Università degli Studi di L'Aquila
Algorithms for Distributed Systems: Mid-term Evaluation
Wednesday 9th of December, 2009 - Prof. Guido Proietti

Write your data \Longrightarrow	Last name	First name:	ID number:	Points
EXERCISE 1				
EXERCISE 2				
EXERCISE 3				
TOTAL				

EXERCISE 1: Multiple-choice questions (10 points)
Remark: Only one choice is correct. Use the enclosed grid to select your choice. A correct answer will provide you with 3 points, while a wrong answer will charge you with a -1 penalization. The final result will be given by summing up all the obtained points (0 for a missing answer), by normalizing on a 10 base.

1. In a uniform MPS, processors:
a) know the total number of processors b) are all identical $\quad{ }^{*}$ c) do not know the total number of processors d) have distinct ids
2. What is the probability that id i makes exactly k steps in the Chang ε Roberts algorithm, assuming that ids are in [1..n]?
a) $P(i, k)=\frac{\binom{n-1}{k-1}}{\binom{i-1}{k-1}} \frac{n-i}{k}$
b) $P(i, k)=\frac{\binom{i-1}{k-1}}{\binom{n-1}{k-1}} \frac{n-1}{n-k}$
c) $P(i, k)=\frac{\binom{n-1}{k-1}}{\binom{i-1}{k-1}} \frac{n-i}{n-k}$
*d) $P(i, k)=\frac{\binom{i-1}{k-1}}{\binom{n-1}{k-1}} \frac{n-i}{n-k} ;$
3. The most efficient leader election algorithm for a synchronous ring with n processors, non-anonymous and uniform, with minimum id m, has a message complexity of:
a) $\Theta(n \cdot m)$
b) it does not exist
c) $\Theta\left(n \cdot 2^{m}\right)$
*d) $\Theta(n)$
4. In the synchronous GHS algorithm, the average number of rounds in a phase is:
a) n
b) $O(1)$
c) $O(\log n)$
*d) $5 n+2$
5. In the $G H S$ algorithm, the number of messages passing through an edge not belonging to the minimum spanning tree is:
*a) $O(\log n)$
b) $O(1)$
c) $\log n$
d) $\Theta(n \log n)$
6. The randomized algorithm for finding a maximal independent set of a graph with n nodes of degree d, with probability at least $1-1 / n$, ends within a number of phases of:
a) $O(\log n)$
b) $O(1)$
c) $O(d)$
*d) $O(d \log n)$
7. Let be given a synchronous n-processor system, with at most f benign failures. Assume that all non-faulty processors have input $x>0$, while the minimum input among the faulty processors is $y>x$. Then, which of the following is the output of the consensus algorithm consisting of $f+1$ round?
a) 0
b) y
*) x
d) $z>y$
8. Let be given a synchronous system of 17 processors, out of which at most 4 can be Byzantine. What is the minimum number of messages received by a non-faulty processor in a phase of the Phase King algorithm?
a) 14
*b) 13
c) 17
d) 0
9. In the Bakery algorithm for a system of 2 processors, a number variable can be at most:
a) 1
b) $2 \quad{ }^{\text {c }}$ c) unbounded
d) 0
10. In the tournament algorithm, a processor before accessing the critical section can be overtaken by at most a number of processors equal to:
*a) unbounded
b) $n-2$
c) k, with k constant
d) 1

Answer Grid

	Question									
Choice	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										

EXERCISE 2: Open questions (10 points)
Remark: Select any one of the two questions at your convenience, and address it exhaustively.

1. Describe and analyze the Hirschberg8SSinclair leader election algorithm.
2. Describe and analyze the synchronous $G H S$ algorithm.

EXERCISE 3: Algorithm (10 points)

Design an algorithm for the consensus problems, by assuming that the underlying system is a 3-processor fault-free, and by modifying the validity assumption in the following way: if there are at least 2 processors having the same input, then this must be the output.

