

Università degli Studi dell'Aquila Non-Cooperative Networks: Mid-term Evaluation Tuesday, November 8th, 2016 – Prof. Guido Proietti

Write your data \Longrightarrow	Last name:	First name:	ID number:	Points
EXERCISE 1				
EXERCISE 2				
TOTAL				

EXERCISE 1: Multiple-choice questions (20 points)

Remark: Only one choice is correct. Use the enclosed grid to select your choice. A correct answer scores 3 points, while a wrong answer receives a -1 penalization. The final score will be given by summing up all the obtained points (0 for a missing answer), by normalizing on a 20 base.

- 1. A Dominant Strategy Equilibrium is a strategy combination $s^* = (s_1^*, \ldots, s_N^*)$, such that (assume p_i is a cost):
 - a) there exists a player i and an alternative strategy profile $s = (s_1, \ldots, s_i, \ldots, s_N)$, such that $p_i(s_1, \ldots, s_i^*, \ldots, s_N) \ge p_i(s_1, \ldots, s_i, \ldots, s_N)$ *b) for each player *i* and for any possible alternative strategy profile $s = (s_1, \ldots, s_i, \ldots, s_N), p_i(s_1, \ldots, s_i^*, \ldots, s_N) \leq p_i(s_1, \ldots, s_i, \ldots, s_N)$ c) there exist no player *i* and no alternative strategy profile $s = (s_1, \ldots, s_i, \ldots, s_N)$, such that $p_i(s_1, \ldots, s_i^*, \ldots, s_N) \leq p_i(s_1, \ldots, s_i, \ldots, s_N)$
 - d) for each player *i* and for any possible alternative strategy profile $s = (s_1, \ldots, s_i, \ldots, s_N), p_i(s_1^*, \ldots, s_i^*, \ldots, s_N^*) \ge p_i(s_1, \ldots, s_i, \ldots, s_N)$
- 2. A Nash Equilibrium is a strategy combination $s^* = (s_1^*, \ldots, s_N^*)$, such that (assume p_i is a utility): a) there exists a player i and an alternative strategy profile $s = (s_1, \ldots, s_i, \ldots, s_N)$, such that $p_i(s_1, \ldots, s_i^*, \ldots, s_N) \leq p_i(s_1, \ldots, s_i, \ldots, s_N)$ b) for each player *i* and for any possible alternative strategy profile $s = (s_1, \ldots, s_i, \ldots, s_N)$, $p_i(s_1, \ldots, s_i^*, \ldots, s_N) \ge p_i(s_1, \ldots, s_i, \ldots, s_N)$ c) there exist no player *i* and no alternative strategy profile $s = (s_1, \ldots, s_i, \ldots, s_N)$, such that $p_i(s_1, \ldots, s_i^*, \ldots, s_N) \leq p_i(s_1, \ldots, s_i, \ldots, s_N)$ *d) for each player *i* and for any alternative strategy s_i of *i*, $p_i(s_1^*, \ldots, s_i^*, \ldots, s_N) \geq p_i(s_1^*, \ldots, s_N^*)$
- 3. How the Price of Anarchy is defined for a game in which the social choice function C has to be minimized (S is the set of Nash equilibria)?
 - *a) PoA = $\sup_{s \in S} \frac{C(s)}{C(OPT)}$ b) PoA = $\inf_{s \in S} \frac{C(s)}{C(OPT)}$ c) PoA = $\sup_{s \in S} \frac{C(OPT)}{C(s)}$ d) PoA = $\inf_{s \in S} \frac{C(OPT)}{C(s)}$
- 4. How the Price of Stability is defined for a game in which the social-choice function C has to be maximized (S is the set
- of Nash equilibria)? *a) $\operatorname{PoS} = \sup_{s \in S} \frac{C(s)}{C(\operatorname{OPT})}$ b) $\operatorname{PoS} = \inf_{s \in S} \frac{C(s)}{C(\operatorname{OPT})}$ c) $\operatorname{PoS} = \sup_{s \in S} \frac{C(\operatorname{OPT})}{C(s)}$ d) $\operatorname{PoS} = \inf_{s \in S} \frac{C(\operatorname{OPT})}{C(s)}$ 5. In a network with degree-*p* polynomials latency functions, p > 1, the cost of a Nash flow is *x* times that of the min-cost
- flow, where x is:
 - d) 4/3 a) O(p)b) $O(\log p)$ *c) $O(p/\log p)$
- 6. In the global connection game on a graph G = (V, E, c), if we denote by c_e (resp., k_e) the cost (resp., the load) of an edge $e \in E$, and by N(S) the network induced by a given strategy profile S, which of the following is the social-choice function?

a)
$$C(S) = \sum_{e \in N(S)} c_e \cdot H_{k_e}$$
 b) $C(S) = \sum_{e \in N(S)} c_e / k_e$ *c) $C(S) = \sum_{e \in N(S)} c_e$ d) $C(S) = \sum_{e \in E} c_e$

- 7. In a global connection game with k players, which of the following claim is false? *d) PoA $< H_k$ a) there exists an instance such that $PoS = H_k$ b) $PoA \le k$ c) $PoS \le H_k$
- 8. In the local connection game on a set of nodes V, if we denote by α the cost of activating an edge, by n_u the number of edges bought by a player $u \in V$, and finally by $dist_{G(S)}(u, v)$ the distance between u and v in the graph G(S) induced by a given strategy profile S, which of the following is the cost function for player u with respect to S? a) $c_u(S) = \alpha \cdot \sum_{v \in V} \operatorname{dist}_{G(S)}(u, v)$ *b) $c_u(S) = \alpha \cdot n_u + \sum_{v \in V} \operatorname{dist}_{G(S)}(u, v)$ c) $c_u(S) = \alpha + \sum_{v \in V} \operatorname{dist}_{G(S)}(u, v)$ d) $c_u(S) = \sum_{v \in V} \operatorname{dist}_{G(S)}(u, v)$
- 9. In the local connection game on a set V of n nodes, if we denote by α the cost of activating an edge, which of the following is a lower bound on the social-cost function of an optimal solution G = (V, E)?
- a) $(\alpha 2)n + 2n(n-1)$ b) $\alpha + 2n(n-1)|E|$ c) $(\alpha 2)|E| + 2n^2$ *d) $(\alpha 2)|E| + 2n(n-1)$
- 10. Let be given a local connection game on a set V of n nodes, in which the cost of activating an edge is $\alpha = 0.9$. What is the PoA of such a game?
 - *a) exactly 1 b) exactly $6 \cdot \sqrt{0.9} + 3$ c) at least $6 \cdot \sqrt{0.9} + 3$ d) at least 1

	Question									
Choice	1	2	3	4	5	6	7	8	9	10
a										
b										
с										
d										

EXERCISE 2: Open question (10 points)

Remark: Select at your choice one out of the following two questions, and address it exhaustively.

- 1. Describe and analyze the selfish routing game.
- 2. Describe and analyze the local connection game.