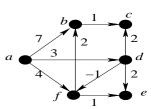
Università Degli Studi Di L'Aquila

Prova di Recupero di Algoritmi e Strutture Dati (Programma A.A. 2005/06)

Martedì 18 Luglio 2006 – Prof. Guido Proietti

Scrivi i tuoi dati ⇒	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1 (25 punti): Domande a risposta multipla


Premessa: Questa parte è costituita da 20 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. Quale dei seguenti insiemi rappresenta i primi sei numeri della sequenza di Fibonacci? a) $\{1, 2, 3, 5, 8, 13\}$ b) $\{2, 3, 5, 8, 13, 21\}$ *c) $\{1, 1, 2, 3, 5, 8\}$ d) $\{1, 2, 3, 5, 7, 11\}$
- 2. Sia f(n)=6n+5; secondo la definizione della notazione asintotica O, per dimostrare che $f(n)=O(n^4)$, è sufficiente scegliere: a) $n_0=1, c=2$ b) $n_0=2, c=1$ c) $n_0=1, c=1$ *d) $n_0=2, c=2$
- 3. Quale delle seguenti relazioni asintotiche è falsa: a) $n \log n^3 = O(n \log n^2)$ b) $n \log n^2 = \Omega(n \log n)$ c) $n \log n^2 = \Theta(n \log n)$ *d) $n \log n^2 = \omega(n \log n)$
- 4. L'algoritmo di ricerca sequenziale in un array ordinato di n elementi nel caso medio ha complessità: *a) $\Theta(n)$ b) O(1) c) $\Omega(\log n)$ d) $\Theta(\log n)$
- 5. Quale delle seguenti ricorrenze descrive la complessità dell'algoritmo di ricerca binaria in un array ordinato di n elementi? a) $T(n) = c + 2T(\lceil n-1/2 \rceil)$ se n > 1, T(1) = 1 se n = 1 b) $T(n) = T(\lceil n-1/2 \rceil)$ se n > 1, T(1) = 1 se n = 1 c) $T(n) = C + T(\lceil n-1/2 \rceil)$ se $T(n) = C + T(\lceil n-1$
- 6. L'algoritmo di ordinamento non crescente INSERTION SORT applicato ad una sequenza di input ordinata in modo non crescente esegue un numero di confronti tra elementi pari a:

 *a) n-1 b) n c) n+1 d) n(n-1)/2
- 7. L'algoritmo Selection Sort, nel caso migliore costa: a) $o(n^2)$ *b) $\Theta(n^2)$ c) $O(n \log n)$ d) $\Theta(n \log n)$
- 8. A quale delle seguenti classi appartiene la complessità del caso medio dell'algoritmo QUICKSORT: a) $\Theta(n^2)$ *b) $\Theta(n \log n)$ c) O(n) d) $\Omega(n^2)$
- 9. La delimitazione inferiore al problema della ricerca di un elemento in un insieme non ordinato di n elementi è: a) $\Theta(\log n)$ b) $\Theta(n\log n)$ *c) $\Omega(n)$ d) $\Omega(n\log n)$
- 10. În un albero binario di ricerca di altezza h, il successore di un elemento può essere determinato in: a) $\Theta(\log h)$ b) $O(\log h)$ c) $\Theta(1)$ *d) O(h)
- 11. In un albero AVL di n elementi, l'inserimento di un elemento, nel caso migliore, ha complessità: *a) $O(\log n)$ b) $\Omega(n)$ c) $\Theta(n)$ d) $\Theta(1)$
- 12. In un heap binomiale di n elementi, la ricerca del minimo ha complessità: *a) $O(\log n)$ b) $\Omega(n)$ c) $\Theta(n)$ d) $\Theta(1)$
- 13. In una tavola ad accesso diretto con un fattore di carico $\alpha=0,1,$ l'inserimento di un elemento costa: a) $O(\alpha)$ b) $\Omega(n)$ c) $\Theta(\log n)$ *d) $\Theta(1)$
- 15. Dato un grafo pesato con n vertici ed m archi, l'algoritmo di Bellman e Ford ha complessità: a) $\Theta(n^2)$ b) $\Theta(n+m)$ c) $\Theta(n^3)$ *d) O(nm)
- 16. Dato un grafo pesato con n vertici ed m archi, l'algoritmo di Dijkstra realizzato con heap di Fibonacci ha complessità: a) $\Theta(n^2 \log n)$ *b) $\Theta(m + n \log n)$ c) $\Theta(n^2)$ d) $O(n \log n)$
- 17. Dato un grafo pesato con n vertici ed m archi, l'algoritmo di Floyd e Warshall ha complessità: a) $\Theta(n^2)$ b) $\Theta(n+m)$ *c) $O(n^3)$ d) O(n m)
- 18. Usando gli alberi QuickUnion e l'euristica dell'unione pesata by size, il problema della gestione di n insiemi disgiunti sottoposti ad n-1 Union ed $m=n^2$ Find può essere risolto in: a) $\Theta(n)$ b) $\Theta(n+m)$ c) $\Theta(n^2)$ *d) $O(n^2 \log n)$
- 19. Dato un grafo completo con n vertici, l'algoritmo di Boruvka ha una complessità pari a: a) $\Theta(m)$ b) $\Theta(n)$ c) $\Theta(m+n\log n)$ *d) $\Theta(n^2\log n)$
- 20. Dato un grafo pesato con n vertici ed m archi, l'algoritmo di Kruskal esegue un numero di operazioni FIND(u) pari a: a) m b) $\Theta(n)$ c) $\Theta(m \log n)$ *d) $\Theta(m)$

Griglia Risposte

	Domanda																			
Risposta	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a																				
b																				
С																				
d																				

ESERCIZIO 2 (5 punti) (Da svolgere sul retro della pagina!)

Mostrare l'intera esecuzione, passo per passo, dell'algoritmo di Bellman e Ford per determinare i cammini minimi con sorgente in a sul seguente grafo (gli archi vanno considerati in ordine lessicografico):