
The Shortest Path problem in 
graphs with selfish edges  



Recap 

 VCG-mechanism: pair M=<g,p> where 

 g(r) = arg maxyX i vi(ri,y)  

 pi(g(r)) = -j≠i vj(rj,g(r-i)) +j≠i vj(rj,g(r)) 

 

 VCG-mechanisms are truthful for utilitarian problems (i.e., 
problems in which the SCF is given by the sum of players’ 
valuation functions) 

 



Buying a path in a 
network 

decides the path 
and the payments 

te: cost of edge e 
 
ve= -te if selected, 
and 0 otherwise 

if edge e is selected 
and receives a payment of pe 

the utility for agent owning e is: 

 ue = pe+ve = pe-te 

X: set of all paths  
   between s and z 

I want to minimize 
the length of a path 

between s and z w.r.t. 
the true edge costs 
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The private-edge SP problem  

 Given: an undirected graph G=(V,E) such that 
each edge is owned by a distinct player, a 
source node s and a destination node z; we 
assume that a player’s private type t(e) is the 
positive cost (length) of the edge e she owns, 
and her valuation function is equal to her 
negated type if edge is selected in the solution, 
and 0 otherwise.  

 Question: design an efficient (in terms of time 
complexity) truthful mechanism in order to find 
a shortest path in Gt=(V,E,t)  between s and z. 



Notation and assumptions 

 n=|V|, m=|E| 
 dG(s,z): distance in G=(V,E,r)  between s ans z 

(sum of reported costs of edges on a shortest 
path PG(s,z) in G) 

 Nodes s and z are 2-edge-connected in G, i.e., 
there exists in G at least 2 edge-disjoint 
paths between s and z  for any edge of 
PG(s,z) removed from the graph there exists 
at least one replacement path in G-e between 
s and z (this will bound the problem, since 
otherwise a  bridge-edge might have an 
unbounded marginal utility) 



VCG mechanism 

 The problem is utilitarian (indeed, the (negated) cost of a solution is 
given by the sum of valuations)  VCG-mechanism M=<g,p>: 
 g: computes arg maxyX eE ve(r(e),y), i.e., PG(s,z) in G=(V,E,r), where 

r(e) denotes the reported cost of e; indeed, valuation functions are 
negative, so maximizing their sum means to compute a cheapest path;  

 p (Clarke payments): for each eE:  

pe =-j≠e vj(r(j),g(r-e)) +j≠e vj(r(j),g(r)), namely 
 

         dG-e(s,z)-[dG(s,z)-r(e)] = dG-e(s,z)-dG(s,z) + r(e)  if ePG(s,z) 
                 dG(s,z)-dG(s,z) = 0                                           otherwise 

 For each ePG(s,z), we have to compute dG-e(s,z), namely the length of a 
replacement shortest path in G-e =(V,E\{e},r-e) between s and z. 

Remark: Notice that G is 2-edge-connected since otherwise dG-e(s,z) may 
become +  according to the payment scheme, agent owning e would get 
an unbounded payment! 

 

 

pe= { 



The replacement shortest path 
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PG-e(s,z)  dG-e(s,z)=12 

 

PG(s,z)  dG(s,z)=11 

Remark: ue = pe+ve= pe- te = pe- r(e) = 
dG-e(s,z)-dG(s,z)+ r(e) - r(e) , and since dG-e(s,z) ≥dG(s,z)  ue0  

pe=dG-e(s,z)-dG(s,z) + r(e) = 
12-11+2=3 



A trivial but costly implementation 

 Step 1: First of all, apply Dijkstra to 
compute PG(s,z)  this costs O(m + n log n) 
time by using Fibonacci heaps. 

 Step 2: Then, e PG(s,z) apply Dijkstra in 
G-e to compute PG-e(s,z)  we spend O(m + 
n log n) time for each of the O(n) edges in 
PG(s,z), i.e., O(mn + n2 log n) time 

Overall complexity: O(mn + n2 log n) time 
 We will see an efficient solution costing 

O(m + n log n) time 



Notation 

 SG(s), SG(z): single-source shortest-
path trees rooted at s and z 

 Ms(e): set of nodes in SG(s) not 
descending from edge e (i.e., the set 
of nodes whose shortest path from s 
does not use e) 

 Ns(e)=V/Ms(e) 
 Mz(e), Nz(e) defined analogously 
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Crossing edges 

 (Ms(e),Ns(e)) is a cut in G 

 Cs(e)={(x,y) E\{e}: x Ms(e), yNs(e)} 
edges “crossing” the cut: crossing edges 
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What about PG-e(s,z)? 

Trivial: it does not use e, and it is shortest among all paths 
between s and z not using  e 

There can be many replacement shortest paths w.r.t. e 
between s and z, but each one of them must cross at least 
once the cut Cs(e), and it is easy to see that at least one of 
them must cross only once the cut Cs(e): indeed, if a 
replacement shortest path contains multiple crossing edges, 
then its subpath up to the last crossing edge must be as long 
as the (shortest) path in SG(s) induced by the nodes in Ms(e)  

Thus, the length of a replacement shortest path can be 
written as follows: 

 dG-e(s,z)=    min    {dG-e(s,x)+r(f)+dG-e(y,z)} 
f=(x,y)Cs(e) 



A replacement shortest path for e 
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dG-e(s,z)=    min    {dG-e(s,x)+r(f)+dG-e(y,z)} 
f=(x,y)  Cs(e) 



How to compute dG-e(s,z) 

Let f=(x,y)  Cs(e); we will show that 

   dG-e(s,x)+r(f)+dG-e(y,z)=dG(s,x)+r(f)+dG(y,z) 

 

Remark: dG-e(s,x)=dG(s,x), since xMs(e) 

Lemma: Let f=(x,y)Cs(e) be a crossing edge 
(xMs(e)). Then yMz(e) (from which it follows 
that dG-e(y,z)=dG(y,z)). 



A simple lemma 

Proof (by contr.) Assume yMz(e), then 
yNz(e). Hence, y is a descendant of u in SG(z), 
i.e., PG(z,y) uses e. Notice that v is closer to z 
than u in SG(z), and so PG(v,y) is a subpath of 
PG(z,y) and (recall that r(e) is positive): 
 dG (v,y)=r(e) + dG (u,y) > dG (u,y). 
But yNs(e), and so PG(s,y) uses e. However, u is 
closer to s than v in SG(s), and so PG(u,y) is a  
subpath of PG(s,y) and: 
 dG (u,y)=r(e) + dG (v,y) > dG (v,y). 
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Computing the length of 
replacement paths 

Given SG(s) and SG(z), in O(1) time we can compute 
the length of a shortest path between s and z 
passing through f and avoiding e as follows: 

 

k(f):= dG-e(s,x) + r(f) + dG-e(y,z) 

 

 
dG(s,x) 

 given by SG(s) 
dG(y,z) 

 given by SG(z) 



A corresponding algorithm 

Step 1: Compute SG(s) and SG(z) (assume that both contain a 
same PG(s,z)) 

Step 2: e PG(s,z) check all the crossing edges in Cs(e), and 
take the minimum w.r.t. the key k. 

Time complexity 
Step 1: O(m + n log n) time 
Step 2: O(m) crossing edges for each of the O(n) edges on 

PG(s,z): since we can establish whether an edge of G is 
currently a crossing edge in O(1) time, after some 
preprocessing (can you guess how?), Step 2 costs O(mn) 
time 

 Overall complexity: O(mn) time 
 Improves on O(mn + n2 log n) if m=o(n log n) 



A more efficient solution: the Malik, 
Mittal and Gupta algorithm (1989) 

 MMG have solved in O(m + n log n) time the 
following related problem: given a SP PG(s,z), 
compute its most vital edge, namely an edge 
whose removal induces the worst (i.e., 
longest) replacement shortest path between s 
and z. 

 Their approach computes efficiently all the 
replacement shortest paths between s and z… 

 …but this is exactly what we are looking for in 
our VCG-mechanism!  

 



The MMG algorithm at work 

The basic idea of the algorithm is that when an 
edge e on PG(s,z) is considered, then we have a 
priority queue H containing the set of nodes in 
Ns(e); with each node yH remains associated a 
key k(y) and a corresponding crossing edge, 
defined as follows: 

k(y) = min   {dG(s,x)+r(x,y)+dG(y,z)} 
 

 k(y) is the length of a SP in G-e from s to z 
passing through node y, and so the minimum key is 
associated with a replacement shortest path for e 

(x,y)E, xMs(e) 



The MMG algorithm at work (2) 

 Initially, H =V, and k(y)=+ for each yV 

 Let PG(s,z) = {e1, e2,…, eq}, and consider these edges one 
after the other. When edge ei is considered, modify H as 
follows: 
 Remove from H all the nodes in Ws(ei)=Ns(ei-1)\Ns(ei) (for i=1, set 

Ns(ei-1)=V) 

 Consider all the edges (x,y) s.t. xWs(ei) and yH (these are new 
crossing edges), and compute k’(y)=dG(s,x)+r(x,y)+dG(y,z). If 
k’(y)<k(y), decrease k(y) to k’(y), and update the corresponding 
crossing edge to (x,y) 

 Then, find the minimum in H w.r.t. k, which returns the length of a 
replacement shortest path for ei (i.e., dG-ei(s,z)), along with the 
selected crossing edge 



An example 
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An example (2) 
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Here we may have 
a decrease_key 
due to the new 
crossing edge 



Time complexity of MMG 

Theorem: 

Given a shortest path between two 
nodes s and z in a graph G with n 
vertices and m edges, all the 
replacement shortest paths between s 
and z can be computed in O(m + n log n) 
time. 

 



Time complexity of MMG 

 
Proof: Compute SG(s) and SG(z) in O(m + n log n) time. Then, 
use a Fibonacci heap to maintain H (observe that Ws(ei) can be 
computed in O(|Ws(ei)|) time), on which the following 
operations are executed: 

 A single make_heap 
 n insert 
 q=O(n) find_min 
 O(n) delete 
 O(m) decrease_key 

In a Fibonacci heap, the amortized cost of a delete is O(log n), 
the amortized cost of a decrease_key is O(1), while insert, 
find_min, and  make_heap cost O(1), so 

O(m + n log n) 
total time 



Plugging-in the MMG algorithm into the 
VCG-mechanism 

Corollary 

There exists a VCG-mechanism for the private-
edge SP problem running in O(m + n log n) time. 

Proof. 

Running time for the mechanism’s algorithm: O(m + 
n log n) (Dijkstra). 

Running time for computing the payments: O(m + n 
log n), by applying MMG to compute all the 
distances dG-e(s,z). 


