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Algorithms for UNRELIABLE 
Distributed Systems: 

The consensus problem 
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Failures in Distributed Systems 

Let us go back to the message-passing model; it may 
undergo the following malfunctioning, among others: 

 
Link failure: A link fails and remains inactive for some time; 

the network may get disconnected 
 
Processor crash (or benign) failure:  At some point, a 

processor stops forever taking steps; also in this case, 
the network may get disconnected 

 
Processor Byzantine (or malicious) failure: during the 

execution, a processor changes state arbitrarily and 
sends messages with arbitrary content (name dates back 
to untrustable Byzantine Generals of Byzantine Empire, 
IV–XV century A.D.); also in this case, the network may 
get disconnected 
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Faulty  

link 
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a 

b 
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b 

c 

a 

Messages sent on the failed link  

are not delivered (for some time), but 
they cannot be corrupted 

Link (non-permanent) Failures  
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Faulty  

processor 

Some of the messages are not sent 
(forever) 
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Processor (permanent) crash failure 
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Crash failure in a synchronous MPS 
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Processor Byzantine failure 

Faulty  

processor 
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4p5p
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Processor sends arbitrary messages (i.e., 
they could be either correct or corrupted), 
plus some messages may be not sent 
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Failure 
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Byzantine failure in a synchronous MPS 
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Consensus Problem 
Every processor has an input xєX (notice that in this way 
the algorithms running at the processors will depend on 
their input), and must decide an output yєY. Assume that 
link or node failures can possibly take place in the system. 
Then, design an algorithm enjoying the following properties: 

Termination: Eventually, every non-faulty processor decides 
on a value yєY. 

Agreement: All decisions by non-faulty processors must be 
the same. 

Validity: If all inputs are the same, then the decision of a 
non-faulty processor must equal the common input (this 
avoids trivial solutions). 

In the following, we assume that X=Y=N 
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Agreement 
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Start 
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initial value 
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2 

4 4 

4 

All non-faulty must 
decide the same value 
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1 

1 

1 1 

1 

Start 

If everybody starts with the same value,  

then non-faulty must decide that value 

Finish 
2 

1 

1 1 

1 

Validity 
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Negative result for link failures 

• Although this is the simplest fault a MPS may 
face, it may already be enough to prevent 
consensus 

• More formally, there exist input instances for 
which it is impossible to reach consensus in case 
of single non-permanent link failures, even in the 
synchronous non-anonymous case 

• To illustrate this negative result, we present the 
very famous problem of the 2 generals  
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Consensus under non-permanent link failures: 
the 2 generals problem 

There are two generals of the same army 
who have encamped a short distance apart. 
Their objective is to decide on whether to 
capture a hill, which is possible only if they 
both attack (i.e., if only one general attacks, 
he will be defeated, and so their common 
output should be either “not attack” or 
“attack”). However, they might have 
different opinion about what to do (i.e., their 
input). The two generals can only 
communicate (synchronously) by sending 
messengers, which could be captured (i.e., 
link failure), though. Is it possible for them 
to reach a common decision? 

 

1p 2p

Let’s attack 

A B 

More formally, we are talking about consensus in the following MPS:  
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• First of all, notice that it is needed to exchange messages to 
reach consensus (as we said, generals might have different 
opinions in mind!) 

• Assume the problem can be solved, and let Π be the shortest 
protocol (i.e., a solving algorithm with the minimum number of 
messages) for a given input configuration.  

• Since this protocol is deterministic, for such a fixed input 
configuration, there will be a sequence of messages to be 
exchanged, which however may not be all successfully delivered, 
due to the possible link failure.  

• In particular, suppose now that the last message in Π does not 
reach the destination (i.e., a link failure takes place). Since Π is 
correct independent of link failures, consensus must be reached 
in any case. This means, the last message was useless, and then 
Π could not be shortest! 

Impossibility of consensus under link failures 
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Negative result for processor failures 
in asynchronous systems 

• It is not hard to see that a processor failure (both 
permanent crash and byzantine) is at least as difficult as a 
non-permanent link failure, and then also in this case not 
for all the input instances it will be possible to solve the 
consensus problem 

• Negative result: in the asynchronous case it can be proven 
that it is impossible to reach consensus for any system 
topology and already for a single crash failure! 

  in search of some positive result, we focus  on the 
synchronous case and we look at the powerful clique 
topology 
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Positive results: Assumption on the communication 
model for crash and byzantine failures 

1p

2p

3p

4p5p

• Complete undirected graph (in a sense, this implies non-uniformity) 

• Synchronous network, synchronous start: w.l.o.g., we assume that rounds 
are now organized as follows: messages are sent at the beginning of a 
round, and then delivered and read in the very same round 
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Overview of Consensus Results 

f-resilient consensus algorithms (i.e., 
algorithms solving consensus for at 
most f faulty processors)  

Crash failures Byzantine failures 

Number of 
rounds 

f+1 (tight) 2(f+1) 

f+1 (tight) 

Total number 
of processors 

n≥f+1 (tight) n≥4f+1 

n≥3f+1 (tight) 

Message 
complexity 

O(n3) O(n3) 

O(nO(n)) (exponential) 
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A simple algorithm for fault-free consensus  

1. Broadcasts its input to all processors 
(including itself) 

2. Reads all the incoming messages 

3. Decides on the minimum received value 

Each processor: 

(only one round is needed, 
since the graph is complete) 
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0 

1 

2 3 

4 

Broadcast values 
0,1,2,3,4 

0,1,2,3,4 

0,1,2,3,4 

0,1,2,3,4 

0,1,2,3,4 
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0 

0 

0 0 

0 

Decide on minimum 

0,1,2,3,4 

0,1,2,3,4 

0,1,2,3,4 

0,1,2,3,4 

0,1,2,3,4 
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0 

0 

0 0 

0 

Finish 
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This algorithm satisfies the agreement 

1 

3 

5 2 

3 

Start Finish 
1 

1 

1 1 

1 

All the processors decide the minimum 
exactly over the same set of values 
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This algorithm satisfies the validity condition 

1 

1 

1 1 

1 

Start Finish 
1 

1 

1 1 

1 

If everybody starts with the same initial value, 

everybody decides on that value (minimum) 
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0 

1 

2 3 

4 

Start 
fail 

The failed processor doesn’t broadcast 

its value to all processors 

0 

0 

Consensus with Crash Failures 
The simple algorithm doesn’t work 
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0 
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4 

Broadcasted values 

0,1,2,3,4 

1,2,3,4 

fail 

0,1,2,3,4 

1,2,3,4 
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0 

0 

1 0 

1 

Decide on minimum 

0,1,2,3,4 

1,2,3,4 

fail 

0,1,2,3,4 

1,2,3,4 
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0 

0 

1 0 

1 

Finish 
fail 

No agreement!!! 
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An f-resilient to crash failures algorithm 

Round 1: 

 Broadcast to all (including myself) my value; 

 Read all the incoming values; 

Round 2 to round f+1: 

     Broadcast to all (including myself) any new    
 received values (one message for each value): 

 Read all the incoming values; 

End of round f+1: 

     Decide on the minimum value ever received. 

Each processor: 
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1 

2 3 

4 

Start 

Example 1: f=1 failures, f+1 = 2 rounds needed 

p1 

p2 

p4 p3 

p5 
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0 

1 

2 3 

4 

Round 1 

0 

0 
fail 

Example 1: f=1 failures, f+1 = 2 rounds needed 

Broadcast all values to everybody 

0,1,2,3,4 

1,2,3,4 0,1,2,3,4 

1,2,3,4 

(new values) 

p1 

p2 

p4 p3 

p5 
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Example 1: f=1 failures, f+1 = 2 rounds needed 

Round 2 

Broadcast all new values to everybody 

0,1,2,3,4 

0,1,2,3,4 0,1,2,3,4 

0,1,2,3,4 
1 

2 3 

4 

0 

p1 

p2 

p4 p3 

p5 
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Example 1: f=1 failures, f+1 = 2 rounds needed 

Finish 

Decide on minimum value 

0 

0 0 

0 

0,1,2,3,4 

0,1,2,3,4 0,1,2,3,4 

0,1,2,3,4 

0 

p1 

p2 

p4 p3 

p5 
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0 

1 

2 3 

4 

Start 

Example 2: f=1 failures, f+1 = 2 rounds needed 

p1 

p2 

p4 p3 

p5 
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0 

1 

2 3 

4 

Round 1 

Example 2: f=1 failures, f+1 = 2 rounds needed 

No failures: all values are broadcasted to all 

0,1,2,3,4 

0,1,2,3,4 0,1,2,3,4 

0,1,2,3,4 

0,1,2,3,4 

p1 

p2 

p4 p3 

p5 
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0 

1 

2 3 

4 

Round 2 

1,2,3,4 fail 

Example 2: f=1 failures, f+1 = 2 rounds needed 

No problem: processors p2 and p4 

have already seen 1,2,3 and 4 in 
the previous round 

1,2,3,4 

0,1,2,3,4 

0,1,2,3,4 0,1,2,3,4 

0,1,2,3,4 

0,1,2,3,4 

p1 

p2 

p4 p3 

p5 
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Example 2: f=1 failures, f+1 = 2 rounds needed 

Finish 

Decide on minimum value 

0 

0 0 
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0,1,2,3,4 

0,1,2,3,4 0,1,2,3,4 
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Start 

Example 3: f=2 failures, f+1 = 3 rounds needed 
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p4 p3 

p5 
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0 

1 
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Round 1 

0 

Failure 1 

Broadcast all values to everybody 

1,2,3,4 

1,2,3,4 0,1,2,3,4 

1,2,3,4 

Example 3: f=2 failures, f+1 = 3 rounds needed 

p1 

p2 

p4 p3 

p5 
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0 

1 

2 3 

4 

Round 2 
Failure 1 

Broadcast new values to everybody 

0,1,2,3,4 

1,2,3,4 0,1,2,3,4 

1,2,3,4 

Failure 2 

Example 3: f=2 failures, f+1 = 3 rounds needed 

0 

p1 

p2 

p4 p3 

p5 
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0 

1 

2 3 

4 

Round 3 
Failure 1 

Broadcast new values to everybody 

0,1,2,3,4 

0,1,2,3,4 0,1,2,3,4 

0,1,2,3,4 

Failure 2 

Example 3: f=2 failures, f+1 = 3 rounds needed 

p1 
p2 

p4 p3 

p5 
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0 

0 

0 3 

0 

Finish 
Failure 1 

Decide on the minimum value 

0,1,2,3,4 

0,1,2,3,4 0,1,2,3,4 

0,1,2,3,4 

Failure 2 

Example 3: f=2 failures, f+1 = 3 rounds needed 

p1 

p2 

p4 p3 

p5 
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In general, since there are f failures and f+1 rounds, then 

there is at least a round with no new failed processors: 

Example:  

5 failures, 

6 rounds 

1 2 

No failure 

3 4 5 6 Round 
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Lemma: In the algorithm, at the end of the round with no new 
failures, all the non-faulty processors know the same set of 
values. 

Proof: For the sake of contradiction, assume the claim is 
false. Let x be a value which is known only to a subset of non-
faulty processors at the end of the round with no failures. 
Observe that any such processors cannot have known x for 
the first time in a previous round, since otherwise it had 
broadcasted x to all. So, the only possibility is that it 
received it right in this round, otherwise all the others 
should know x as well. But in this round there are no failures, 
and so x must be received and known by all, a contradiction.
         QED 

 

Correctness (1/2) 
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Agreement: this holds, since at the end of the round 
with no failures, every (non-faulty) processor has the 
same knowledge, and this doesn’t change until the 
end of the algorithm (no new values can be 
introduced, since we assumed synchronous start)  
eventually, everybody will decide the same value! 

Correctness (2/2) 

Remark: we don’t know the exact position of the 
free-of-failures round, so we have to let the 
algorithm execute for f+1 rounds  

Validity: this holds, since the value decided from 
each processor is some input value (no exogenous 
values are introduced) 
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Performance of Crash Consensus Algorithm 

 

• Number of processors: n > f 

• f+1 rounds 

• O(n2·k)=O(n3) messages, where k=O(n) 
is the number of different inputs. 
Indeed, each processor sends O(n) 
messages (one for each processor) 
containing a given seen input value 
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A Lower Bound 
Any f-resilient to crash failures 
consensus algorithm requires at 
least f+1 rounds 

Theorem: 

Proof sketch: Assume by contradiction that f  

or less rounds are enough. Clearly, 
every algorithm which solves 
consensus requires that eventually 
non-faulty processors have the very 
same knowledge 

Worst case scenario: 
There is a processor that fails in  

each round 
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Round 

a 

1 

before processor pi1 
fails, it sends its value a 

to only one processor pi2, and so at the end 
of round 1 only pi2 

knows a 

Worst case scenario 

pi1 

pi2 
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Round 

a 

1 

Worst case scenario 

2 

before processor pi2 
fails, it sends its value 

a to only one processor pi3, and so at the end 
of round 2 only pi3 

knows a 

 

  

pi2 

pi3 
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Round 1 

Worst case scenario 

2 

……… 

a 

f 3 

Before processor pif fails, it sends its value a 
to only one processor pif+1

. Thus, at the end 
of round f only processor pif+1 

knows about a  

Pif+1
 

pif 
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Round 1 

Worst case scenario 

2 

……… 

f 3 

No agreement: Processor pif+1
 has a different 

knowledge, i.e., it may decide a, and all other 
processors may decide another value, say b>a  
contradiction, f rounds are not enough.         QED 

a 

b 

decide 

pif+1
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Consensus with Byzantine Failures 

solves consensus for at most f  byzantine 
processors  

f-resilient to byzantine failures consensus 
algorithm: 
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Any f-resilient to byzantine failures 
consensus algorithm requires at 
least f+1 rounds 

Theorem: 

follows from the crash failure lower bound  

Proof: 

Lower bound on number of rounds 
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An f-resilient to byzantine failures algorithm 

Solves consensus in 2(f+1) rounds for n 
processors out of which at most n/4 can be 
byzantine,  namely f<n/4 (i.e., n≥4f+1) 
Assumption: The system is non-uniform and 
processors have (distinct) ids in {1,…,n} (and so the 
system is non anonymous), and we denote by pi the 
processor with id i; this is common knowledge, i.e., 
processors cannot cheat about their ids (namely, pi 
cannot behave like if it was pj, ij, even if it is 
byzantine!) 

The King algorithm (P. Berman, J.A. Garay, 
and K.J. Perry, FOCS 1989) 
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The King algorithm 

There are f+1 phases; each phase has 2 
rounds, used to update in each 
processor pi a preferred value vi. At 
the beginning, the preferred value is 
set to the input value 
 

 

In each phase there is a different king 

 There is a king that is non-faulty! 
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The King algorithm Phase k=1,…,f+1 

Round 1, every processor pi: 

• Broadcast to all (including myself) its 
preferred value vi 

• Set vi:=a 

• Let a be the most frequent received value 
(including vi, in case of tie pick an 
arbitrary value), a.k.a. majority value, and 
let 1 ≤ mi ≤ n be its number of occurrences 
(or majority) 
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After receiving vk, if pi selected in Round 1 a 
preferred value vi with a weak majority, i.e.,  
mi < n/2+f+1 (here non-uniformity is 
required), then set vi:=vk, otherwise maintain 
your preferred value vi   

The King algorithm Phase k=1,…,f+1 

Round 2, king  pk: 

Broadcast (to the others) its current 
preferred value vk  

Round 2, processor pi: 
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The King algorithm 

End of Phase f+1: 

Each non-faulty processor decides on its 
preferred value 
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Example 1: 6 processors, 1 fault  2 phases 

Faulty 

0 1 

king 1 

king 2 0 

1 1 

2 

p1 

p2 

p4 p3 

p5 

p6 



60 

0 1 

0 

* 1 

2 

Phase 1, Round 1 

0,2,1,0,0,1 

1,2,1,0,0,1 

0 

1 

1 0 

0 

Everybody broadcasts, and faulty p1 sends 
arbitrary values 

p1 

p2 

p4 p3 

p5 

p6 

1,2,1,0,0,1 
0,2,1,0,0,1 

0,2,1,0,0,1 
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1 0 

0 

* 1 

0 

Phase 1, Round 1 
Choose the majority 

Each (weak) majority is equal to 51
2

3  f
n

 On round 2, everybody will choose the king’s value 

p1 

p2 

p4 p3 

p5 

p6 

0,2,1,0,0,1 

1,2,1,0,0,1 

1,2,1,0,0,1 
0,2,1,0,0,1 

0,2,1,0,0,1 
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Phase 1, Round 2 

0 1 

0 

* 1 

3 

king 1 

 Everybody chooses the king’s value 

p1 

p2 

p4 p3 

p5 

p6 

1 

0 

0 

The faulty king broadcasts arbitrary values 

0 

1 

0 1 

3 
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0 1 

0 

* 1 

3 

Phase 2, Round 1 

0,3,1,0,0,1 

1,3,1,0,0,1 

0 

1 

1 0 

0 

Everybody broadcasts, and faulty p1 
sends arbitrary values 

p1 

p2 

p4 p3 

p5 

p6 

1,3,1,0,0,1 
0,3,1,0,0,1 

0,3,1,0,0,1 
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1 0 

0 

* 1 

0 

Phase 2, Round 1 
Choose the majority 

51
2

3  f
n

 On round 2, everybody will choose the king’s value 

p1 

p2 

p4 p3 

p5 

p6 

0,3,1,0,0,1 

1,3,1,0,0,1 

1,3,1,0,0,1 
0,3,1,0,0,1 

0,3,1,0,0,1 

Each (weak) majority is equal to 
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Phase 2, Round 2 

1 0 

0 

* 1 

0 

The non-faulty king p2 broadcasts its 0 

king 2 

0 0 

0 

0 0 
p1 

p2 

p4 p3 

p5 

p6 
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Phase 2, Round 2 

0 0 

0 

* 0 

0 
king 2 

 Everybody chooses the king’s value 

 Final decision and agreement on 0 

p1 

p2 

p4 p3 

p5 

p6 1 

1 

The non-faulty king p2 broadcasts its 0 

0 0 

0 

0 0 
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Example 2: 6 processors, 1 fault  2 phases 

Faulty 
1 1 

king 1 

king 2 0 

1 1 

1 

p1 

p2 

p4 p3 

p5 

p6 
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1 1 

0 

1 1 

* 

Phase 1, Round 1 

1,0,1,1,0,1 

1,1,1,1,0,1 

0 

1 

1 0 

2 
p1 

p2 

p4 p3 

p5 

p6 

1,1,1,1,0,1 
1,0,1,1,0,1 

1,2,1,1,0,1 

Everybody broadcasts, and faulty p2 sends 
arbitrary values 
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1 1 

1 

1 1 

* 

Phase 1, Round 1 
Choose the majority 

Some majorities are strong (at least 5 
votes), others are weak (less than 5 votes) 
 On round 2, somebody will choose the king’s 
value, someone else will keep its own value 

p1 

p2 

p4 p3 

p5 

p6 
1,2,1,1,0,1 

1,1,1,1,0,1 

1,1,1,1,0,1 
1,0,1,1,0,1 

1,0,1,1,0,1 
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Phase 1, Round 2 

1 

1 1 

1 1 

* 

king 1 

 Some processors switch to the king’s 
value, but they will still selects 1! 

p1 

p2 

p4 p3 

p5 

p6 

1 

1 

The non-faulty king p1 broadcasts its 1 

1 

1 

1 1 

1 
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1 1 

1 

1 1 

* 

Phase 2, Round 1 

1,2,1,1,1,1 

1,1,1,1,1,1 

2 

1 

5 0 

0 
p1 

p2 

p4 p3 

p5 

p6 

1,5,1,1,1,1 
1,0,1,1,1,1 

1,0,1,1,1,1 

Everybody broadcasts, and faulty p2 sends 
arbitrary values 
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1 1 

1 

1 1 

* 

Phase 2, Round 1 
Choose the majority 

1
2

5  f
n

 On round 2, nobody will choose the king’s value 

p1 

p2 

p4 p3 

p5 

p6 

1,0,1,1,1,1 1,1,1,1,1,1 

1,5,1,1,1,1 
1,0,1,1,1,1 

1,2,1,1,1,1 

Each majority is at least                    i.e., it’s strong! 
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Phase 2, Round 2 

1 1 

1 

1 1 

* 

The faulty king p2 broadcasts arbitrary 
values, but nobody changes its preferred 
value 

king 2 

0 1 

5 

4 0 
p1 

p2 

p4 p3 

p5 

p6 

 Final decision and agreement on 1 
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Lemma 1: At the end of a phase  where the 
king is non-faulty, every non-faulty processor 
prefers the same value 

Proof: Consider the end of round 1 of phase . 

There are two cases: 

Correctness of the King algorithm 

Case 1: All non-faulty processors have chosen 
their preferred value with weak majority (i.e., 
< n/2+f+1 votes)  [see phase 2 of Example 1] 

Case 2: Some non-faulty processor has chosen 
its preferred value with strong majority (i.e., 
 n/2+f+1 votes) [see phase 1 of Example 2] 
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Case 1: All non-faulty processors have 
chosen their preferred value at the 
end of round 1 of phase  with weak 
majority (i.e., < n/2+f+1 votes) 

 Every non-faulty processor will adopt  

the value broadcasted by the king during 
the second round of phase , thus all of 
them will prefer the same value, since the 
king is non-faulty 
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Case 2:  Suppose a non-faulty processor pi has 
chosen its preferred value a at the end of round 1 
of phase  with strong majority ( n/2+f+1 votes)  

 This implies that at least n/2+1 non-
faulty processors must have broadcasted a 
at start of round 1 of phase , and then at 
the end of that round, every other non-
faulty processor (including the king) must 
have received value a with an absolute 
majority of at least n/2+1 votes, and so 
such a value becomes preferred in these 
processors  
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At end of round 2, there are 2 cases: 

1. If a non-faulty processor keeps its own 
value due to strong majority, then it 
maintains a 

2. Otherwise, if a non-faulty processor 
adopts the value of the non-faulty king, 
then it prefers a as well, since the king 
has broadcasted a  

Therefore: Every non-faulty processor 
prefers a  

END of PROOF 
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Proof: First of all, notice that the system contains 
at most f byzantine processors, and then at least 
n-f non-faulty processors. But since f<n/4, it 
follows that n-f>n/2+f, since 

Lemma 2: Let a be a common value preferred by 
non-faulty processors at the end of a phase . Then, 
a will be preferred until the end.  

f
2

n
fn

2

n
2fn

2

n
n2f

2

n
2f

4

n
f 

This means, after , a will always be preferred 
with strong majority (i.e., >n/2+f), and so, until the 
end of phase f+1, every non-faulty processor will 
keep on preferring a.   QED 
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Agreement in the King algorithm 

Follows from Lemma 1 and 2, observing that 
since there are f+1 phases and at most f 
failures, there is al least one phase in 
which the king is non-faulty (and thus from 
Lemma 1 at the end of that phase all non-
faulty processors prefer the same value, 
and from Lemma 2 this preference will be 
maintained until the end). 
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f
2

n
fn 

Follows from the fact that if all (non-faulty) 
processors have a as input, then in round 1 of phase 
1 each non-faulty processor will receive a at least n-
f times, i.e., with strong majority, since as we 
observed in Lemma 2: 

Validity in the King algorithm 

QED 

and so in round 2 of phase 1 this will be the 
preferred value of all non-faulty processors, 
independently of the king’s broadcasted value. 
From Lemma 2, this will be maintained until the 
end, and will be exactly the decided output! 
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Performance of King Algorithm 
 
• Number of processors: n > 4f (we will see it 

is not tight) 

• 2(f+1) rounds (we will see it is not tight) 

• Θ(n2·f)=O(n3) messages. Indeed, each non-
faulty node sends n messages in the first 
round of each phase, each containing a 
given preference value, and each non-faulty 
king sends n-1 messages in the second 
round of each phase. Notice that we are 
not considering the fact that a byzantine 
processor could in principle generate an 
unbounded number of messages! 
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Homework 

Show an execution with n=4 processors and 
f=1 for which the King algorithm fails. 
Discuss the 3 possible cases:  

1) Neither p1 nor p2 is faulty 

2) p1 is faulty 

3) p2 is faulty 
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There is no f-resilient to byzantine 

failures algorithm for n processors  

when  

Theorem: 

Proof: First we prove the 3 processors case, 

and then the general case 

3

n
f 

An Impossibility Result 
(M.C. Pease, R.E. Shostak, and L. 

Lamport, JACM 1980) 
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There is no 1-resilient to byzantine 
failures algorithm for 3 processors  

Lemma: 

Proof: Assume by contradiction that there is 

a 1-resilient algorithm for 3 processors 

The 3 processors case 

0p

1p

2p
A(0) 

B(1) 

C(0) 

Input value (either 0 or 1) 

Local Algorithm 
(notice we admit 
non-homogeneity) 
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B(1) 
1p

0p
A(1) 

2p

byzantine 

C(1) 

C(0) 
C(1) 

A first execution 

p2 behaves (we don’t know exactly 
what it will do) towards p0 (resp., 
p1) has if it had input 0 (resp., 1) 
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1 
1p

0p
1 

2p

(validity condition) 

Decision value 

byzantine 
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0p
1 

1p

2p
C(0) 

B(0) 

0p

A(0) 

A(1) 

1 
1p

0p
1 

2p
A(0) 

A second execution 

p0 behaves towards p1 
(resp., p2) has if it had 
input 0 (resp., 1) 

byzantine byzantine 
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0p
1 

1p

2p
0 

0 

0p

(validity condition) 

1 
1p

0p
1 

2p

byzantine byzantine 
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0p
1 

1p

2p
0 

0 

0p

1 
1p

0p
1 

2p

0p

1p

0p 2pA(1) C(0) 
B(1) B(0) 

B(1) 

A third execution 
p1 behaves 
towards p2 
(resp., p0) has 
if it had input 
0 (resp., 1) 

byzantine byzantine 

byzantine 
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B(1) 
1p

0p

A(1) 
2p

C(1) 

C(0) 

1p

2p
C(0) 

B(0) 

0p
A(0) 

A(1) 

0 

0 1 

1 
0p

1p

0p 2pA(1) C(0) 
B(1) B(0) 

B(1) 

The view of p2 (resp., p0) in the third  execution, namely the 
behavior of p0 and p1 (resp., p1 and p2) it observes, and thus its 
own behavior, is exactly the same as in the second (resp., the 
first) execution, so it must take the same decision as before! 

byzantine byzantine 

byzantine 
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0p
1 

1p

2p
0 

0 

0p

1 
1p

0p
1 

2p

0p

1p

0p 2p
0 1 

No agreement!!! Contradiction, since the 
algorithm was supposed to be 1-resilient  

byzantine byzantine 

byzantine 
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Therefore: 

 

There is no algorithm that solves 

consensus for 3 processors 

in which 1 is a byzantine! 
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The n processors case 

Assume by contradiction that there  

is an f-resilient distributed algorithm A 

for n>3 processors for 
3

n
f 

We will use A to solve consensus 

for 3 processors and 1 byzantine failure  

(contradiction) 
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Each processor qi simulates the execution of algorithm A 
once restricted to the set Pi of n/3 processors. In 
particular, qi decides k if the majority of its processors 
decides k. 

1q

2q0q

W.l.o.g. let n=3f, and let P=<p0,p1,…,p3f-1> be the n-
processor system. We partition arbitrarily the n 
processors in 3 sets P0,P1,P2, each containing n/3 
processors; then, given a 3-processor system Q=<q0,q1,q2>, 
we associate each qi with Pi   

p0,…,pf-1  

pf,…,p2f-1  

p2f,…,p3f-1  
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1q

2q

byzantine 

When a processor in Q fails, then at most 
n/3 original processors in the original n-
processor system P are affected 

0q
p0,…,pf-1  

pf,…,p2f-1  

p2f,…,p3f-1  
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1q

2q

fails 

But we were assuming that the original 
algorithm A tolerates at most f=n/3 
failures, so the remaining 2f processors 
must agree!  

Finish of  

algorithm A 

k 
k k 

k k k 

k 

k 

k k 
k k 

k 
all decide k 

0q
p0,…,pf-1  

pf,…,p2f-1  

p2f,…,p3f-1  
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1q

2q

fails 

Final decision  

k 

k 

We reached consensus with 1 failure 

Impossible!!! 

0q
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There is no f-resilient to byzantine 
failures algorithm for n processors in case 

Therefore: 

3

n
f 

Is there an f-resilient to byzantine failures 
algorithm for n processors if f<n/3, namely 
for n3f+1?  

For n4f+1, YES (King algorithm), but what 
about 3f+1≤n<4f+1, and in particular n=3f+1?  

Question: 
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Exponential Tree Algorithm (a.k.a. Exponential 
Information Gathering (EIG) algorithm, M.C. Pease, 

R.E. Shostak, and L. Lamport, JACM 1980) 

 • This algorithm uses 
– n=3f+1 processors (optimal) 
– f+1 rounds (optimal) 
– exponential number of messages (sub-optimal, the King 

algorithm was using only O(n3) msgs) 
• Each processor keeps a rooted tree data structure in its local 

state 
• From a topological point of view, all the trees are identical: they 

have height f+1, each root has n children, the number of children 
decreases by 1 at each level, and all the leaves are at the same 
level  

• Values are filled top-down in the tree during the f+1 rounds; more 
precisely, during round i, level i of the tree is filled (the root is at 
level 0) 

• At the end of round f+1, the values in the tree are used to 
compute bottom-up the decision. 
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Example of Local Tree 

The tree when n=4 and f=1: 
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Local Tree Data Structure 
• Assumption: Similarly to the King algorithm, processors have 
(distinct) ids (now in {0,1,…,n-1}), and we denote by pi the 
processor with id i; this is common knowledge, i.e., processors 
cannot cheat about their ids; 

• Each tree node is labeled with a sequence of unique 
processor ids in 0,1,…,n-1 defined recursively as follows: 

• Root's label is the empty sequence  (the root has level 0 and height 
f+1); 

• Root has n children, labeled 0 through n-1 

• The child node of the root (level 1) with label i has n-1 children, 
labeled i:0 through i:n-1 and skipping i:i; 

• A node at level d>1 has a label made up of d distinct indexes, say 
i1:i2:…:id-1:id, where i1:i2:…:id-1 is the label of its parent, and id is a value 
in 0,1,…,n-1; morover, if d<f+1, such a node has n-d children, labeled 
i1:i2:…:id:0 through i1:i2:…:id:n-1, skipping any index i1,i2,…,id; 

• Nodes at level f+1 are leaves with label i1:i2:…:if+1 and have height 0. 
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Labels of the Sample Local Tree 

The tree when n=4 and f=1: 
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Filling-in the Tree Nodes 
• Round 1:   

– Initially store your input in the root (level 0) 
– send level 0 of your tree (i.e., your input) to all (including 

yourself) 
– store value x received from pj, j=0,…,n-1, in tree node 

labeled j (level 1); use a default value “*” (known to all!) if 
necessary (i.e., in case a value is not received or it is 
unfeasible) 

– node labeled j in the tree associated with pi now contains 
what “pj told to pi“ about its input (assuming pi is non-faulty)  

• Round 2: 
– send level 1 of your tree to all, including yourself (this 

means, send n messages to each processor) 
– let {x0,…,xn-1} be the set of values that pi receives from pj; 

then, pi discards xj, and stores each remaining xk in level-2 
node labeled k:j (and use default value “*” if necessary) 

– node k:j in the tree associated with pi now contains "pj told 
to pi that “pk told to pj that its input was xk”" 



As before, n=4 and f=1, and assume that non-
faulty p2 tells to non-faulty p1 that the first 
level of its local tree contains {a,b,c,d}; then, 
p1 stores in the local tree: 
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Example: filling the Local Tree at round #2 

a b d 

a b d c 

Tree at p2 at the end of round 1 Tree at p1 

 The value c is not stored in the tree at p1 since there 
is no node with label 2:2 
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Filling-in the Tree Nodes (2) 
. . . 
• Round d>2:     

– send level d-1 of your tree to all, including 
yourself (this means, send n(n-1)…(n-(d-2)) 
messages to each processor, one for each node 
on level d-1) 

– Let x be the value that pi receives from pj for 
node of level d-1 labeled i1:i2:…:id-1, with i1,i2,…,id-1 
 j; then, pi stores x in tree node labeled 
i1:i2:…:id-1:j (level d), using default value “*” if 
necessary  

• Continue for f+1 rounds 
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Calculating the Decision 

• In round f+1, each processor uses the values 
in its tree to compute its final decision 
(output) 

• Recursively compute the "resolved" value for 
the root of the tree, resolve(), based on the 
"resolved" values for the other tree nodes: 

 
 

resolve() =  

value in tree node labeled  if it is a 

leaf 

majority{resolve(') : ' is a child of } 

otherwise (use default “*” if tied) 



108 

Example of Resolving Values 

The tree when n=4 and f=1: 

0 0 1 0 0 0 1 1 1 1 1 0 

0 0 1 1 

* 
(assuming “*” is the default) 



109 

Resolved Values are consistent 

Lemma 1: If pi and pj are non-faulty, then pi's 
resolved value for tree node labeled π=π'j is equal 
to what pj stores in its node π‘ during the filling-up 
of the tree (and so the value stored in π by pi is the 
same value which is resolved in π by pi, i.e., the 
resolved value is consistent with the stored value). 
(Notice this lemma does not hold for the root) 

Proof: By induction on the height h of tree node π. 

• Basis: π is a leaf, i.e., has h=0. Then, pi stores in 
node π =π'j what pj sends to it for π’ in the last 
round (i.e., round f+1). By definition, this is the 
resolved value by pi for π. 
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• Induction: π is not a leaf, i.e., has height h>0;  
– By construction, π has at least n-f children, and 

since n>3f, this implies n-f>2f, i.e., it has a 
majority of non-faulty children (i.e., whose last 
digit of the label corresponds to a non-faulty 
processor) 

– Let πk=π’jk be a child of π of height h-1 such 
that pk is non-faulty. 

– Since pj is non-faulty, it correctly reports a 
value v stored in its π’ node; thus, pk stores it in 
its π=π’j node. 

– By induction, pi’s resolved value for πk equals 
the value v that pk stored in its π node. 

– So, all of π’s non-faulty children resolve to v in 
pi’s tree, and thus π resolves to v in pi’s tree. 

 END of PROOF 
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Inductive step by a picture 

Non-faulty pj 

π’ v 

stores v  

Non-faulty pk 

π=π’j 

v 
stores v  

Non-faulty pi 

π’jk 

v 
resolve to v 
by ind. hyp.  

v … 

≥ n-f children, and since 
n>3f, i.e., n-f>2f, it 
follows there are more 
than 2f nodes here, and  
so there is a majority 
of (at least f+1) non-
faulty nodes which will 
resolve to v by the 
inductive hypothesis 

v 
π=π’j 

 resolve to v 

Corollary: all the non-faulty 
processors will resolve the very 
same value in π=π'j, namely v 

height h+1  

height h  

height h-1  

height h  
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Validity 
• Suppose all inputs of (non-faulty) processors are v 

• Non-faulty processor pi decides resolve(), which is the 
majority among resolve(j),  0 ≤ j ≤ n-1, based on pi's tree. 

• Since by Lemma 1 resolved values are consistent, if pj is 
non-faulty, then pi's resolved value for tree node labeled j, 
i.e., resolve(j), is equal to what pi stores in the tree node 
labeled j, which in turn is equal to what pj stores in its 
root, namely pj's input value, i.e., v. 

• Since there is a majority of non-faulty processors (indeed, 
n>3f, and so at level 1 there are more than 2f nodes 
associated with non-faulty processors), and their inputs 
are all equal to v, then pi decides v. 
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Agreement: Common Nodes and Frontiers 

Definition 1: A tree node  is common if all non-faulty 
processors compute the same value of resolve(). 

 

Notice that Lemma 1 told to us that all the nodes whose label 
ends with an index associated with a non-faulty processor are 
common. However it cannot be used to establish that the root 
is common, as we already pointed out, since the label of the 
root is the empty string. 

To prove agreement, we have now to show that also the 
root is common; to do that we need to show that there 
exist other common nodes, besides those captured by 
Lemma 1. 

Definition 2: A tree node  has a common frontier if every 
path from  to a descending leaf contains at least a common 
node. 
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Observation: If  is common, then it has a common frontier. 
Lemma 2: If  has a common frontier, then  is common. 
Proof: By induction on the height h of : 
•Basis (π is a leaf, i.e., h=0): then, since the only path from π 
to a leaf consists solely of π, the common node of such a path 
can only be π, and so π is common; 
•Induction (π is not a leaf): By contradiction, assume π has 
height h>0 and has a common frontier but is not common; 
then: 

– Every child π’ of π has a common frontier (this is not 
true, in general, if π would be common); 

– Since every child π’ of π has height h-1 and has a common 
frontier, then by the inductive hypothesis, it is common; 

– Then, all non-faulty processors resolve the same value for 
every child π’ of π, and thus all non-faulty processors 
resolve the same value for π, i.e., π is common 
(contradiction!). END of PROOF 
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Agreement: the root has a common frontier 

• There are f+2 nodes on any root-leaf path 
• The label of each non-root node on a root-leaf path 

ends in a distinct processor index: i1,i2,…,if+1  
• Since there are at most f faulty processors, at least 

one of such nodes has a label ending with a non-faulty 
processor index 

• This node, say i1:i2:,…,ik-1:ik, by Lemma 1 is common 
(more precisely, in all the trees associated with non-
faulty processors, the resolved value in i1:i2:,…,ik-1:ik 
equals the value stored by the non-faulty processor pik

 
in node i1:i2:,…,:ik-1) 

Thus, the root has a common frontier, since on any 
root-leaf path there is at least a common node, and so 
the root is common (by previous lemma) 

Therefore, agreement is guaranteed! 
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Complexity 
• Exponential tree algorithm uses f+1 rounds, and 

n=3f+1 processors are enough to guarantee 
correctness (see Lemma 1) 

• Exponential number of messages: 
– In round 1, each (non-faulty) processor sends n 

messages  O(n2) total messages 
– In round 2 ≤ d ≤f+1, each of the O(n) (non-faulty) 

processors broadcasts to all (i.e., n processors) the 
level d-1 of its local tree, which contains n(n-1)(n-2)…(n-
(d-2)) nodes  this means, for round d,  a total of  

  O(n·n·n(n-1)(n-2)…(n-(d-2)))=O(nd+1) messages 
– This means a total of O(n2)+O(n3)+…+ O(nf+2)= O(nf+2) 

messages, and since f=O(n), this number is exponential 
in n if f is more than a constant relative to n 
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Homework 

Show an execution with n=3 processors and 
f=1 for which the exp-tree algorithm fails. 



Sketch of solution: p2 byzantine (green 
values are the resolved ones) 
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Randomized Byzantine Consensus 

There is a trustworthy processor 

which at every round tosses a random coin 

and informs every other processor  

q

Coin = heads (probability 1/2)  

Coin = tails (probability 1/2)  

• This algorithm uses 
– n>8f processors (sub-optimal) 
– O(log n) rounds (w.h.p., this is notable, since for f=Θ(n) it 

means breaking the lower bound barrier of f+1 rounds) 
– O(n2 log n) number of messages (w.h.p., remind that the King 

algorithm was using O(n3) msgs) 
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Each processor      has a preferred value ip
iv

In the beginning, 

the preferred value is set to the initial value 

Assume that initial value is binary 

}1,0{iv
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The algorithm tolerates              

Byzantine processors 
8

n
f 

There are three threshold values: 

8

5n
L 

8

6n
H 

8

7n
G 
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In each round, processor       executes:  ip

Broadcast      ; 
iv

Receive values from all processors; 
imaj majority value; 

itally occurrences of        ; maj

If coin=head then threshold

else threshold

If                           then thesholdtallyi  ii majv 

else 0iv

8

5n
L 

8

6n
H 

If itally then decision is reached 
8

7n
G 

Receive coin from the trustworthy processor; 
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Analysis: Examine cases in a round 

Case 1: Two processors       and     have 

different   

ip
kp

ki majmaj 

Case 2: All processors have same   imaj

Termination: There is a processor 

with   

ip

8

7n
Gtallyi 

Other cases: 
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Termination: There is a processor 

with   

ip

Since faulty processors are at most    
8

n
f 

processor       received at least ip

8

6n
ftallyi 

votes for           from good processors  imaj

8

7n
Gtallyi 
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Therefore, every good processor       kp

will have                        
ki majmaj 

8

6n
Htallyk with 

Consequently, at the end of the round  

all the good processors will have the same  

preferred value:  

ikk majmajv 
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Observation: 

If at the beginning of a round all the good  

processors (remind they are at least      ) 
have the same preferred value, then the 
algorithm terminates (and solves correctly 
the consensus problem) in that round 

This holds since for every processor 

the termination condition 
ip

8

7n
Gtallyi 

will be true in that round 

Notice that this observation implies validity 

8

7n
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Therefore, if the termination condition 

is true for one processor at a round, 

then, the termination condition will be true 

for all processors at next round. 
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Case 1: Two processors       and     have 

different   

ip
kp

ki majmaj 

We now show that 
it has to be that  8

5n
Ltallyi 

8

5n
Ltallyk and 

And therefore 0 ki vv

Thus, every processor chooses 0, 

and the algorithm terminates correctly in 
next round 
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Then at least  

2

n

8

4n
ftallyi 

good processors have voted  imaj

8

5n
Ltallyi 

Proof: Suppose (for sake of contradiction) that 

Consequently, we would have ki majmaj 

Contradiction! 
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Case 2: All processors have same   imaj

Then for any two processors        and   

it holds that                                
ip kp

ftallytally ki  ||

Since otherwise, the number of faulty  

processors would exceed  f
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}{minmin ii tallytally 

Let             be the processor with minp
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We have 4 possible subcases:  

8

5n
Ltallymin 2.1 and 

8

6n
Hthreshold  good 

8

5n
Ltallymin 2.2 and 

8

5n
Lthreshold  good 

2.3 and bad 

and 2.4 bad 

We do not know the exact probability 
each of the 4 possible subcases will occur, 
but good and bad cases will occur with 
probability 1/2  

8

5n
Ltallymin 

8

5n
Lthreshold 

8

5n
Ltallymin 

8

6n
Hthreshold 
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Sub-case 2.1: 
8

5n
Ltallymin 

and 
8

6n
Hthreshold 

then, for any processor        it holds 

H
8

6n
fLftallytally mink 

kp
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And therefore 0 ki vv

Thus, every processor chooses 0, 

and the algorithm terminates in next round 
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8

5n
Ltallymin Sub-case 2.2: 

and 
8

5n
Lthreshold 

then, for any processor        it holds 

Ltallytallyk  min

kp
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And therefore minmink majvv 

Thus, every processor chooses        , 

and the algorithm terminates in next round 
minv
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• In other words, subcases 2.1 and 2.2 will make the 
algorithm terminate in the next round, while the 
remaining two subcases will be bad (i.e., the algorithm 
will not stop in next round) 

• From the above analysis, it follows that the algorithm 
will terminate w.h.p. within O(log n) rounds, since at 
each round it will terminate in the next round with 
probability at least ½ (remember we are in Case 2, 
which is one out of the three cases we analyzed); thus, 
the probability it will not terminate within log n 
rounds will be at most (1/2)log n=1/n, and so the 
probability it will terminate within log n rounds will be 
at least 1-1/n 

• Concerning the message complexity, in each round 
circulate O(n2) messages, and so w.h.p. the total 
number of messages will be O(n2 log n) 
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Homework 

• Show an execution with n=9 processors 
and f=1 for which the randomized 
algorithm does not converge. 
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Consensus in the Shared Memory Model 

Consider       processors in shared memory: n

10,..., npp

which try to solve the consensus problem, 
but they can crash 
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0

1

0

0p

1p

2p

0

1

0

3p

4p

5p

Every processor starts with an initial value 

stored in local memory (w.l.o.g., 0 or 1) 

Shared  

memory 

Local  

memory 

Local  

memory 
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0

1

0

0p

1p

2p

0

1

0

3p

4p

5p

communication through shared memory 

R/W 

R 

W 
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1

1

1

0p

1p

2p

1

1

1

3p

4p

5p

At the end of execution, every processor has to decide 
the same value (0 or 1, agreement), and if every processor 
starts with the same value, then every processor should 
decide that value (validity condition) 

 

0 1

1 0

0 0
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Wait-freedom in asynchronous systems: 

A processor should be able to finish 

execution of an algorithm 

even if all other processors fail 

Wait-freedom captures: 

•Asynchronous executions 

•Crash failures 
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Consensus Number 

Consensus Number of a shared-variable type: 

The maximum number of processors  

for which a shared-variable type can be 
used to solve the wait-free consensus 
problem 
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Shared-variableType Consensus Number 

Read/Write 1 

Test&Set 2 

Compare&Swap 
(infinity) 



146 

Read/Write 

Shared Memory 

Suppose that the shared 

memory can only be accessed 

through Read or Write  

operations 
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Theorem: 

Proof of Theorem: 

The consensus number of  

the Read/Write shared-variable 
type is 1 

Trivially, a system with only 1 processor 
using read/write (shared) variables 
enjoys wait-free consensus. 
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Wait-free consensus cannot be 

solved using only read/write shared variables 

for          processors  2n

It remains to show: 

We will show that any algorithm 

that solves wait-free consensus for  

has an execution that never terminates  

Approach: 

2n
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System configuration:   

Is the set of all variables in the system,  

including local and shared 

0

1

0

0p

1p

2p

0

1

0

3p

4p

5p

C



150 

A distributed system execution can  

be always be viewed as a: 

                   sequence of configurations 

0C fC1C 2C

Initial 

configuration 
Final 

configuration 

0i
p

1i
p

2i
p

Processor action:  Read or Write 
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1

C

D

C 
D 

1 0 1 0 0 0

bivalent 

univalent 
univalent 

bivalent 

Valence of a system configuration C: set of set of all values 
decided by a nonfaulty processor in some configuration 
reachable from C by an admissible execution. 

1-valent 
0-valent 

Output value at possible execution paths 

consensus reached 
always on value 1 

consensus reached 
always on value 0 

consensus may be not reached 
here since processors may 
decide different values 
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A terminating execution: 

0C 1C 2C

Initial 

configuration 

0i
p

1i
p

2i
p

Bivalent Bivalent Univalent: from 
this  point on all 
the non-faulty 
processors will 
decide the same 

fC

Univalent 

Univalent Bivalent 

Final 

configuration 
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To prove the theorem, we will show  

that there is always an execution 

where every configuration is bivalent 

0C 1C 2C

Initial 

configuration 

0i
p

1i
p

2i
p

Bivalent Bivalent Bivalent 

Never-ending execution 

Bivalent 
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1

1

1

0p

1p

2p

1

0

0

0p

1p

2p

Similar configurations for processor 0p

23

198

76

23

198

76

Same shared variables 

Local variables of others may differ 

1C 2C
21

0

CC
p


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21 CC
ip



Lemma: If there exist univalent configurations     

1C and        such that 2C

then if        is        -valent 

then       is      -valent too 
1C

2C

v

v

Proof of Lemma: 

)1 or 0( v
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1C

Univalent 

Execution 

with only 

taking actions 

ip

ip

v v v

All possible executions 

from  1C

final decision for each  

Possible execution 
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1C

Univalent 

Execution 

with only 

taking actions 

ip

ip

v v v

2C

Univalent 

Execution 

with only 

taking actions 

ip

ip

x x x
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1C

Univalent 

Execution 

with only 

taking actions 

ip

ip

v v v

2C

Univalent 

Execution 

with only 

taking actions 

ip

ip

x vx  x

21 CC
ip


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1C

Univalent 

Execution 

with only 

taking actions 

ip

ip

v v v

2C

Univalent 

Execution 

with only 

taking actions 

ip

ip

21 CC
ip



v v v

End of Lemma Proof 
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Lemma: There exists a bivalent 

initial configuration 

Proof of Lemma: 
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Possible Initial Configurations 

Shared  

Memory 

Empty 

Local Memory 

1
0p

Initial Configuration 
1I

1
1p

1np 1

0

0I

0

0

0

01I

1

1
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Possible Initial Configurations 

Shared  

Memory 

Empty 

Local Memory 

1
0p

1
1p

1np 1

0

0I

0

0

0

01I

1

1

0-valent 1-valent ? 

Initial Configuration 
1I
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Possible Initial Configurations 

Shared  

Memory 

Empty 

Local Memory 

1
0p

1
1p

1np 1

0

0I

0

0

0

01I

1

1

0-valent 1-valent 1-valent? 

No, because 
010

0

II
p



Initial Configuration 
1I
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Possible Initial Configurations 

Shared  

Memory 

Empty 

Local Memory 

1
0p

1
1p

1np 1

0

0I

0

0

0

01I

1

1

0-valent 1-valent 0-valent? 

No, because 
101

1

II
p



Initial Configuration 
1I
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Possible Initial Configurations 

Shared  

Memory 

Empty 

Local Memory 

1
0p

1
1p

1np 1

0

0I

0

0

0

01I

1

1

0-valent 1-valent bivalent 

End of Lemma Proof 

Initial Configuration 
1I
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Critical processor for a configuration: 

the configuration is bivalent, 

and after the processor takes step 

the configuration becomes univalent 

C C ip
Bivalent Univalent 
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Lemma: If       is a bivalent configuration 

then, there is at least one processor 

which is not critical 

C

Proof of Lemma: 
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Assume for contradiction that  

all processors are critical 

C

0C

1C

1nC

bivalent 
0p

1p

1np

univalent 

univalent 

univalent 

Possible 

executions 
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C

bivalent 
0p

1p

1np

valent 

It cannot be that all have the same 
valence                 otherwise C would be 
univalent 

v

)1 or 0( v

valent v

valent v

0C

1C

1nC
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C

bivalent 
0p

jp

1np

There must exist two processors with  

different valences 

iC

jC

ip

0C

1nC

valent-0

valent-1
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C

bivalent 

jp

iC

jC

ip

valent-0

valent-1

Case 1: suppose that they access different 

            shared variables       

x 

y 

ip

jp
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C

bivalent 

jp

iC

jC

ip

valent-0

valent-1

two possible executions 

C 

C 

jp

ip

Read y 

Read x 

valent-0

valent-1

impossible since CC 

different valence 
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same result holds for any kind  

of operation (Read or Write)  

that the processors apply to x and y 
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C

bivalent 

jp

iC

jC

ip

valent-0

valent-1

Case 2: suppose that they access the same 

            shared variable       

x 
ip

jp

subcase: read/read 
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two possible executions 

C

bivalent 

jp

iC

jC

ip

valent-0

valent-1

C 

C 

jp

ip

Read x 

Read x 

valent-0

valent-1

impossible since CC 

different valence 
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C

bivalent 

jp

iC

jC

ip

valent-0

valent-1

subcase: read/write 
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two possible executions 

C

bivalent 

jp

iC

jC

ip

valent-0

valent-1

C 

C 

jp

ip

Write x 

Read x 

valent-0

valent-1

impossible since 
j

p

CC
j



different valence 
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subcase: write/write 

C

bivalent 

jp

iC

jC

ip

valent-0

valent-1

C 

C 

jp

ip

Write x 

Write x 

valent-0

valent-1

impossible since 
j

p

CC
j



different valence 
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In all cases we obtained contradiction 
Therefore, there exists a processor 

which is not critical 

C

0C

1C

1nC

bivalent 
0p

1p

1np

univalent 

univalent 

univalent 

kC bivalent 
(not critical) 

End of Lemma Proof 
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Therefore, we can construct an execution 

0C 1C 2C

Initial 

configuration 

0i
p

1i
p

2i
p Never  

ends 

bivalent bivalent bivalent 

Consensus can never be reached 

End of Theorem Proof 


