

Università Degli Studi Di L'Aquila

Prova di Recupero di Algoritmi e Strutture Dati (Programma A.A. 2005/06)

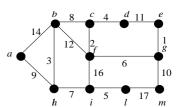
Martedì 5 Settembre 2006 – Prof. Guido Proietti

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1 (25 punti): Domande a risposta multipla

Premessa: Questa parte è costituita da 20 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. Quale delle seguenti relazioni di ricorrenza definisce la sequenza di Fibonacci? a) $F_{n+1}=F_n+F_{n-1}$ se $n\geq 3,\ F_1=F_2=1$ b) $F_{n-1}=F_{n-2}+F_{n-3}$ se $n\geq 3,\ F_1=F_2=1$ c) $F_n=F_{n-1}+F_{n-2}$ se $n\geq 3,\ F_1=F_2=1$ d) $F_n=F_{n-1}+F_{n-2}$ se $n\geq 2,\ F_1=1$
- 2. Sia $f(n)=n^2+2$; affinché sia $f(n)=O(n^2)$, è sufficiente scegliere: *a) $n_0=1, c=3$ b) $n_0=1, c=1$ c) $n_0=2, c=1$ d) $n_0=1, c=2$
- 3. Se $f(n) = n \log \sqrt{n}$ e $g(n) = n \log^2 n$, quale delle seguenti relazioni asintotiche è falsa: a) f(n) = o(g(n)) b) f(n) = O(g(n)) c) $g(n) = \Omega(f(n))$ *d) $f(n) = \Theta(g(n))$
- 4. Nel caso medio, assumendo che le istanze siano equidistribuite, la ricerca di un elemento in un insieme non ordinato di *n* elementi richiede un numero di confronti pari a:
 - a) n b) (n-1)/2 *c) (n+1)/2 d) 1
- 5. La delimitazione inferiore al problema dell'ordinamento ottenibile dagli alberi di decisione è: a) $o(n \log n)$ b) $\omega(n \log n)$ *c) $\Theta(n \log n)$ d) $\Theta(n)$
- 6. A quale delle seguenti classi appartiene la complessità dell'algoritmo Quicksort: a) $o(n^2)$ b) $\Theta(n \log n)$ c) O(n) *d) $O(n^2)$
- 7. L'algoritmo di ordinamento crescente INSERTION SORT applicato ad una sequenza di input ordinata in modo decrescente esegue un numero di confronti tra elementi pari a:
 - a) n-1 b) n(n+1)/2 c) n+1 *d) n(n-1)/2
- 8. L'algoritmo MERGE SORT, nel caso medio costa:
- a) O(n) *b) $O(n \log n)$ c) $\omega(n \log n)$ d) $\Theta(n)$
- 9. Per $n=3^k$, la soluzione dell'equazione di ricorrenza $T(n)=9\cdot T(n/3)+n, T(1)=\Theta(1)$, è: a) $o(n^2)$ b) $\Theta(n^{\log 9})$ c) $O(n\log n)$ *d) $O(n^2)$
- 10. Quale dei seguenti vettori <u>non</u> rappresenta un heap binario:
 - a) A=[10,9,6,7,5,1] *b) $\overline{A}=[20,16,9,15,12,14]$ c) A=[20,16,9,15,12] d) A=[5,3,4]
- 11. La procedura HEAPIFY per il mantenimento di un heap, nel caso migliore costa:
 - a) $\Theta(\log n)$ b) $\Theta(n)$ *c) $\Theta(1)$ d) $\Theta(n \log n)$
- 12. In un albero AVL di n elementi, la ricerca di un elemento ha complessità: *a) $O(\log n)$ b) $\Omega(n)$ c) $\Theta(\log n)$ d) $\Theta(1)$
- 13. Dati due elementi u, v appartenenti ad un universo totalmente ordinato U, una funzione hash $h(\cdot)$ si dice perfetta se: a) $u = v \implies h(u) \neq h(v)$ b) $u \neq v \implies h(u) = h(v)$ c) $u = v \implies h(u) = h(v)$ *d) $u \neq v \implies h(u) \neq h(v)$
- 15. L'algoritmo di Bellman e Ford applicato ad un grafo pesato con un numero di archi $m = \Theta(n)$, ha complessità: *a) $\Theta(n^2)$ b) $\Theta(n+m)$ c) $\Theta(n^3)$ d) $O(m \log n)$
- 16. Dato un grafo completo con n vertici rappresentato tramite liste di adiacenza, l'algoritmo di Dijkstra realizzato con heap binario costa:
 - a) $\Theta(n^2)$ b) $\Theta(m + n \log n)$ c) $O(n^2)$ *d) $O(n^2 \log n)$
- 17. L'algoritmo di Floyd e Warshall applicato ad un grafo pesato con un numero di archi $m = \Theta(n)$, ha complessità: *a) $\Theta(n^3)$ b) $\Theta(n+m)$ c) $\Theta(n^2 \log n)$ d) $O(m \log n)$
- 18. In un grafo completo di 5 nodi etichettati da 1 a 5, e tale che l'arco (i,j), per $i,j=1,\ldots,5, i\neq j$, ha peso pari a $\max\{i,j\}$, il minimo albero ricoprente ha peso:
 a) 0 *b) 14 c) 4 d) 20
- 19. Dato un grafo pesato con n vertici ed m archi, l'algoritmo di Boruvka ha una complessità pari a: a) $\Theta(m)$ b) $\Theta(n)$ c) $\Theta(m+n\log n)$ *d) $\Theta(m\log n)$
- 20. Dato un grafo pesato con n vertici ed m archi, l'algoritmo di Kruskal esegue un numero di operazioni UNION(u,v) pari a: a) $\Theta(m)$ *b) $\Theta(n)$ c) $\Theta(m \log n)$ d) $\Theta(\log n)$


Griglia Risposte

		Domanda																		
Risposta	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a																				
b																				
С																				
d																				

ESERCIZIO 2 (5 punti) (Da svolgere sul retro della pagina!)

Mostrare l'intera esecuzione, passo per passo, dell'algoritmo di Dijkstra,

per la determinazione dell'albero dei cammini minimi con sorgente in a del seguente grafo:

