcasts its input to all processors
(including itself)

2. Reads all the incoming messages

3. Decides on the minimum received value

Each processor:

(only one round is needed,
since the graph is complete)

19

0

1

2 3

4

Start

20

0

1

2 3

4

Broadcast values
0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

21

0

0

0 0

0

Decide on minimum

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

22

0

0

0 0

0

Finish

23

This algorithm satisfies the agreement

1

3

5 2

3

Start Finish
1

1

1 1

1

All the processors decide the minimum
exactly over the same set of values

24

This algorithm satisfies the validity condition

1

1

1 1

1

Start Finish
1

1

1 1

1

If everybody starts with the same initial value,

everybody decides on that value (minimum)

25

0

1

2 3

4

Start
fail

The failed processor doesn’t broadcast

its value to all processors

0

0

Consensus with Crash Failures
The simple algorithm doesn’t work

26

0

1

2 3

4

Broadcasted values

0,1,2,3,4

1,2,3,4

fail

0,1,2,3,4

1,2,3,4

27

0

0

1 0

1

Decide on minimum

0,1,2,3,4

1,2,3,4

fail

0,1,2,3,4

1,2,3,4

28

0

0

1 0

1

Finish
fail

No agreement!!!

29

An f-resilient to crash failures algorithm

Round 1:

 Broadcast to all (including myself) my value;

 Read all the incoming values;

Round 2 to round f+1:

 Broadcast to all (including myself) any new
 received values (one message for each value):

 Read all the incoming values;

End of round f+1:

 Decide on the minimum value ever received.

Each processor:

30

0

1

2 3

4

Start

Example 1: f=1 failures, f+1 = 2 rounds needed

p1

p2

p4 p3

p5

31

0

1

2 3

4

Round 1

0

0
fail

Example 1: f=1 failures, f+1 = 2 rounds needed

Broadcast all values to everybody

0,1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

(new values)

p1

p2

p4 p3

p5

32

Example 1: f=1 failures, f+1 = 2 rounds needed

Round 2

Broadcast all new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4
1

2 3

4

0

p1

p2

p4 p3

p5

33

Example 1: f=1 failures, f+1 = 2 rounds needed

Finish

Decide on minimum value

0

0 0

0

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

0

p1

p2

p4 p3

p5

34

0

1

2 3

4

Start

Example 2: f=1 failures, f+1 = 2 rounds needed

p1

p2

p4 p3

p5

35

0

1

2 3

4

Round 1

Example 2: f=1 failures, f+1 = 2 rounds needed

No failures: all values are broadcasted to all

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

p1

p2

p4 p3

p5

36

0

1

2 3

4

Round 2

1,2,3,4 fail

Example 2: f=1 failures, f+1 = 2 rounds needed

No problem: processors p2 and p4

have already seen 1,2,3 and 4 in
the previous round

1,2,3,4

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

p1

p2

p4 p3

p5

37

Example 2: f=1 failures, f+1 = 2 rounds needed

Finish

Decide on minimum value

0

0 0

0

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

0

p1

p2

p4 p3

p5

38

0

1

2 3

4

Start

Example 3: f=2 failures, f+1 = 3 rounds needed

p1

p2

p4 p3

p5

39

0

1

2 3

4

Round 1

0

Failure 1

Broadcast all values to everybody

1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

Example 3: f=2 failures, f+1 = 3 rounds needed

p1

p2

p4 p3

p5

40

0

1

2 3

4

Round 2
Failure 1

Broadcast new values to everybody

0,1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

Failure 2

Example 3: f=2 failures, f+1 = 3 rounds needed

0

p1

p2

p4 p3

p5

41

0

1

2 3

4

Round 3
Failure 1

Broadcast new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

Failure 2

Example 3: f=2 failures, f+1 = 3 rounds needed

p1
p2

p4 p3

p5

42

0

0

0 3

0

Finish
Failure 1

Decide on the minimum value

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

Failure 2

Example 3: f=2 failures, f+1 = 3 rounds needed

p1

p2

p4 p3

p5

43

In general, since there are f failures and f+1 rounds, then

there is at least a round with no new failed processors:

Example:

5 failures,

6 rounds

1 2

No failure

3 4 5 6 Round

44

Lemma: In the algorithm, at the end of the round with no new
failures, all the non-faulty processors know the same set of
values.

Proof: For the sake of contradiction, assume the claim is
false. Let x be a value which is known only to a subset of non-
faulty processors at the end of the round with no failures.
Observe that any such processors cannot have known x for
the first time in a previous round, since otherwise it had
broadcasted x to all. So, the only possibility is that it
received it right in this round, otherwise all the others
should know x as well. But in this round there are no failures,
and so x must be received and known by all, a contradiction.
 QED

Correctness (1/2)

45

Agreement: this holds, since at the end of the round
with no failures, every (non-faulty) processor has the
same knowledge, and this doesn’t change until the
end of the algorithm (no new values can be
introduced, since we assumed synchronous start) 
eventually, everybody will decide the same value!

Correctness (2/2)

Remark: we don’t know the exact position of the
free-of-failures round, so we have to let the
algorithm execute for f+1 rounds

Validity: this holds, since the value decided from
each processor is some input value (no exogenous
values are introduced)

46

Performance of Crash Consensus Algorithm

• Number of processors: n > f

• f+1 rounds

• O(n2·k)=O(n3) messages, where k=O(n)
is the number of different inputs.
Indeed, each processor sends O(n)
messages (one for each processor)
containing a given seen input value

47

A Lower Bound
Any f-resilient to crash failures
consensus algorithm requires at
least f+1 rounds

Theorem:

Proof sketch: Assume by contradiction that f

or less rounds are enough. Clearly,
every algorithm which solves
consensus requires that eventually
non-faulty processors have the very
same knowledge

Worst case scenario:
There is a processor that fails in

each round

48

Round

a

1

before processor pi1
fails, it sends its value a

to only one processor pi2, and so at the end
of round 1 only pi2

knows a

Worst case scenario

pi1

pi2

49

Round

a

1

Worst case scenario

2

before processor pi2
fails, it sends its value

a to only one processor pi3, and so at the end
of round 2 only pi3

knows a

pi2

pi3

50

Round 1

Worst case scenario

2

………

a

f 3

Before processor pif fails, it sends its value a
to only one processor pif+1

. Thus, at the end
of round f only processor pif+1

knows about a

Pif+1

pif

51

Round 1

Worst case scenario

2

………

f 3

No agreement: Processor pif+1
 has a different

knowledge, i.e., it may decide a, and all other
processors may decide another value, say b>a 
contradiction, f rounds are not enough. QED

a

b

decide

pif+1

52

Consensus with Byzantine Failures

solves consensus for at most f byzantine
processors

f-resilient to byzantine failures consensus
algorithm:

53

Any f-resilient to byzantine failures
consensus algorithm requires at
least f+1 rounds

Theorem:

follows from the crash failure lower bound

Proof:

Lower bound on number of rounds

54

An f-resilient to byzantine failures algorithm

Solves consensus in 2(f+1) rounds for n
processors out of which at most n/4 can be
byzantine, namely f<n/4 (i.e., n≥4f+1)
Assumption: The system is non-uniform and
processors have (distinct) ids in {1,…,n} (and so the
system is non anonymous), and we denote by pi the
processor with id i; this is common knowledge, i.e.,
processors cannot cheat about their ids (namely, pi
cannot behave like if it was pj, ij, even if it is
byzantine!)

The King algorithm (P. Berman, J.A. Garay,
and K.J. Perry, FOCS 1989)

55

The King algorithm

There are f+1 phases; each phase has 2
rounds, used to update in each
processor pi a preferred value vi. At
the beginning, the preferred value is
set to the input value

In each phase there is a different king

 There is a king that is non-faulty!

56

The King algorithm Phase k=1,…,f+1

Round 1, every processor pi:

• Broadcast to all (including myself) its
preferred value vi

• Set vi:=a

• Let a be the most frequent received value
(including vi, in case of tie pick an
arbitrary value), a.k.a. majority value, and
let 1 ≤ mi ≤ n be its number of occurrences
(or majority)

57

After receiving vk, if pi selected in Round 1 a
preferred value vi with a weak majority, i.e.,
mi < n/2+f+1 (here non-uniformity is
required), then set vi:=vk, otherwise maintain
your preferred value vi

The King algorithm Phase k=1,…,f+1

Round 2, king pk:

Broadcast (to the others) its current
preferred value vk

Round 2, processor pi:

58

The King algorithm

End of Phase f+1:

Each non-faulty processor decides on its
preferred value

59

Example 1: 6 processors, 1 fault  2 phases

Faulty

0 1

king 1

king 2 0

1 1

2

p1

p2

p4 p3

p5

p6

60

0 1

0

* 1

2

Phase 1, Round 1

0,2,1,0,0,1

1,2,1,0,0,1

0

1

1 0

0

Everybody broadcasts, and faulty p1 sends
arbitrary values

p1

p2

p4 p3

p5

p6

1,2,1,0,0,1
0,2,1,0,0,1

0,2,1,0,0,1

61

1 0

0

* 1

0

Phase 1, Round 1
Choose the majority

Each (weak) majority is equal to 51
2

3  f
n

 On round 2, everybody will choose the king’s value

p1

p2

p4 p3

p5

p6

0,2,1,0,0,1

1,2,1,0,0,1

1,2,1,0,0,1
0,2,1,0,0,1

0,2,1,0,0,1

62

Phase 1, Round 2

0 1

0

* 1

3

king 1

 Everybody chooses the king’s value

p1

p2

p4 p3

p5

p6

1

0

0

The faulty king broadcasts arbitrary values

0

1

0 1

3

63

0 1

0

* 1

3

Phase 2, Round 1

0,3,1,0,0,1

1,3,1,0,0,1

0

1

1 0

0

Everybody broadcasts, and faulty p1
sends arbitrary values

p1

p2

p4 p3

p5

p6

1,3,1,0,0,1
0,3,1,0,0,1

0,3,1,0,0,1

64

1 0

0

* 1

0

Phase 2, Round 1
Choose the majority

51
2

3  f
n

 On round 2, everybody will choose the king’s value

p1

p2

p4 p3

p5

p6

0,3,1,0,0,1

1,3,1,0,0,1

1,3,1,0,0,1
0,3,1,0,0,1

0,3,1,0,0,1

Each (weak) majority is equal to

65

Phase 2, Round 2

1 0

0

* 1

0

The non-faulty king p2 broadcasts its 0

king 2

0 0

0

0 0
p1

p2

p4 p3

p5

p6

66

Phase 2, Round 2

0 0

0

* 0

0
king 2

 Everybody chooses the king’s value

 Final decision and agreement on 0

p1

p2

p4 p3

p5

p6 1

1

The non-faulty king p2 broadcasts its 0

0 0

0

0 0

67

Example 2: 6 processors, 1 fault  2 phases

Faulty
1 1

king 1

king 2 0

1 1

1

p1

p2

p4 p3

p5

p6

68

1 1

0

1 1

*

Phase 1, Round 1

1,0,1,1,0,1

1,1,1,1,0,1

0

1

1 0

2
p1

p2

p4 p3

p5

p6

1,1,1,1,0,1
1,0,1,1,0,1

1,2,1,1,0,1

Everybody broadcasts, and faulty p2 sends
arbitrary values

69

1 1

1

1 1

*

Phase 1, Round 1
Choose the majority

Some majorities are strong (at least 5
votes), others are weak (less than 5 votes)
 On round 2, somebody will choose the king’s
value, someone else will keep its own value

p1

p2

p4 p3

p5

p6
1,2,1,1,0,1

1,1,1,1,0,1

1,1,1,1,0,1
1,0,1,1,0,1

1,0,1,1,0,1

70

Phase 1, Round 2

1

1 1

1 1

*

king 1

 Some processors switch to the king’s
value, but they will still selects 1!

p1

p2

p4 p3

p5

p6

1

1

The non-faulty king p1 broadcasts its 1

1

1

1 1

1

71

1 1

1

1 1

*

Phase 2, Round 1

1,2,1,1,1,1

1,1,1,1,1,1

2

1

5 0

0
p1

p2

p4 p3

p5

p6

1,5,1,1,1,1
1,0,1,1,1,1

1,0,1,1,1,1

Everybody broadcasts, and faulty p2 sends
arbitrary values

72

1 1

1

1 1

*

Phase 2, Round 1
Choose the majority

1
2

5  f
n

 On round 2, nobody will choose the king’s value

p1

p2

p4 p3

p5

p6

1,0,1,1,1,1 1,1,1,1,1,1

1,5,1,1,1,1
1,0,1,1,1,1

1,2,1,1,1,1

Each majority is at least i.e., it’s strong!

73

Phase 2, Round 2

1 1

1

1 1

*

The faulty king p2 broadcasts arbitrary
values, but nobody changes its preferred
value

king 2

0 1

5

4 0
p1

p2

p4 p3

p5

p6

 Final decision and agreement on 1

74

Lemma 1: At the end of a phase  where the
king is non-faulty, every non-faulty processor
prefers the same value

Proof: Consider the end of round 1 of phase .

There are two cases:

Correctness of the King algorithm

Case 1: All non-faulty processors have chosen
their preferred value with weak majority (i.e.,
< n/2+f+1 votes) [see phase 2 of Example 1]

Case 2: Some non-faulty processor has chosen
its preferred value with strong majority (i.e.,
 n/2+f+1 votes) [see phase 1 of Example 2]

75

Case 1: All non-faulty processors have
chosen their preferred value at the
end of round 1 of phase  with weak
majority (i.e., < n/2+f+1 votes)

 Every non-faulty processor will adopt

the value broadcasted by the king during
the second round of phase , thus all of
them will prefer the same value, since the
king is non-faulty

76

Case 2: Suppose a non-faulty processor pi has
chosen its preferred value a at the end of round 1
of phase  with strong majority ( n/2+f+1 votes)

 This implies that at least n/2+1 non-
faulty processors must have broadcasted a
at start of round 1 of phase , and then at
the end of that round, every other non-
faulty processor (including the king) must
have received value a with an absolute
majority of at least n/2+1 votes, and so
such a value becomes preferred in these
processors

77

At end of round 2, there are 2 cases:

1. If a non-faulty processor keeps its own
value due to strong majority, then it
maintains a

2. Otherwise, if a non-faulty processor
adopts the value of the non-faulty king,
then it prefers a as well, since the king
has broadcasted a

Therefore: Every non-faulty processor
prefers a

END of PROOF

78

Proof: First of all, notice that the system contains
at most f byzantine processors, and then at least
n-f non-faulty processors. But since f<n/4, it
follows that n-f>n/2+f, since

Lemma 2: Let a be a common value preferred by
non-faulty processors at the end of a phase . Then,
a will be preferred until the end.

f
2

n
fn

2

n
2fn

2

n
n2f

2

n
2f

4

n
f 

This means, after , a will always be preferred
with strong majority (i.e., >n/2+f), and so, until the
end of phase f+1, every non-faulty processor will
keep on preferring a. QED

79

Agreement in the King algorithm

Follows from Lemma 1 and 2, observing that
since there are f+1 phases and at most f
failures, there is al least one phase in
which the king is non-faulty (and thus from
Lemma 1 at the end of that phase all non-
faulty processors prefer the same value,
and from Lemma 2 this preference will be
maintained until the end).

80

f
2

n
fn 

Follows from the fact that if all (non-faulty)
processors have a as input, then in round 1 of phase
1 each non-faulty processor will receive a at least n-
f times, i.e., with strong majority, since as we
observed in Lemma 2:

Validity in the King algorithm

QED

and so in round 2 of phase 1 this will be the
preferred value of all non-faulty processors,
independently of the king’s broadcasted value.
From Lemma 2, this will be maintained until the
end, and will be exactly the decided output!

81

Performance of King Algorithm

• Number of processors: n > 4f (we will see it

is not tight)

• 2(f+1) rounds (we will see it is not tight)

• Θ(n2·f)=O(n3) messages. Indeed, each non-
faulty node sends n messages in the first
round of each phase, each containing a
given preference value, and each non-faulty
king sends n-1 messages in the second
round of each phase. Notice that we are
not considering the fact that a byzantine
processor could in principle generate an
unbounded number of messages!

82

Homework

Show an execution with n=4 processors and
f=1 for which the King algorithm fails.
Discuss the 3 possible cases:

1) Neither p1 nor p2 is faulty

2) p1 is faulty

3) p2 is faulty

84

There is no f-resilient to byzantine

failures algorithm for n processors

when

Theorem:

Proof: First we prove the 3 processors case,

and then the general case

3

n
f 

An Impossibility Result
(M.C. Pease, R.E. Shostak, and L.

Lamport, JACM 1980)

85

There is no 1-resilient to byzantine
failures algorithm for 3 processors

Lemma:

Proof: Assume by contradiction that there is

a 1-resilient algorithm for 3 processors

The 3 processors case

0p

1p

2p
A(0)

B(1)

C(0)

Input value (either 0 or 1)

Local Algorithm
(notice we admit
non-homogeneity)

86

B(1)
1p

0p
A(1)

2p

byzantine

C(1)

C(0)
C(1)

A first execution

p2 behaves (we don’t know exactly
what it will do) towards p0 (resp.,
p1) has if it had input 0 (resp., 1)

87

1
1p

0p
1

2p

(validity condition)

Decision value

byzantine

88

0p
1

1p

2p
C(0)

B(0)

0p

A(0)

A(1)

1
1p

0p
1

2p
A(0)

A second execution

p0 behaves towards p1
(resp., p2) has if it had
input 0 (resp., 1)

byzantine byzantine

89

0p
1

1p

2p
0

0

0p

(validity condition)

1
1p

0p
1

2p

byzantine byzantine

90

0p
1

1p

2p
0

0

0p

1
1p

0p
1

2p

0p

1p

0p 2pA(1) C(0)
B(1) B(0)

B(1)

A third execution
p1 behaves
towards p2
(resp., p0) has
if it had input
0 (resp., 1)

byzantine byzantine

byzantine

91

B(1)
1p

0p

A(1)
2p

C(1)

C(0)

1p

2p
C(0)

B(0)

0p
A(0)

A(1)

0

0 1

1
0p

1p

0p 2pA(1) C(0)
B(1) B(0)

B(1)

The view of p2 (resp., p0) in the third execution, namely the
behavior of p0 and p1 (resp., p1 and p2) it observes, and thus its
own behavior, is exactly the same as in the second (resp., the
first) execution, so it must take the same decision as before!

byzantine byzantine

byzantine

92

0p
1

1p

2p
0

0

0p

1
1p

0p
1

2p

0p

1p

0p 2p
0 1

No agreement!!! Contradiction, since the
algorithm was supposed to be 1-resilient

byzantine byzantine

byzantine

93

Therefore:

There is no algorithm that solves

consensus for 3 processors

in which 1 is a byzantine!

94

The n processors case

Assume by contradiction that there

is an f-resilient distributed algorithm A

for n>3 processors for
3

n
f 

We will use A to solve consensus

for 3 processors and 1 byzantine failure

(contradiction)

95

Each processor qi simulates the execution of algorithm A
once restricted to the set Pi of n/3 processors. In
particular, qi decides k if the majority of its processors
decides k.

1q

2q0q

W.l.o.g. let n=3f, and let P=<p0,p1,…,p3f-1> be the n-
processor system. We partition arbitrarily the n
processors in 3 sets P0,P1,P2, each containing n/3
processors; then, given a 3-processor system Q=<q0,q1,q2>,
we associate each qi with Pi

p0,…,pf-1

pf,…,p2f-1

p2f,…,p3f-1

96

1q

2q

byzantine

When a processor in Q fails, then at most
n/3 original processors in the original n-
processor system P are affected

0q
p0,…,pf-1

pf,…,p2f-1

p2f,…,p3f-1

97

1q

2q

fails

But we were assuming that the original
algorithm A tolerates at most f=n/3
failures, so the remaining 2f processors
must agree!

Finish of

algorithm A

k
k k

k k k

k

k

k k
k k

k
all decide k

0q
p0,…,pf-1

pf,…,p2f-1

p2f,…,p3f-1

98

1q

2q

fails

Final decision

k

k

We reached consensus with 1 failure

Impossible!!!

0q

99

There is no f-resilient to byzantine
failures algorithm for n processors in case

Therefore:

3

n
f 

Is there an f-resilient to byzantine failures
algorithm for n processors if f<n/3, namely
for n3f+1?

For n4f+1, YES (King algorithm), but what
about 3f+1≤n<4f+1, and in particular n=3f+1?

Question:

100

Exponential Tree Algorithm (a.k.a. Exponential
Information Gathering (EIG) algorithm, M.C. Pease,

R.E. Shostak, and L. Lamport, JACM 1980)

 • This algorithm uses
– n=3f+1 processors (optimal)
– f+1 rounds (optimal)
– exponential number of messages (sub-optimal, the King

algorithm was using only O(n3) msgs)
• Each processor keeps a rooted tree data structure in its local

state
• From a topological point of view, all the trees are identical: they

have height f+1, each root has n children, the number of children
decreases by 1 at each level, and all the leaves are at the same
level

• Values are filled top-down in the tree during the f+1 rounds; more
precisely, during round i, level i of the tree is filled (the root is at
level 0)

• At the end of round f+1, the values in the tree are used to
compute bottom-up the decision.

101

Example of Local Tree

The tree when n=4 and f=1:

102

Local Tree Data Structure
• Assumption: Similarly to the King algorithm, processors have
(distinct) ids (now in {0,1,…,n-1}), and we denote by pi the
processor with id i; this is common knowledge, i.e., processors
cannot cheat about their ids;

• Each tree node is labeled with a sequence of unique
processor ids in 0,1,…,n-1 defined recursively as follows:

• Root's label is the empty sequence  (the root has level 0 and height
f+1);

• Root has n children, labeled 0 through n-1

• The child node of the root (level 1) with label i has n-1 children,
labeled i:0 through i:n-1 and skipping i:i;

• A node at level d>1 has a label made up of d distinct indexes, say
i1:i2:…:id-1:id, where i1:i2:…:id-1 is the label of its parent, and id is a value
in 0,1,…,n-1; morover, if d<f+1, such a node has n-d children, labeled
i1:i2:…:id:0 through i1:i2:…:id:n-1, skipping any index i1,i2,…,id;

• Nodes at level f+1 are leaves with label i1:i2:…:if+1 and have height 0.

103

Labels of the Sample Local Tree

The tree when n=4 and f=1:

104

Filling-in the Tree Nodes
• Round 1:

– Initially store your input in the root (level 0)
– send level 0 of your tree (i.e., your input) to all (including

yourself)
– store value x received from pj, j=0,…,n-1, in tree node

labeled j (level 1); use a default value “*” (known to all!) if
necessary (i.e., in case a value is not received or it is
unfeasible)

– node labeled j in the tree associated with pi now contains
what “pj told to pi“ about its input (assuming pi is non-faulty)

• Round 2:
– send level 1 of your tree to all, including yourself (this

means, send n messages to each processor)
– let {x0,…,xn-1} be the set of values that pi receives from pj;

then, pi discards xj, and stores each remaining xk in level-2
node labeled k:j (and use default value “*” if necessary)

– node k:j in the tree associated with pi now contains "pj told
to pi that “pk told to pj that its input was xk”"

As before, n=4 and f=1, and assume that non-
faulty p2 tells to non-faulty p1 that the first
level of its local tree contains {a,b,c,d}; then,
p1 stores in the local tree:

105

Example: filling the Local Tree at round #2

a b d

a b d c

Tree at p2 at the end of round 1 Tree at p1

 The value c is not stored in the tree at p1 since there
is no node with label 2:2

106

Filling-in the Tree Nodes (2)
. . .
• Round d>2:

– send level d-1 of your tree to all, including
yourself (this means, send n(n-1)…(n-(d-2))
messages to each processor, one for each node
on level d-1)

– Let x be the value that pi receives from pj for
node of level d-1 labeled i1:i2:…:id-1, with i1,i2,…,id-1
 j; then, pi stores x in tree node labeled
i1:i2:…:id-1:j (level d), using default value “*” if
necessary

• Continue for f+1 rounds

107

Calculating the Decision

• In round f+1, each processor uses the values
in its tree to compute its final decision
(output)

• Recursively compute the "resolved" value for
the root of the tree, resolve(), based on the
"resolved" values for the other tree nodes:

resolve() =

value in tree node labeled  if it is a

leaf

majority{resolve(') : ' is a child of }

otherwise (use default “*” if tied)

108

Example of Resolving Values

The tree when n=4 and f=1:

0 0 1 0 0 0 1 1 1 1 1 0

0 0 1 1

*
(assuming “*” is the default)

109

Resolved Values are consistent

Lemma 1: If pi and pj are non-faulty, then pi's
resolved value for tree node labeled π=π'j is equal
to what pj stores in its node π‘ during the filling-up
of the tree (and so the value stored in π by pi is the
same value which is resolved in π by pi, i.e., the
resolved value is consistent with the stored value).
(Notice this lemma does not hold for the root)

Proof: By induction on the height h of tree node π.

• Basis: π is a leaf, i.e., has h=0. Then, pi stores in
node π =π'j what pj sends to it for π’ in the last
round (i.e., round f+1). By definition, this is the
resolved value by pi for π.

110

• Induction: π is not a leaf, i.e., has height h>0;
– By construction, π has at least n-f children, and

since n>3f, this implies n-f>2f, i.e., it has a
majority of non-faulty children (i.e., whose last
digit of the label corresponds to a non-faulty
processor)

– Let πk=π’jk be a child of π of height h-1 such
that pk is non-faulty.

– Since pj is non-faulty, it correctly reports a
value v stored in its π’ node; thus, pk stores it in
its π=π’j node.

– By induction, pi’s resolved value for πk equals
the value v that pk stored in its π node.

– So, all of π’s non-faulty children resolve to v in
pi’s tree, and thus π resolves to v in pi’s tree.

 END of PROOF

111

Inductive step by a picture

Non-faulty pj

π’ v

stores v

Non-faulty pk

π=π’j

v
stores v

Non-faulty pi

π’jk

v
resolve to v
by ind. hyp.

v …

≥ n-f children, and since
n>3f, i.e., n-f>2f, it
follows there are more
than 2f nodes here, and
so there is a majority
of (at least f+1) non-
faulty nodes which will
resolve to v by the
inductive hypothesis

v
π=π’j

 resolve to v

Corollary: all the non-faulty
processors will resolve the very
same value in π=π'j, namely v

height h+1

height h

height h-1

height h

112

Validity
• Suppose all inputs of (non-faulty) processors are v

• Non-faulty processor pi decides resolve(), which is the
majority among resolve(j), 0 ≤ j ≤ n-1, based on pi's tree.

• Since by Lemma 1 resolved values are consistent, if pj is
non-faulty, then pi's resolved value for tree node labeled j,
i.e., resolve(j), is equal to what pi stores in the tree node
labeled j, which in turn is equal to what pj stores in its
root, namely pj's input value, i.e., v.

• Since there is a majority of non-faulty processors (indeed,
n>3f, and so at level 1 there are more than 2f nodes
associated with non-faulty processors), and their inputs
are all equal to v, then pi decides v.

113

Agreement: Common Nodes and Frontiers

Definition 1: A tree node  is common if all non-faulty
processors compute the same value of resolve().

Notice that Lemma 1 told to us that all the nodes whose label
ends with an index associated with a non-faulty processor are
common. However it cannot be used to establish that the root
is common, as we already pointed out, since the label of the
root is the empty string.

To prove agreement, we have now to show that also the
root is common; to do that we need to show that there
exist other common nodes, besides those captured by
Lemma 1.

Definition 2: A tree node  has a common frontier if every
path from  to a descending leaf contains at least a common
node.

114

Observation: If  is common, then it has a common frontier.
Lemma 2: If  has a common frontier, then  is common.
Proof: By induction on the height h of :
•Basis (π is a leaf, i.e., h=0): then, since the only path from π
to a leaf consists solely of π, the common node of such a path
can only be π, and so π is common;
•Induction (π is not a leaf): By contradiction, assume π has
height h>0 and has a common frontier but is not common;
then:

– Every child π’ of π has a common frontier (this is not
true, in general, if π would be common);

– Since every child π’ of π has height h-1 and has a common
frontier, then by the inductive hypothesis, it is common;

– Then, all non-faulty processors resolve the same value for
every child π’ of π, and thus all non-faulty processors
resolve the same value for π, i.e., π is common
(contradiction!). END of PROOF

115

Agreement: the root has a common frontier

• There are f+2 nodes on any root-leaf path
• The label of each non-root node on a root-leaf path

ends in a distinct processor index: i1,i2,…,if+1
• Since there are at most f faulty processors, at least

one of such nodes has a label ending with a non-faulty
processor index

• This node, say i1:i2:,…,ik-1:ik, by Lemma 1 is common
(more precisely, in all the trees associated with non-
faulty processors, the resolved value in i1:i2:,…,ik-1:ik
equals the value stored by the non-faulty processor pik

in node i1:i2:,…,:ik-1)

Thus, the root has a common frontier, since on any
root-leaf path there is at least a common node, and so
the root is common (by previous lemma)

Therefore, agreement is guaranteed!

116

Complexity
• Exponential tree algorithm uses f+1 rounds, and

n=3f+1 processors are enough to guarantee
correctness (see Lemma 1)

• Exponential number of messages:
– In round 1, each (non-faulty) processor sends n

messages  O(n2) total messages
– In round 2 ≤ d ≤f+1, each of the O(n) (non-faulty)

processors broadcasts to all (i.e., n processors) the
level d-1 of its local tree, which contains n(n-1)(n-2)…(n-
(d-2)) nodes  this means, for round d, a total of

 O(n·n·n(n-1)(n-2)…(n-(d-2)))=O(nd+1) messages
– This means a total of O(n2)+O(n3)+…+ O(nf+2)= O(nf+2)

messages, and since f=O(n), this number is exponential
in n if f is more than a constant relative to n

117

Homework

Show an execution with n=3 processors and
f=1 for which the exp-tree algorithm fails.

Sketch of solution: p2 byzantine (green
values are the resolved ones)

118

119

Randomized Byzantine Consensus

There is a trustworthy processor

which at every round tosses a random coin

and informs every other processor

q

Coin = heads (probability 1/2)

Coin = tails (probability 1/2)

• This algorithm uses
– n>8f processors (sub-optimal)
– O(log n) rounds (w.h.p., this is notable, since for f=Θ(n) it

means breaking the lower bound barrier of f+1 rounds)
– O(n2 log n) number of messages (w.h.p., remind that the King

algorithm was using O(n3) msgs)

120

Each processor has a preferred value ip
iv

In the beginning,

the preferred value is set to the initial value

Assume that initial value is binary

}1,0{iv

121

The algorithm tolerates

Byzantine processors
8

n
f 

There are three threshold values:

8

5n
L 

8

6n
H 

8

7n
G 

122

In each round, processor executes: ip

Broadcast ;
iv

Receive values from all processors;
imaj majority value;

itally occurrences of ; maj

If coin=head then threshold

else threshold

If then thesholdtallyi  ii majv 

else 0iv

8

5n
L 

8

6n
H 

If itally then decision is reached
8

7n
G 

Receive coin from the trustworthy processor;

123

Analysis: Examine cases in a round

Case 1: Two processors and have

different

ip
kp

ki majmaj 

Case 2: All processors have same imaj

Termination: There is a processor

with

ip

8

7n
Gtallyi 

Other cases:

124

Termination: There is a processor

with

ip

Since faulty processors are at most
8

n
f 

processor received at least ip

8

6n
ftallyi 

votes for from good processors imaj

8

7n
Gtallyi 

125

Therefore, every good processor kp

will have
ki majmaj 

8

6n
Htallyk with

Consequently, at the end of the round

all the good processors will have the same

preferred value:

ikk majmajv 

126

Observation:

If at the beginning of a round all the good

processors (remind they are at least)
have the same preferred value, then the
algorithm terminates (and solves correctly
the consensus problem) in that round

This holds since for every processor

the termination condition
ip

8

7n
Gtallyi 

will be true in that round

Notice that this observation implies validity

8

7n

127

Therefore, if the termination condition

is true for one processor at a round,

then, the termination condition will be true

for all processors at next round.

128

Case 1: Two processors and have

different

ip
kp

ki majmaj 

We now show that
it has to be that 8

5n
Ltallyi 

8

5n
Ltallyk and

And therefore 0 ki vv

Thus, every processor chooses 0,

and the algorithm terminates correctly in
next round

129

Then at least

2

n

8

4n
ftallyi 

good processors have voted imaj

8

5n
Ltallyi 

Proof: Suppose (for sake of contradiction) that

Consequently, we would have ki majmaj 

Contradiction!

130

Case 2: All processors have same imaj

Then for any two processors and

it holds that
ip kp

ftallytally ki  ||

Since otherwise, the number of faulty

processors would exceed f

131

}{minmin ii tallytally 

Let be the processor with minp

132

We have 4 possible subcases:

8

5n
Ltallymin 2.1 and

8

6n
Hthreshold  good

8

5n
Ltallymin 2.2 and

8

5n
Lthreshold  good

2.3 and bad

and 2.4 bad

We do not know the exact probability
each of the 4 possible subcases will occur,
but good and bad cases will occur with
probability 1/2

8

5n
Ltallymin 

8

5n
Lthreshold 

8

5n
Ltallymin 

8

6n
Hthreshold 

133

Sub-case 2.1:
8

5n
Ltallymin 

and
8

6n
Hthreshold 

then, for any processor it holds

H
8

6n
fLftallytally mink 

kp

134

And therefore 0 ki vv

Thus, every processor chooses 0,

and the algorithm terminates in next round

135

8

5n
Ltallymin Sub-case 2.2:

and
8

5n
Lthreshold 

then, for any processor it holds

Ltallytallyk  min

kp

136

And therefore minmink majvv 

Thus, every processor chooses ,

and the algorithm terminates in next round
minv

137

• In other words, subcases 2.1 and 2.2 will make the
algorithm terminate in the next round, while the
remaining two subcases will be bad (i.e., the algorithm
will not stop in next round)

• From the above analysis, it follows that the algorithm
will terminate w.h.p. within O(log n) rounds, since at
each round it will terminate in the next round with
probability at least ½ (remember we are in Case 2,
which is one out of the three cases we analyzed); thus,
the probability it will not terminate within log n
rounds will be at most (1/2)log n=1/n, and so the
probability it will terminate within log n rounds will be
at least 1-1/n

• Concerning the message complexity, in each round
circulate O(n2) messages, and so w.h.p. the total
number of messages will be O(n2 log n)

138

Homework

• Show an execution with n=9 processors
and f=1 for which the randomized
algorithm does not converge.

139

Consensus in the Shared Memory Model

Consider processors in shared memory: n

10,..., npp

which try to solve the consensus problem,
but they can crash

140

0

1

0

0p

1p

2p

0

1

0

3p

4p

5p

Every processor starts with an initial value

stored in local memory (w.l.o.g., 0 or 1)

Shared

memory

Local

memory

Local

memory

141

0

1

0

0p

1p

2p

0

1

0

3p

4p

5p

communication through shared memory

R/W

R

W

142

1

1

1

0p

1p

2p

1

1

1

3p

4p

5p

At the end of execution, every processor has to decide
the same value (0 or 1, agreement), and if every processor
starts with the same value, then every processor should
decide that value (validity condition)

0 1

1 0

0 0

143

Wait-freedom in asynchronous systems:

A processor should be able to finish

execution of an algorithm

even if all other processors fail

Wait-freedom captures:

•Asynchronous executions

•Crash failures

144

Consensus Number

Consensus Number of a shared-variable type:

The maximum number of processors

for which a shared-variable type can be
used to solve the wait-free consensus
problem

145

Shared-variableType Consensus Number

Read/Write 1

Test&Set 2

Compare&Swap 
(infinity)

146

Read/Write

Shared Memory

Suppose that the shared

memory can only be accessed

through Read or Write

operations

147

Theorem:

Proof of Theorem:

The consensus number of

the Read/Write shared-variable
type is 1

Trivially, a system with only 1 processor
using read/write (shared) variables
enjoys wait-free consensus.

148

Wait-free consensus cannot be

solved using only read/write shared variables

for processors 2n

It remains to show:

We will show that any algorithm

that solves wait-free consensus for

has an execution that never terminates

Approach:

2n

149

System configuration:

Is the set of all variables in the system,

including local and shared

0

1

0

0p

1p

2p

0

1

0

3p

4p

5p

C

150

A distributed system execution can

be always be viewed as a:

 sequence of configurations

0C fC1C 2C

Initial

configuration
Final

configuration

0i
p

1i
p

2i
p

Processor action: Read or Write

151

1

C

D

C 
D 

1 0 1 0 0 0

bivalent

univalent
univalent

bivalent

Valence of a system configuration C: set of set of all values
decided by a nonfaulty processor in some configuration
reachable from C by an admissible execution.

1-valent
0-valent

Output value at possible execution paths

consensus reached
always on value 1

consensus reached
always on value 0

consensus may be not reached
here since processors may
decide different values

152

A terminating execution:

0C 1C 2C

Initial

configuration

0i
p

1i
p

2i
p

Bivalent Bivalent Univalent: from
this point on all
the non-faulty
processors will
decide the same

fC

Univalent

Univalent Bivalent

Final

configuration

153

To prove the theorem, we will show

that there is always an execution

where every configuration is bivalent

0C 1C 2C

Initial

configuration

0i
p

1i
p

2i
p

Bivalent Bivalent Bivalent

Never-ending execution

Bivalent

154

1

1

1

0p

1p

2p

1

0

0

0p

1p

2p

Similar configurations for processor 0p

23

198

76

23

198

76

Same shared variables

Local variables of others may differ

1C 2C
21

0

CC
p



155

21 CC
ip



Lemma: If there exist univalent configurations

1C and such that 2C

then if is -valent

then is -valent too
1C

2C

v

v

Proof of Lemma:

)1 or 0(v

156

1C

Univalent

Execution

with only

taking actions

ip

ip

v v v

All possible executions

from 1C

final decision for each

Possible execution

157

1C

Univalent

Execution

with only

taking actions

ip

ip

v v v

2C

Univalent

Execution

with only

taking actions

ip

ip

x x x

158

1C

Univalent

Execution

with only

taking actions

ip

ip

v v v

2C

Univalent

Execution

with only

taking actions

ip

ip

x vx  x

21 CC
ip



159

1C

Univalent

Execution

with only

taking actions

ip

ip

v v v

2C

Univalent

Execution

with only

taking actions

ip

ip

21 CC
ip



v v v

End of Lemma Proof

160

Lemma: There exists a bivalent

initial configuration

Proof of Lemma:

161

Possible Initial Configurations

Shared

Memory

Empty

Local Memory

1
0p

Initial Configuration
1I

1
1p

1np 1

0

0I

0

0

0

01I

1

1

162

Possible Initial Configurations

Shared

Memory

Empty

Local Memory

1
0p

1
1p

1np 1

0

0I

0

0

0

01I

1

1

0-valent 1-valent ?

Initial Configuration
1I

163

Possible Initial Configurations

Shared

Memory

Empty

Local Memory

1
0p

1
1p

1np 1

0

0I

0

0

0

01I

1

1

0-valent 1-valent 1-valent?

No, because
010

0

II
p



Initial Configuration
1I

164

Possible Initial Configurations

Shared

Memory

Empty

Local Memory

1
0p

1
1p

1np 1

0

0I

0

0

0

01I

1

1

0-valent 1-valent 0-valent?

No, because
101

1

II
p



Initial Configuration
1I

165

Possible Initial Configurations

Shared

Memory

Empty

Local Memory

1
0p

1
1p

1np 1

0

0I

0

0

0

01I

1

1

0-valent 1-valent bivalent

End of Lemma Proof

Initial Configuration
1I

166

Critical processor for a configuration:

the configuration is bivalent,

and after the processor takes step

the configuration becomes univalent

C C ip
Bivalent Univalent

167

Lemma: If is a bivalent configuration

then, there is at least one processor

which is not critical

C

Proof of Lemma:

168

Assume for contradiction that

all processors are critical

C

0C

1C

1nC

bivalent
0p

1p

1np

univalent

univalent

univalent

Possible

executions

169

C

bivalent
0p

1p

1np

valent

It cannot be that all have the same
valence otherwise C would be
univalent

v

)1 or 0(v

valent v

valent v

0C

1C

1nC

170

C

bivalent
0p

jp

1np

There must exist two processors with

different valences

iC

jC

ip

0C

1nC

valent-0

valent-1

171

C

bivalent

jp

iC

jC

ip

valent-0

valent-1

Case 1: suppose that they access different

 shared variables

x

y

ip

jp

172

C

bivalent

jp

iC

jC

ip

valent-0

valent-1

two possible executions

C 

C 

jp

ip

Read y

Read x

valent-0

valent-1

impossible since CC 

different valence

173

same result holds for any kind

of operation (Read or Write)

that the processors apply to x and y

174

C

bivalent

jp

iC

jC

ip

valent-0

valent-1

Case 2: suppose that they access the same

 shared variable

x
ip

jp

subcase: read/read

175

two possible executions

C

bivalent

jp

iC

jC

ip

valent-0

valent-1

C 

C 

jp

ip

Read x

Read x

valent-0

valent-1

impossible since CC 

different valence

176

C

bivalent

jp

iC

jC

ip

valent-0

valent-1

subcase: read/write

177

two possible executions

C

bivalent

jp

iC

jC

ip

valent-0

valent-1

C 

C 

jp

ip

Write x

Read x

valent-0

valent-1

impossible since
j

p

CC
j



different valence

178

subcase: write/write

C

bivalent

jp

iC

jC

ip

valent-0

valent-1

C 

C 

jp

ip

Write x

Write x

valent-0

valent-1

impossible since
j

p

CC
j



different valence

179

In all cases we obtained contradiction
Therefore, there exists a processor

which is not critical

C

0C

1C

1nC

bivalent
0p

1p

1np

univalent

univalent

univalent

kC bivalent
(not critical)

End of Lemma Proof

180

Therefore, we can construct an execution

0C 1C 2C

Initial

configuration

0i
p

1i
p

2i
p Never

ends

bivalent bivalent bivalent

Consensus can never be reached

End of Theorem Proof

