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The Minimum Spanning Tree 
Problem 

 Distributing Prim’s and Kruskal’s 
Algorithm 
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Weighted Graph G=(V,E,w), |V|=n, |E|=m 
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For the sake of simplicity, we assume 
that weights are positive integers 
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Spanning tree 
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Any tree T=(V,E’) (connected acyclic graph) 
spanning all the nodes of G 
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Minimum-weight spanning tree 

A spanning tree s.t. the sum of its weights is minimized:  

17

(MST) 

MST T*:= arg min {w(T)=Σe E(T) w(e)|T is a spanning tree of G} 
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In general, the MST is not unique. 
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MST fragment: 

Any (connected) sub-tree of a MST  
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Minimum-weight outgoing edge (MOE) of a fragment 

An edge incident to a single node of the 
fragment and having smallest weight (notice it 
does not create any cycles in the fragment) 
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Fragment 
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Property 1: The union of a MST fragment 
and any of its MOE is a 
fragment of some MST (so 
called blue rule). 

Property 2: If the edge weights are distinct 

then the MST is unique 

Two important properties for building a MST 
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Property 1: The union of a MST fragment 
F T and any of its MOE is a 
fragment of some MST. 

Proof: Remind that in general the MST is 
not unique. Let e be a MOE of F, and 
for the sake of contradiction, 
assume that FU{e} is not a fragment 
of any MST of G, and then that e 
does not belong to any MST of G. In 
particular, this means that e does 
not belong to T. 
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e
x )()( xwew 

Fragment 

F

MST T 

Then add e to T (thus forming a 
cycle) and 
remove x (any 
edge of T in 
such a cycle 
exiting from F) 
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Fragment 

F

But w(T ’)  w(T),  

since T is an MST 

 w(T ’)=w(T), i.e., T ’ is an MST 

Obtain T ’  

w(T))w(T' 

and since   
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e

Fragment 

thus               is a fragment of MST T ’  

}{eFF 

}{eF

END OF PROOF 

MST T’  

 contradiction! 
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Property 2: If the edge weights are distinct 

then the MST is unique 

Proof: Basic Idea: 

Suppose there are two MSTs 

Then we prove that there is another 
spanning tree of smaller weight 

 contradiction! 
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Suppose there are two MSTs 
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Take the smallest-weight edge  

not in the intersection, and assume 
w.l.o.g. it is blue 

e
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e

Cycle in RED MST 
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e

Cycle in RED MST 

e 

e’: any red edge in the cycle not in BLUE MST 

(  since blue tree is acyclic) 
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e

Cycle in RED MST 

e 

)()( ewew Since      is not in the intersection, e 

(weights are distinct and the weight of e is the 
smallest among edges not in the intersection) 
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e

Cycle in RED MST 

e 

)()( ewew 

Delete       and add       in RED MST  e  e

 we obtain a new tree with smaller weight 

 contradiction! END OF PROOF 
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Overview of MST distributed algos 

There exist algorithms only when nodes have unique 
ids. We will evaluate them according to their 
message (and time) complexity. Upcoming results 
follow: 
• Distributed Prim:  

• Asynchronous (uniform): O(n2) messages 
• Synchronous (uniform): O(n2) messages, and O(n2) 

rounds  

• Distributed Kruskal (so-called Gallagher-
Humblet-Spira (GHS) algorithm) (distinct 
weights):  
• Synchronous (non-uniform): O(m+n log n) messages, and 

O(n log n) rounds 
• Asynchronous (uniform): O(m+n log n) messages 
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Prim’s Algorithm (sequential version) 

Augment fragment F with a MOE 

Repeat 

Until no other edge can be added to F  

Start with a node as an initial fragment, 
say F, and repeatedly apply the blue rule 

F={r V(G)} 
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Final MST 
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Theorem: Prim’s algorithm gives an MST 

Proof: Use Property 1 repeatedly 

END OF PROOF 
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Prim’s algorithm (distributed version) 
Works with both asynchronous and synchronous non-
anonymous, uniform models (and with non-distinct weights) 
 Algorithm (asynchronous high-level version): 
 Let vertex r be the root as well as the first fragment (notice that r 

should be provided by a leader election algorithm, and this is why we ask 
for non-anonymity, although the actual algorithm will not make use of ids)  

 REPEAT (phase) 
• r broadcasts a message on the current fragment to search for a 

MOE of the fragment (i.e., each vertex in the fragment searches 
for its local (i.e., incident) MOE) 

• Starting from the leaves of the fragment, apply the following 
bottom-up procedure: each leaf reports the weight of its local 
MOE (if any) to its parent, while an internal node reports to its 
parent the weight of the MOE of its appended subfragment, i.e., 
the minimum between the weight of its local MOE and the weight 
of the MOEs received by its children (in other words, it reports 
the minimum among the weights of all the local MOEs of the nodes 
in the subfragment rooted in it (ties are broken arbitrarily); 

• the MOE of the fragment is then selected by r and added to the 
fragment, by sending an add-edge message on the appropriate path 

• finally, the root is notified the edge has been added 

 UNTIL the fragment spans all the nodes 
 



31 

Local description of asynchronous Prim 

Each processor stores: 
1. The status of any of its incident edges, which 

can be either of {basic, branch, reject}; 
initially all edges are basic  

2. Its own status, which can be either {in, out} 
of the fragment; initially all nodes are out 

3. Parent channel (route towards the root) 
4. Children channels (routes towards the 

children) 
5. Local (incident) MOE  
6. MOE for each children channel 
7. MOE channel (route towards the MOE of its 

appended subfragment) 
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Types of messages in asynchronous Prim 
1. Search_MOE: coordination message initiated by the root, that will 

flood top-down towards all the nodes of the fragment 

2. Test: originated by a node in the fragment that checks the status 
of its basic edges in increasing order of weight (if any) 

3. Reject, Accept: response to Test 

4. Report(weight): originated by a node that reports to the parent 
node the weight of the MOE of the appended subfragment 

5. Add_edge: initiated by the root, it will descend the path in the 
fragment towards the node adjacent to the fragment’s MOE, in 
order to add it 

6. Connect: sent by the end-node incident to the found MOE to its 
adjacent on the MOE, in order to add it to the fragment (this 
changes the status of the other end-node from out to in, and of 
the MOE from basic to branch) 

7. Connected: originated by the just added node, will travel back up 
to the root to notify it that connection has taken place 
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Sample execution: At the beginning of a phase, the root 
sends a Search_MOE message, and the message floods along 
the fragment, so that each node in fragment starts looking 
for its local MOE 

r
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To discover its local MOE, each node sends a Test message 
over its basic edges in increasing order of weight, until it 
receives an Accept. Rejected tests turn to reject the 
status of the corresponding edge. 

Test 
Accept 

Test 

 

6
Reject 
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r
10

Then it knows its local MOE (notice this can be 
void) 

Local MOE 
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Then, if a node is a leaf, it sends a Report with the weight of its MOE (if 
any) to its parent, while if a node has children, it waits for a Report from 
each child, and then selects a global minimum between the weight of its 
local MOE and the weights of the reported MOEs, which will be then  
reported to its parent; in this way, each internal node stores and reports 
the weight of the MOE of its appended subfragment 
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The root selects the minimum among received MOEs 
and sends along the appropriate path an Add_edge 
message, which will become a Connect message at the 
proper node 

r

MOE 
3

3
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Added node changes its status to in, and connecting edge 
becomes branch. Finally, a Connected message is sent back 
along the appropriate path up to the root, which then starts a 
new phase by resuming the Search_MOE procedure 

r

in 

branch 
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Thr: Asynchronous Prim requires O(n2) msgs.  

Proof: We have the following messages:  

1. Test-Reject msgs: at most 2 for each edge, namely 
O(m)=O(n2) messages of this type. 

2. In each phase, each node:  

• sends at most a single message of the following 
type: Report, Add_edge, Connect, and 
Connected; 

• receives at most a single Search_MOE message; 

• sends and then receives at most a single Test 
followed by an Accept; 

which means that in each phase globally circulate O(n) 
messages. Since we have n-1 phases, the claim follows. 

Algorithm Message Complexity 

END OF PROOF 
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Synchronous Prim 

It will work in O(n2) rounds, can you see why? 

Basically, each phase takes O(n) rounds; indeed, the 
(only) fragment has height (longest root-leaf path, 
in terms of edges) at most n-1, and so all the root-
nodes (and backwards) messages requires O(n) 
rounds; moreover, each each node has at most n-1 
incident edges, and so the local MOE selection 
requires O(n) rounds; since we have O(n) phases, the 
O(n2) bound follows 
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Kruskal’s Algorithm (sequential version) 

Initially, each node is a fragment 

• Find the smallest MOE e of all current 
fragments 

• Merge the two fragments adjacent to e  

Repeat 

Until there is only one fragment left 
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…and discarding edges forming a cycle… 
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…until arriving to the resulting MST 

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

7

16



50 

Theorem: Kruskal’s algorithm gives an MST 

Proof: Use Property 1, and observe that no 
cycle is created (indeed, we always 
select a MOE).  

END OF PROOF 
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Distributed version of Kruskal’s Algorithm: 
Gallagher-Humblet-Spira (GHS) Algorithm (1983) 

• We start by providing a synchronous version, working under 
the following restrictions: non-anonymous, non-uniform 
MPS, distinct weights; for the sake of simplicity, we will 
assume a synchronous start, but it is not really needed  

• Works in phases, by repeatedly applying the blue rule to 
multiple fragments 

• Initially, each node is a fragment, and phases proceed by 
implementing the following steps:  

 

• Each fragment – coordinated by a fragment root node - 
finds its MOE 

• Merge fragments by using the found MOEs 

Repeat a phase 

Until there is only one fragment left 

(These phases need to be synchronized, as we will see later) 
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Local description of synchronous GHS 

Each processor stores, besides its own ID: 

1. The status of any of its incident edges, which can be 
either of {basic, branch, reject}; initially all edges are 
basic 

2. Fragment identity; initially, when each fragment is done 
by a single node, this is equal to the node ID, but then 
it will be equal to the ID of some node in the fragment 

3. Root channel (current route towards the fragment root) 

4. Children channels (current routes towards the 
descending fragment leaves) 

5. Local (incident) MOE 

6. MOE for each children channel 

7. MOE channel (route towards the MOE of the appended 
subfragment) 
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Types of messages of synchronous GHS 

1. Test(fragment identity): each node starts a phase by checking 
the status of its basic edges in increasing weight order (if any) 

2. Reject, Accept: response to Test 

3. Report(weight): for reporting to the parent node the MOE of 
the appended subfragment 

4. Merge (this was called Add_edge in Prim): sent by the root to 
the node incident to the MOE to activate the merging of 
fragments 

5. Connect(fragment identity): sent by the node incident to the 
MOE to perform the merging; as we will see, this message will be 
sent in the very same round by all the involved nodes; in the 
immediately next round, merges took place, and a new root for 
each fragment is selected, in a way that will be specified later  

6. New_fragment(fragment identity): coordination message sent 
by the new root of a just created fragment at the end of a 
phase, and containing the new fragment identity (this will be 
specified later) 
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Initially, every node is a fragment… 
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… and every node is the root of a fragment, and the fragment 
identity (reported within the nodes) is the node ID (reported 
nearby the nodes), and so non-anonimity is required 
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Phase 1: In this very first phase, to discover its own MOE, a 
node sends a Test message containing its fragment identity 
over its basic edge of minimum weight, and it will certainly 
receives an Accept; then, it will send a Connect message 
containing its fragment identity (notice that Merge and 
Connect messages are not needed in this first phase since 
the root is directly adjacent to the MOE) 

Accept 

Test( ) 

23

Connect( ) 
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MOE and sends a Connect message (arrows 
denote the direction of the Connect 
message) 
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Question: How do we select the new roots? 

Notice: Several nodes 
can be merged into a 
single new fragment  
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Proposition: In merged fragments there is exactly one symmetric MOE. 

Proof: Recall that each merging fragment has exactly 1 MOE. Assuming 
that fragments find their MOE correctly (we will prove formally this 
later), we claim that since edge weights are distinct, then no cycles are 
created during merging. Indeed, for the sake of contradiction, assume this 
is false. We can have two cases: 

Merging more than 2 fragments 

Impossible: either F1 or F2 
is choosing a wrong MOE!  

1F 2F

Merging 2 fragments 

Fi  
Fj 

Impossible: let (Fi,Fj) be the (only) max-
weight edge on the cycle; then either Fi 
or Fj is choosing a wrong MOE!  

Selecting a new root: a useful property 
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(Proof cont’d) Then, since no cycles are created, we have that if k 
fragments are merged, k-1 edges need to be used to perform the 
merge (to guarantee connectivity and acyclicity). These edges 
contain exactly k arrows, one for each fragment, and so there must 
be exactly one edge with two arrows, i.e., a symmetric edge. 

QED 

2F

4F3F

5F

6F

7F

8F
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Rule for selecting a new root in a fragment 

1F2F

3F

5F

4F 6F

7Froot root 

root 

root 

root root 

root 
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Node with higher 
fragment identity on the 
unique symmetric MOE 

Merged Fragment 

Root 

Rule for selecting a new root in a fragment (2) 
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In a generic phase, after that merging has taken place, the 
new root broadcasts New_fragment(x) to all the nodes in the 
new fragment, where x was the fragment identity of the new 
root in its previous fragment, and once this notification is 
completed a new phase starts 

e is the 
symmetric MOE 
of the merged 
fragments, and x 
is the identity of 
the fragment the 
red node was 
belonging to 
before the 
merge 

x is the identity of the new fragment 

e 

x x x 

x x 

x x x 
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In our example, at the end of phase 1 every 
node in every fragment has its new 
fragment identity, and a new phase can start 
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End of phase 1 (notice that the fragment identity is 
equal to the ID of some node in the fragment) 
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At the beginning of a generic phase, each node in a 
fragment starts finding its local MOE: the fact that all 
nodes in the graph have their actual identity guarantees 
that the correct MOE of each fragment is found 
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To discover its own MOE, each node sends a Test message 
containing its fragment identity over its basic edges in 
increasing order of weight, until it receives an Accept 

Test( ) 
Accept 

Test( ) 

6
Reject 
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Then it knows its local MOE (notice this can be 
void) 

MOE 
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After receiving the Report from each child, a node sends its 
own Report to its parent with the MOE of the appended 
subfragment (the global minimum survives in propagation 
towards the root) 
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After receiving the Report from each child, the root selects 
the minimum MOE and sends along the appropriate path a 
Merge message, which will become a Connect( ) message at 
the proper node (which possibly becomes a new root) 


















 





MOE 

3




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previous phase, find again the MOE for each 
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Broadcast the new fragment identity to all the 
nodes in the new fragment, and so at the end of 
phase 2 each node knows its own new fragment 
identity. 

End of phase 2 
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Broadcast the new fragment identity to all the 
nodes in the new fragment, and so at the end of 
phase 3 each node knows its own new fragment 
identity. 
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End of phase 3 
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At the beginning of Phase 4, every node will start 
searching its MOE, but all the edges will be 
rejected, and so each node will report nil 
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 the source node realizes this is the FINAL MST 
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Syncronicity 
• To guarantee correctness, selection of local MOEs must 

start when all the nodes know their new fragment identity 
(notice the difference w.r.t. Prim) 

• But at the beginning of a phase, each fragment can have a 
different number of nodes, and thus the broadcasting of the 
new fragment identity can take different times  fragments 
and phases need to be “synchronized” 

Phases’ synchronization 
• First of all, assume that all the nodes start the local MOE 

selection at the very same round (we will convince ourselves 
about that on next slide); observe that each node has at 
most n-1 incident edges, and so the local MOE selection 
requires at most 2(n-1)+1 rounds (convince yourself… notice 
that each Test-Reject/Accept takes 2 rounds)  we assign 
exactly 2n-1 rounds to the local MOE selection (this means 
that if a node discovers a local MOE in less rounds, it will 
wait in any case till 2n-1 rounds have passed before 
proceeding to the Report step) 
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Syncronicity (2) 
• Moreover, each fragment has height (longest root-leaf 

path, in terms of edges) at most n-1, and so the Report 
activity requires at most n rounds; this means, the root 
node will find the MOE of the fragment in at most n 
rounds. Again, it could take less than n round, but it will 
wait in any case till n rounds have passed before 
proceeding to the Merge step 

• Similarly, the Merge message requires at most n rounds to 
reach the proper node, and so we assign exactly n rounds 
to this step, which means that the node which is incident 
to the MOE will send the Connect message exactly at 
round 4n-1 of a phase 

• Finally, exactly at round 4n a node knows whether it is a 
new root, and if this is the case it sends a New_fragment 
message which will take at most n rounds to “flood”, and so 
again we assign exactly n rounds to this step 

 A fixed number of 5n total rounds are used for each phase 
(in some rounds nodes do nothing…)! 
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Smallest Fragment size  

         (#nodes) 

End of phase 

1 2

2 4

i i2

Algorithm Time Complexity (# rounds) 
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 Maximum # phases: ni 2log

Maximum possible fragment size ni 2

Number of nodes 

Algorithm Time Complexity (# rounds) 

 

Total time = Phase time • #phases = 

n) O(log

rounds Θ(n) i.e., rounds, 5n

n) log O(n
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Thr: Synchronous GHS requires O(m+n log n) msgs.  

Proof: We have the following messages:  

1. Test-Reject msgs: at most 2 for each edge, namely O(m) 
messages of this type. 

2. In each phase, each node:  

• sends at most a single Report, Merge, Connect 
message; 

• receives at most a single New_Fragment message;  

• sends and then receives at most a single Test 
followed by an Accept; 

which means that globally circulate O(n) messages in 
each phase (and in particular, on the branch edges of a 
fragment, circulate a constant number of messages in 
each phase). Since we have at most log n phases, the 
claim follows. 

Algorithm Message Complexity 

END OF PROOF 
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Homework 

1. Execute synchronous GHS on the following graph: 
 
 
 
 
 
 
 
 
 
2. What is a best-possible execution of synchronous GHS? 

(Provide a class of instances on which the number of 
rounds and the number of messages is asymptotically 
minimum) 
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Asynchronous Version of GHS Algorithm 

•Simulates the synchronous version, but it is 
even stronger: Works with uniform models 
and asynchronous start (but still requires 
non-anonymity and distinct edge weights) 

•As before, we have fragments which are 
coordinated by a root node, and which are 
merged together through their MOEs 

•However, we have two types of merges now, 
depending on the “size” of the merging 
fragments, as we will describe soon: 
absorption and join  
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Local description of asynchronous GHS 
A node stores the same information as in the 
synchronous case, but now: 
1. A fragment (i.e., each node in it) is identified by a pair:  

(fragment identity (id), level)  

 where the fragment identity is again the ID of some 
node in the fragment, and the level is a non-negative (and 
monotonically increasing) integer; at the beginning, each 
node is a fragment with identity (node ID, 0); during the 
execution, the fragment identity changes and the level 
increases as a consequence of absorptions and joins 

2. A node has also a status which describes what is 
currently doing w.r.t. the search of the MOE of its 
appended subfragment, and it can be either of {sleeping, 
finding, found}  
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Type of messages of asynchronous GHS 
Similar to the synchronous case, but now: 

1. New_fragment(id, level, node status): coordination 
message flooding in the fragment just after a merge; this is 
originated by a node onto which the merge was taking place 

2. Test(id,level): to test a basic edge (in increasing order of 
weight); when a node is testing an edge, it must be in a 
finding state, and a Test message is replied (Accept/Reject) 
if and only if the tested node has a not smaller level, 
otherwise it is freezed 

3. Report(weight): immediately after reporting the MOE of the 
appended subfragment, a node put itself in a found state 

4. Connect(id,level): to perform the merge; due to the above 
constraint on the Test message, it follows that this message 
will only travel from a fragment of level L to a fragment of 
level L’≥L 
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Example: Initially, some nodes are awake and form a 
fragment, while some other are sleeping (these will wake-up 
either spontaneously or after receiving a message) 
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Every non-sleeping node is the root of its fragment, and the 
fragment identity is the pair (node ID,0) (reported nearby 
the nodes), and so non-anonimity is required 
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



10

15

• Similarly to the synchronous case, each awake node will start 
searching its own MOE, by sending a Test message containing 
its fragment identity (node ID, 0) over its basic edge of 
minimum weight, and it will certainly receives an Accept, since 
on the other side of the edge there must be a node with a 
different fragment identity, and of level  0 (i.e., not smaller 
than that of the testing node) 

Accept 

Test( ,0) 

Connect( ,0) 

• Then, it will send on such an edge a Connect(node ID, 0) 
message, and depending on the fragment identity of the other 
end-node, some kind of merge will take place, as we will see 
soon. 

Actions taken by a node of level 0 
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• Similarly to the synchronous case, nodes of a fragment are 
coordinated by a root node, and each of them will search its 
local incident MOE, by sending a Test(id,level) over its basic 
edges in increasing order of weight, until it will receive an 
Accept.  

• If the level of the node receiving a Test message is smaller than 
that of the querying node, then as we said the reply will be 
delayed; however, once that a node receives an Accept (or once 
that all its incident basic edges have been rejected), it will wait 
for the Report messages of its children, and will then send its 
Report message towards the root. 

• Once the root has received all the Report messages, it will 
select the MOE of the fragment, and will send a Merge message 
along the proper way, which will become a Connect(id,level) 
message at the proper node. 

• Once again, depending on the fragment identity of the other 
end-node, some kind of merge will take place, as we will see on 
the next slide. 

Actions taken by a node of level d>0 
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Fragment 
Fragment 

1F 2F
MOE(F1) 

1. If L(F1)<L(F2), then F2 absorbs F1  

Merge of two fragments 

x y 

2. If L(F1)=L(F2) and (x,y) is also the MOE of F2, then F1 
and F2 will join (once that F2 will send a Connect to F1 on 
the same edge), otherwise F2 will “freeze” the message 
(and later on it will absorb F1) 
3. L(F1)>L(F2) is instead impossible, since as we said 
before, node y in this case would not have replied to a 
previous Test on edge (x,y) 

Connect(id(F1),L(F1)) 

Merges are generated by Connect messages: 
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New 
fragment 

1F 2F
MOE(F1) 

Case 1: L(F1)<L(F2)    merge as an Absorption 

In this case, a “new” fragment is created with 
the same identity as F2 

A New_fragment(ID(F2),L(F2),status(y)) message is 
broadcasted to nodes of F1 by the node y of F2 on 
which the merge took place  

New_fragment 

x y 

(cost of merging, in terms of number of 
messages, proportional to the size of F1) 
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MOE(F1,2) 

Fragment Fragment 

1F 2F

A symmetric MOE will generate a bidirectional Connect 
message on the same edge, and in this case, F1 joins with 
F2 . This can happen iff L(F1)=L(F2), as otherwise either F1 
or F2 would be locked in a Test 

Notice that the system is asynchronous, and so the 
Connect message on the two directions may be not 
simultaneous (differently from sync GHS) 

Case 2.1: L(F1)=L(F2) and (x,y) is also the MOE of F2  
  merge as a Join 

Connect  

x y 
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New fragment 

1F 2F

Merge as a Join: the combined level is  1)L(FL(F) 1,2 

and a New_fragment(max(ID(F1),ID(F2)),L(F1,2)+1,finding) 
message is broadcasted to all nodes of F1 and F2 by the new 
root, i.e., the node with max ID field in the fragment 
identity between x and y 

(cost of merging, in terms of number of messages, 
is proportional to the size of F1 and F2)     

New_fragment 

x y 
MOE(F1,2) 
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Fragment Fragment 

1F
2F

Test(id(F1),L(F1)) 

Remark: a Connect message cannot travel from a fragment of 
higher level to a fragment of lower level (actually, this is for 
message-complexity efficiency reasons, since absorption has a 
cost proportional to the size of the absorbed fragment, as we 
mentioned before). Indeed, recall that a Test message from a 
fragment F1 to a fragment F2 is replied only once that 
L(F1)≤L(F2) (this prevents F1 to find its MOE, i.e., to ask a 
connection to F2, while L(F1)>L(F2))   
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Full proof is quite complicated. It must address the 
following general properties: 

1. Termination: Response to Test are sometimes delayed  
deadlock is a priori possible! 

2. Asynchronicity: Message transmission time is unbounded 
  inaccurate information in a node about its own 

fragment is a priori possible! Replies to Test messages 
are really correct? 

3. Absorption while the absorbing fragment is searching 
for a MOE: in this case, new nodes are added to the 
fragment, and they are dynamically involved in the on-
going MOE searching process. Is that feasible?   

We will show formally only termination, while we only sketch 
the proof for point 2 and 3 

Correctness of asynchronous GHS 
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1. Termination (1/2) 

Lemma: From any configuration with at least 2 fragments, 
eventually either absorption or join takes place.  

Proof: Let L be the minimum level in this configuration, and 
let F be the (not necessarily unique) L-level fragment having 
the lightest MOE. Then, any Test message sent by F either 
reaches a fragment F’ of level L’≥L or a sleeping node. In the 
first case, F gets a reply immediately, while in the second 
case the sleeping node awakes and becomes a fragment of 
level 0  this creates a new configuration, onto which the 
argument of the proof is applied recursively  eventually, we 
get a configuration in which there are no sleeping nodes, 
where only the first case applies. This means that F will get 
all the needed replies, and then it will find its MOE, over 
which a Connect message will be routed. Two cases are 
possible: 
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1. Termination (2/2) 

F
F'MOE(F) 

Connect(id(F),L(F)) 

x y 

1. L(F’)>L(F): in this case F’ absorbs F; 

2. L(F’)=L(F): in this case, since (x,y) is a lightest MOE, 
then it is also the MOE of F’ (recall that edge weights 
are distinct) and F’ cannot be locked (similarly to F); 
then, a join between F and F’ takes place. 

 
END OF PROOF 

Corollary: Asynchronous GHS terminates. 

Proof: By contradiction, if not then there must be at least 
two fragments left; but then the above lemma guarantees 
their number will be progressively reduced to 1.  

END OF PROOF 
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2. Asynchronicity (1/3) 
Message transmission time is unbounded   a node might 
have inaccurate info about its status! Let us see an 
example in which the red node of F1 is tested, but its 
status is inaccurate since it did not yet received the new 
fragment identity after that F1 was absorbed by F2  

 

Absorbing Fragment 

1F

2Fx y 

New_fragment 

Absorbed Fragment 

0F

Test 

Testing Fragment 

We will show that an answer (Accept/Reject) given having 
inaccurate information will not affect the correctness of the 
algorithm! 
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2. Asynchronicity (2/3) 
Claim 1: A node pi whose fragment identity is currently 
(id,L) actually belongs to a fragment of level L’ L. 

Proof: If the identity of pi is accurate, then L’=L, while if 
it is inaccurate, then pi is participating in either a join or 
an absorption. But in both cases, L’>L.   
        QED 

 

Remark 1: If a node pi of a fragment F sends a test to a 
node pj of a fragment F’, then the fragment F is not 
involved in a merge, and so the only inaccurate info might 
be at pj. 

Remark 2: Reject messages are always correct. 

  Only an Accept message may be wrong, but we will see 
this is not the case. 
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2. Asynchronicity (3/3) 
Claim 2: If a node pi of a fragment F1=(id1,L1) sends a test 
to a node pj of a fragment F2=(id2,L2) and pj accepts, then 
pi and pj are not in the same fragment. 

Proof: Notice that by definition, pj accepts iff 
(id2,L2)≠(id1,L1) and L2 L1. We then have two cases: 

1. L2>L1: by Claim 1, the real level of the fragment to 
which pj belongs is L’  L2 > L1, and so it follows that pi 
and pj are not in the same fragment (remember that by 
Remark 1, information holds by pi are accurate). 

2. L2=L1: again by Claim 1, the real level of the fragment 
to which pj belongs is L’  L2 = L1, and so: 

a) If L’ = L2 = L1, then it must be id2≠id1, and so it 
follows that pi and pj are not in the same fragment; 

b) If L’ > L2 = L1, i.e., L’ > L1, then see above.  QED 

  Accept messages are always correct as well! 
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3. Absorption while F’ is searching for a MOE 

F
F'

MOE(F) 
Connect x y 

1.Transmitted status is finding: in this case, nodes in F start searching for their 
local MOE, and node y will wait a Report from x before reporting to its parent 
in F’. Apparently, it is possible that a node u in F, after getting the new identity, 
tests a node v in F which is still not updated, and so v could wrongly reply 
accept. But this is impossible, since the level of v is less than the level of u, due 
to the absorption, and so v does not reply to u. (Notice the very same argument 
can be applied also when a Join takes place) 

2.Transmitted status is found: in this case, nodes in F do not participate to the 
selection of the MOE for F U F’, and then it seems that edges outgoing from F 
are omitted. However, observe that y has already found the MOE of the 
appended subfragment, and since y is adjacent to (x,y), y must have at least 
another incident basic edge (y,u) s.t. w(y,u) < w(x.y), since otherwise y would be 
locked!. Hence, since any edge outgoing from F will be heavier than (x,y), no any 
of them can be the MOE of F’, and so correctness is guaranteed. 

END OF PROOF 

New_Fragment(id(F’),L(F’),finding/found) 



101 

Lemma: A fragment of level L contains at least 2L 
nodes. 

Proof: By induction. For L=0 it is trivial. Assume it 
is true up to L=k-1, and let F be of level k>0. But 
then, either: 

1. F was obtained by joining two fragments of level k-1, 
each containing at least 2k-1 nodes by inductive 
hypothesis  F contains at least 2k-1 + 2k-1 = 2k nodes; 

2. F was obtained after absorbing another fragment F’ of 
level < k  apply recursively to F\F’, until case (1) applies 
(observe that we have to arrive to a fragment generated 
by a Join, since k>0). 

Algorithm Message Complexity 

END OF PROOF 

  The maximum level of a fragment is log n 
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Thr: Asynchronous GHS requires O(m+n log n) msgs.  

Proof: We have the following messages:  

1. Connect: at most 2 for each edge, namely O(m) 
messages of this type; 

2. Test-Reject: at most 2 for each edge, namely O(m) 
messages of this type; 

3. Each time the level of its fragment increases,  a node 
receives at most a single New_Fragment message, 
sends at most a single Merge, Report message, and 
finally sends and then receives at most a single Test 
message followed by an Accept; 

and since from previous lemma each node can change at most 
log n levels, it means that each of the n nodes generates 
O(log n) messages of type 3, and the claim follows. 

Algorithm Message Complexity (2) 

END OF PROOF 
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Summary of results for distributed MST 

There exist algorithms only when nodes have unique 
ids: 
• Distributed Prim (non-distinct weights):  

• Asynchronous (uniform): O(n2) messages 
• Synchronous (uniform): O(n2) messages, and O(n2) 

rounds  

• Distributed Kruskal (GHS) (distinct weights):  
• Synchronous (non-uniform): O(m+n log n) messages, and 

O(n log n) rounds 
• Asynchronous (uniform): O(m+n log n) messages 
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Homework 
Execute asynchronous GHS on the following graph: 
 
 
 
 
 
 
 
 
 
 
assuming that system is pseudosynchronous: Start from 1 
and 5, and messages sent from odd (resp., even) nodes are 
read after 1 (resp., 2) round(s) 
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